JPH05288477A - Repairing device for metal smelting furnace - Google Patents

Repairing device for metal smelting furnace

Info

Publication number
JPH05288477A
JPH05288477A JP8402092A JP8402092A JPH05288477A JP H05288477 A JPH05288477 A JP H05288477A JP 8402092 A JP8402092 A JP 8402092A JP 8402092 A JP8402092 A JP 8402092A JP H05288477 A JPH05288477 A JP H05288477A
Authority
JP
Japan
Prior art keywords
furnace
repair
refractory
residual thickness
repairing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8402092A
Other languages
Japanese (ja)
Inventor
Tadashi Imoto
忠司 井本
Yukio Morimoto
幸夫 森本
Tatsuya Kashibe
達哉 樫部
Hirotoshi Nagoshi
啓敏 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8402092A priority Critical patent/JPH05288477A/en
Publication of JPH05288477A publication Critical patent/JPH05288477A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE:To obtain a repairing device for metal smelting furnace, which is capable of saving the consumption of repairing materials and prolonging the life of the furnace, in a repairing controller for continuing the operation of the metal smelting furnace while repairing a damaged area due to excessive fusion. CONSTITUTION:A repairing controller 6 is provided with a control circuit 9 detecting the remaining thickness of refractory detected by a sensor brick 1 buried into the hot spot of a metal smelting furnace 5 beforehand. The control circuit 9 compares the detected remaining thickness T with a predetermined value of remaining thickness and repairs the furnace properly by controlling the operation of a repairing device 10 in accordance with a difference obtained by the comparison whereby the consumption of repairing materials can be saved and the life of the furnace can be prolonged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は金属溶解炉の内張り耐火
物の溶損部分を補修する補修装置に関し、特に炉内溶損
状況に応じて適切に耐火物補修材で補修し、出来るだけ
炉の寿命を延長させる金属溶解炉用補修装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a repairing device for repairing a erosion damage portion of a refractory lining of a metal melting furnace, and in particular, it is appropriately repaired by a refractory repair material in accordance with the erosion condition of the furnace, and the furnace is used as much as possible. The present invention relates to a repairing device for a metal melting furnace that extends the life of the metal.

【0002】[0002]

【従来の技術】一般に、その内壁面を煉瓦等の耐火物で
張り巡らした電気炉に代表されるような金属溶解炉は、
その使用に伴って内張り煉瓦が徐々に溶損するのは避け
られず、例えば炉体電極による熱負荷が大きい領域(ホ
ットスポットとも呼ぶ)においては、他の炉内領域に比
べて高温になるため溶損し易い。
2. Description of the Related Art Generally, a metal melting furnace represented by an electric furnace whose inner wall surface is covered with refractory such as bricks is
It is unavoidable that the lining brick gradually melts down due to its use. For example, in a region where the heat load due to the furnace body electrode is large (also called a hot spot), the temperature is higher than in other furnace regions, and the melting occurs. Easy to lose.

【0003】従って従来の使用では、この溶損し易い領
域(以下、溶損領域と呼ぶ)における耐火物溶損度合が
進んで、この領域の耐火物残厚が使用限界に到達した際
に、炉内全域に亙って煉瓦を張り替えるという作業がな
されてきた。しかしながらこの方法は、あくまで最も溶
損量の大きい領域を基準とするために、炉の他の部分に
はかなりの厚みの煉瓦が残留するにもかかわらず炉全体
に亙って煉瓦を張り替えてしまうために経済的ではな
く、加えて総張り替え周期も短くなるためにランニング
コストが高いという問題がある。
Therefore, in the conventional use, when the melting degree of the refractory material in the region (hereinafter referred to as the melting region) where the melting loss is likely to occur is advanced and the residual thickness of the refractory material in this region reaches the use limit, the furnace is used. Brick work has been done over the whole area. However, since this method is based on the region with the largest amount of erosion loss, bricks will be replaced over the entire furnace even if bricks of considerable thickness remain in other parts of the furnace. Therefore, there is a problem that the running cost is high because the cost is not economical and the total replacement period is shortened.

【0004】このような問題に対し現状では、例えば耐
火物補修装置によって時々、過剰溶損領域に対して不定
形耐火物を吹き付け補修することにより他の炉内領域の
耐火物残厚との差をその都度小さくし、以て総張り替え
周期を長くすることが行われている。
In the present situation, for example, a refractory repairing apparatus sometimes blows an irregular shaped refractory onto the excessive melting damage area to repair it, thereby making a difference from the refractory residual thickness in other furnace areas. Is made smaller each time, and the total replacement period is lengthened accordingly.

【0005】[0005]

【発明が解決しようとする課題】不定形耐火物は煉瓦よ
りも溶損量当りの単価が高いため、過剰な補修(吹き付
け)はコスト高になる。このため、補修に際しては耐火
物の溶損度合を適確に把握し、適時に適量の補修をする
ことが重要である。しかしながら、現状では作業者が過
剰溶損領域の溶損が激しいと目視によって判断した時に
適宜行われており、その補修度合も作業者の勘に依存す
るところが大きい。
Since the amorphous refractory has a higher unit price per amount of erosion than brick, excessive repair (spraying) is costly. Therefore, when repairing, it is important to accurately grasp the degree of melting damage of the refractory and to repair an appropriate amount in a timely manner. However, under the present circumstances, when the operator visually judges that the excessive erosion region is severely eroded, it is appropriately performed, and the degree of repair thereof largely depends on the intuition of the operator.

【0006】従って、補修毎に使用される耐火物補修材
の量もその時の溶損状況に適切に対応したものではな
く、ある時には内壁に補修材及び煉瓦を多く残したまま
炉全体を張り替えしなければならなかったり、又ある時
には補修が不充分であるために過剰溶損域を局部的に溶
損させて寿命を縮めたりして、必ずしもその炉寿命を最
大限に延ばしているとはいえない。
Therefore, the amount of the refractory repair material used for each repair does not properly correspond to the erosion condition at that time, and at some time, the entire furnace is refilled with a large amount of repair material and bricks left on the inner wall. However, it is sometimes said that the furnace life is shortened to the maximum extent by locally melting the excessive erosion area and shortening the life due to insufficient repair. Absent.

【0007】本発明は、以上説明した現状に鑑み、使用
する補修材の量を節減し、かつ補修された金属溶解炉の
炉寿命を出来るだけ延ばすことが可能な金属溶解炉用補
修装置を提供することを目的とする。
In view of the present situation described above, the present invention provides a repairing apparatus for a metal melting furnace, which can reduce the amount of repair material to be used and extend the life of the repaired metal melting furnace as much as possible. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明によれば、金属溶解炉の断続的操業によって溶損
する内張り耐火物の溶損領域を耐火物補修材で補修する
ための金属溶解炉用補修装置において、予め上記金属溶
解炉の溶損し易い領域に埋設されて、所定のインターバ
ル毎に出湯後残留した内張り耐火物の残厚を検出する耐
火物残厚検出手段と、該耐火物残厚検出手段によって検
出された残厚を金属溶解炉操業開始後の出湯回数に対応
して予め定められた所定残厚値と比較し、少なくとも上
記残厚が所定残厚値よりも小さいとき上記過剰溶損領域
を上記耐火物補修材で補修する補修制御手段とを有する
ことを特徴とする金属溶解炉用補修装置が提供される。
In order to achieve the above object, according to the present invention, metal melting for repairing a erosion region of a lining refractory eroded by intermittent operation of a metal smelting furnace with a refractory repair material. In a repair device for a furnace, a refractory residual thickness detecting means which is buried in a region of the metal melting furnace which is likely to be melted in advance and which detects the residual thickness of the lining refractory remaining after tapping at predetermined intervals, and the refractory. The residual thickness detected by the residual thickness detecting means is compared with a predetermined residual thickness value which is predetermined corresponding to the number of taps after the operation of the metal melting furnace, and at least when the residual thickness is smaller than the predetermined residual thickness value, There is provided a repairing device for a metal melting furnace, comprising: repair control means for repairing an excessive erosion region with the refractory repair material.

【0009】[0009]

【作用】過剰溶損領域の耐火物残厚を検出し、これを金
属溶解炉操業開始後の出湯回数に対応して予め定められ
た所定残厚値と比較しながらその大小関係に応じて耐火
物補修の制御をし、これを残厚検出毎に定期的に実行し
ていくため、実際の残厚変化を予め定められた残厚変化
モデルに近似することができるので耐火物の溶損状況に
応じた適切な時期に適切な量の補修材を使用することが
でき、かつ理想とする炉寿命に近づけることができる。
[Function] The residual thickness of the refractory in the excessive erosion region is detected, and the refractory thickness is compared with the predetermined residual thickness value that has been set in advance corresponding to the number of taps after the operation of the metal smelting furnace. Since the repair of the object is controlled and this is executed periodically every time the residual thickness is detected, the actual residual thickness change can be approximated to a predetermined residual thickness change model. It is possible to use an appropriate amount of repair material at an appropriate time according to the above, and it is possible to approach the ideal furnace life.

【0010】[0010]

【実施例】図面を参照して本発明の一実施例を説明す
る。まず図1の(a), (b)は、本発明の耐火物残厚検出手
段として用いられる所謂、センサー煉瓦1の平面外観及
び側面外観を夫々示しており、これは本出願人によって
既に出願されているものである(実願平3−27600
号)。
An embodiment of the present invention will be described with reference to the drawings. First, FIGS. 1 (a) and 1 (b) respectively show a plan view and a side view of a so-called sensor brick 1 used as a refractory residual thickness detecting means of the present invention, which has already been applied by the present applicant. (Practical application 3-27600
issue).

【0011】このセンサー煉瓦1は、図示するように、
耐火物から成る煉瓦2の内部に多数の電極を並列配置さ
せたものであって、中央のセンター電極3に対して複数
本(図では6本)の接点電極4a〜4fが分岐するよう
に配線され、各センター電極3との接点a〜fはセンサ
ー煉瓦本体の長手方向に距離をおいて位置決めされる。
This sensor brick 1 is, as shown in the drawing,
A large number of electrodes are arranged in parallel inside a brick 2 made of a refractory, and wiring is provided so that a plurality of (six in the figure) contact electrodes 4a to 4f branch to a center electrode 3 in the center. The contact points a to f with the respective center electrodes 3 are positioned at a distance in the longitudinal direction of the sensor brick body.

【0012】しかして、その作用はこのセンサー煉瓦1
において図中、矢印方向に溶損が進行すると、これに伴
ってセンター電極3と各接点電極4a〜4fの接点a〜
fが順に溶損されることとなり、電極間に電位差を生じ
ることで煉瓦溶損が検知され、まための溶損幅も現在ど
の接点までが有効であるかを検知することで、概ね知る
ことができるようになっている。
The function of this sensor brick 1 is
In the figure, when the melting loss progresses in the direction of the arrow, the contacts a to the center electrode 3 and the contact electrodes 4a to 4f
Since f is sequentially melted, brick melting loss is detected by generating a potential difference between the electrodes, and the melting width can be generally known by detecting which contact is currently effective. You can do it.

【0013】図2は本発明の適用対象としての金属溶解
炉(電気炉)5と、本実施例による補修制御装置6の構
成を概略的に示したものであって、本実施例によれば上
述したセンサー煉瓦1は、金属溶解炉5に設けられる電
極5a(又は電極5b,5c)に近接した内張り煉瓦部
分に埋め込まれ、その先端1aが炉中心を指向してこれ
より半径方向外方に延びるように位置決め配置される。
FIG. 2 schematically shows the construction of a metal melting furnace (electric furnace) 5 to which the present invention is applied and a repair control device 6 according to this embodiment. According to this embodiment, The sensor brick 1 described above is embedded in a lined brick portion near the electrode 5a (or electrodes 5b, 5c) provided in the metal melting furnace 5, and its tip 1a is directed toward the center of the furnace and is radially outward from this. It is positioned so as to extend.

【0014】又、このようにして埋め込まれたセンサー
煉瓦1からの各電極3、4a〜4fは、コネクタ7を介
して、接点溶損を電気信号に変換する電気回路8に接続
され、回路8からの煉瓦残厚情報を現す信号は制御回路
(ECU)9に入力される。補修制御装置6は更に、出
湯後の金属溶解炉5の炉内に挿入されてセンサー煉瓦1
設置部分を含む電極近傍の過剰溶損領域に対し、耐火物
補修材(例えば、粉状耐火物に水を加えて流動体にした
もの)を吹き付ける補修装置10を備えており、そのラ
ンス(吹付用ノズル)11は炉内円周方向に隔てられる
各過剰溶損領域の位置に対応して回転可能となってお
り、その作動は制御回路9から出力される駆動信号によ
って制御される。尚、この補修装置10には、補修にあ
たって使用された耐火物補修材の量を計測する機能が備
わっており、その情報は制御回路9に入力される。
Further, the electrodes 3, 4a to 4f from the sensor brick 1 thus embedded are connected via a connector 7 to an electric circuit 8 for converting contact melting damage into an electric signal, and the circuit 8 is formed. The signal representing the brick residual thickness information from the above is input to the control circuit (ECU) 9. The repair control device 6 is further inserted into the furnace of the metal melting furnace 5 after tapping, and the sensor brick 1
A repair device 10 for spraying a refractory repair material (for example, a powder refractory made into a fluid by adding water) to the excessive erosion region near the electrode including the installed portion is provided with the lance (spraying). Nozzle 11) is rotatable in correspondence with the positions of the respective excess erosion regions separated in the furnace circumferential direction, and its operation is controlled by the drive signal output from the control circuit 9. The repair device 10 has a function of measuring the amount of refractory repair material used for repair, and the information is input to the control circuit 9.

【0015】又、補修制御装置6には更に、上述したラ
ンス11の回転を制御するため、現在のランス位置を検
知するランス回転位置センサー12が設けられ、その信
号も又制御回路9に入力される。以上のように構成され
る補修制御装置6において、制御回路9は例えば一溶解
毎(チャージ毎)或いは数チャージ毎にセンサー煉瓦1
からの情報、即ち過剰溶損領域の煉瓦残厚値Tを取り込
み、その残厚に対応して補修装置10を駆動し、耐火物
補修材で補修する。
Further, the repair control device 6 is further provided with a lance rotational position sensor 12 for detecting the current lance position in order to control the rotation of the above-mentioned lance 11, and the signal thereof is also inputted to the control circuit 9. It In the repair control device 6 configured as described above, the control circuit 9 controls the sensor brick 1 for each dissolution (for each charge) or for every several charges, for example.
Information, that is, the brick residual thickness value T in the excessive erosion region, is taken in, the repair device 10 is driven in accordance with the residual thickness, and the refractory repair material is used for repair.

【0016】図3は、検出された煉瓦残厚値Tが補修を
要するものなのか否かを判断するための基準としての目
標溶損量をグラフ化したものであって、これは過剰溶損
領域以外の煉瓦残厚の経時的変化にほぼ相当するもので
あり、補修対象となる金属溶解炉5に対応して予め実験
的に求められ、制御回路9のメモリにマップ化して記憶
され得るものである。
FIG. 3 is a graph showing the target amount of erosion loss as a reference for determining whether the detected brick residual thickness value T requires repair or not. It is approximately equivalent to the change over time in the remaining brick thickness other than the area, and is experimentally obtained in advance corresponding to the metal melting furnace 5 to be repaired, and can be stored as a map in the memory of the control circuit 9. Is.

【0017】尚、本図において、縦軸は煉瓦残厚値T
(mm) 、横軸は炉寿命の代表特性値としての内張り後の
チャージ数Cを夫々示し、1点鎖線は総張り替えを必要
とする残厚最小値ライン、Cf は設定される炉寿命目標
としてのチャージ数、点線は目標溶損ライン(過剰溶損
領域外)、実線はセンサー煉瓦1によって検出された残
厚変化モデルを示している。
In this figure, the vertical axis represents the brick residual thickness value T.
(Mm), the horizontal axis indicates the number of charges C after lining as a representative characteristic value of furnace life, the one-dot chain line indicates the residual thickness minimum value line that requires total relining, and Cf is the set furnace life target. , The dotted line shows the target erosion line (outside the excess erosion region), and the solid line shows the residual thickness change model detected by the sensor brick 1.

【0018】以下、本実施例による補修制御装置6の作
動を掌る制御回路9の一作動例を図3及び図4を参照し
ながら説明する。図4は、制御回路9によって実行され
る制御フローチャートであって、例えばチャージ(溶
解)終了毎に、作業者によって補修制御装置6を作動す
ることで実行されるプログラムである。尚、本フローチ
ャートでは、前述した図3のマップの炉寿命に対応し
て、炉全体の内張り時(操業スタート)からの時間経過
をチャージ数の大小で見るようにしている。
An example of the operation of the control circuit 9 which controls the operation of the repair control device 6 according to this embodiment will be described below with reference to FIGS. 3 and 4. FIG. 4 is a control flow chart executed by the control circuit 9, and is a program executed by operating the repair control device 6 by an operator, for example, every time charging (dissolution) is completed. In this flowchart, the elapsed time from the time when the entire furnace is lined (start of operation) is viewed by the number of charges, corresponding to the life of the furnace shown in the map of FIG.

【0019】従って、ステップS1では、現在の金属溶
解炉5の状態が図3の横軸のどこに位置するかを規定す
るため、これまでのチャージ数Cに対しインクリメント
処理する。尚、このチャージ数Cは操業スタート時点で
は、当然ながら0に初期化されている。次にステップS
2では、現在のチャージ数Cが図3の設定寿命チャージ
数Cfに到達したか否かを判定し、Yesの場合にはステ
ップS6に進み、例えば現在の炉の状態が総張り替えが
必要である旨の表示をして作業者に知らしめ、ステップ
S7でチャージ数Cをクリアして本ルーチンを終了す
る。
Therefore, in step S1, in order to define where the current state of the metal melting furnace 5 is located on the horizontal axis of FIG. 3, an increment process is performed on the number C of charges so far. The charge number C is naturally initialized to 0 at the start of operation. Then step S
In 2, it is determined whether or not the current charge number C has reached the set life charge number Cf in FIG. 3, and if Yes, the process proceeds to step S6, for example, the current state of the furnace requires a total refill. A message to that effect is displayed to notify the operator, the charge number C is cleared in step S7, and this routine ends.

【0020】これに対して未だ設定寿命に至ってない場
合(ステップS2でNo の場合) 、ルーチンはステップ
S3に進み、電気回路8を介して信号化されたセンサー
煉瓦1からの煉瓦残厚情報を読み込み、現在の残厚Tを
検出する。そして、続くステップS4では、このように
して検出された現在残厚Tが、図3に規定する現チャー
ジ数Cに対応する目標溶損値A(c)よりも小さいか否
かを判定する。
On the other hand, if the set life has not been reached (No in step S2), the routine proceeds to step S3, and the brick residual thickness information from the sensor brick 1 signaled via the electric circuit 8 is obtained. Read and detect the current remaining thickness T. Then, in a succeeding step S4, it is determined whether or not the current remaining thickness T detected in this way is smaller than the target melting loss value A (c) corresponding to the current charge number C defined in FIG.

【0021】本ステップS4でYes、即ち現在の残厚T
が目標溶損値A(c)よりも小さいと判定されたならば
〔例えば、図3の(イ)の位置〕、この場合他の炉内領
域よりもセンサー煉瓦1を配した過剰溶損領域の溶損量
が大きいと推定されるため、ルーチンはステップS5に
進み、前述した補修装置10を作動開始して、この過剰
溶損領域を補修する処理を実行する。尚、本ステップS
5における具体的補修処理内容は後述する。
In step S4, Yes, that is, the current remaining thickness T
Is determined to be smaller than the target melt loss value A (c) [for example, the position of (a) in FIG. 3], in this case, the excess melt damage region in which the sensor brick 1 is arranged more than other furnace regions. Since it is estimated that the amount of melt-ablation is large, the routine proceeds to step S5, starts the operation of the repair device 10 described above, and executes the process of repairing the excessive melt-damage region. This step S
The specific repair processing contents in 5 will be described later.

【0022】一方、ステップS4でNo と判定され、現
在の残厚Tが目標値A(c)よりも大きい場合には〔図
3の(ロ)の位置など〕、前回の補修によって過剰溶損
領域に形成された耐火物補修材が未だ残留しており、こ
の領域の耐火物(煉瓦+補修材)の残厚が他の領域の煉
瓦残厚よりも大きい状態を表しているとも判断されるた
め、従って補修処理せず、ステップS5をスキップして
本ルーチンを終了することになる。
On the other hand, if it is judged No in step S4 and the current remaining thickness T is larger than the target value A (c) [the position of (b) in FIG. 3], excessive melting loss due to the previous repair is performed. It is also judged that the refractory repair material formed in the area still remains, and the residual thickness of the refractory (brick + repair material) in this area is larger than the remaining brick thickness in other areas. Therefore, the repair process is not performed, and step S5 is skipped to end this routine.

【0023】尚、図3において、検出される煉瓦残厚ラ
インが階段状になるのは、図1に示すようにセンサー煉
瓦1の各接点a〜fが連続したものではなく、ある距離
をおいて配置されていることに起因しており、溶損後の
センサー煉瓦の実際の先端位置が接点間にある状態で
は、その出力は外側の接点に対応した値を示し続けるた
めである。
It should be noted that, in FIG. 3, the brick residual thickness line to be detected has a step-like shape because the contact points a to f of the sensor brick 1 are not continuous as shown in FIG. This is because the output continues to show the value corresponding to the outer contact when the actual tip position of the sensor brick after melting is between the contacts.

【0024】ところで、以上のようにして目標煉瓦残厚
A(c)に対して検出された残厚値Tが小さいと認めら
れ補修を実行する場合、検出される残厚値Tと現実の残
厚値にはセンサ精度によっては差が生じる可能性がある
ため、その都度、実際の過剰溶損領域とその他の領域と
の間で耐火物厚さに差を生じないように補修されるのが
好ましい。
By the way, when the residual thickness value T detected with respect to the target brick residual thickness A (c) as described above is recognized to be small, when the repair is performed, the detected residual thickness value T and the actual residual value T Since the thickness value may differ depending on the sensor accuracy, it is necessary to repair it so that there is no difference in the refractory thickness between the actual excess erosion region and other regions. preferable.

【0025】しかしながら、補修部分の厚みを実際にモ
ニタリングしながら補修していくことは、そのための厚
み検知装置(例えば、レーザ検知装置など)を設けなけ
ればならず、設備コストがかさみ、多大な労力を要する
恐れがある。従って、本実施例では上記フローチャート
のステップS5において、次の総張り替えまで(煉瓦総
張り替え1サイクル)に使用される補修材の累積量が常
にほぼ一定値となるように、以下に述べる基準に従って
補修制御する。
However, repairing while actually monitoring the thickness of the repaired portion requires provision of a thickness detection device (for example, a laser detection device) for that purpose, which increases equipment costs and requires a lot of labor. May be required. Therefore, in this embodiment, in step S5 of the above-mentioned flow chart, repair is performed according to the following criteria so that the cumulative amount of repair material used until the next total refill (1 cycle of total brick refill) is almost constant. Control.

【0026】図5は、これまで使用された補修材の累積
値が、その炉寿命に対応する基準使用量に対して多いの
か、或いは少ないのか、更にその程度を示し、今回の補
修に反映させるために用いられるグラフであって、制御
回路9のメモリにマップとして格納されるものである。
尚、図中点線で示す基準使用量ラインは、例えば補修材
が過不足ない状態で最も長く金属溶解炉が連続操業され
た際の補修材累積値Qmin から得ることができ、或いは
1回の溶解(チャージ)において生じる過剰溶損領域と
他の領域との耐火物溶損差Δmを実験的に求め、これに
より煉瓦張り替え1サイクル当たりの総チャージ数を乗
ずることにより得ることも可能である。
FIG. 5 shows whether the cumulative value of the repair material used so far is larger or smaller than the reference usage amount corresponding to the life of the furnace, and the degree thereof, which is reflected in this repair. The graph is used for this purpose and is stored in the memory of the control circuit 9 as a map.
The reference usage amount line shown by the dotted line in the figure can be obtained from the cumulative value Qmin of repair material when the metal melting furnace is continuously operated for the longest time without excess or deficiency of repair material, or once melting It is also possible to experimentally determine the refractory erosion loss difference Δm between the excess erosion region and the other region that occurs in (charge), and by multiplying this by the total number of charges per brick replacement cycle.

【0027】しかして、本実施例装置によれば、前述し
たように補修装置10が補修毎に使用される補修材を計
量する機能を持つため、制御回路9はこれを情報として
取り込み、その都度累積して現在までの累積使用量Qを
演算する。そしてステップS5では、これを現在のチャ
ージ数Cに対応する基準使用量Q(c)と比較し、Q
(c)>Qの場合にはその差ΔQの分だけ補修装置10
を駆動して補修材を吹き付け補修し、逆にQ(c)≦Q
の場合には現在の差ΔQが大きくなり過ぎないように所
定量q分だけ補修する処理が実行され、最終的には操業
1サイクル終了時点での累積使用量Qがマップに規定さ
れた累積量Qmin にほぼ等しくなるように補修制御さ
れ、この結果最も少ない補修材使用量を以て炉寿命を最
大ならしめることが可能となるのである。尚、この補修
処理は回転位置センサ12からの信号を入力する制御回
路9の補修装置駆動制御によって、他の電極5b,5c
に対応する過剰溶損領域においても同様に実行される。
According to the device of this embodiment, however, the repair device 10 has a function of weighing the repair material used for each repair as described above, and therefore the control circuit 9 takes this information as information, each time The cumulative amount of use Q up to the present is calculated. Then, in step S5, this is compared with the reference usage amount Q (c) corresponding to the current charge number C, and Q
In the case of (c)> Q, the repair device 10 corresponds to the difference ΔQ.
To repair the material by spraying a repair material on the contrary, Q (c) ≦ Q
In the case of, the process of repairing by a predetermined amount q is executed so that the current difference ΔQ does not become too large, and finally the cumulative usage amount Q at the end of one cycle of operation is the cumulative amount defined in the map. Repair control is performed so as to be approximately equal to Qmin, and as a result, it becomes possible to maximize the life of the furnace with the least amount of repair material used. In this repair process, the other electrodes 5b and 5c are controlled by the repair device drive control of the control circuit 9 which receives the signal from the rotational position sensor 12.
The same is performed in the excessive melting damage region corresponding to.

【0028】以上、本発明の補修装置を、その耐火物残
厚検出手段にセンサー煉瓦を使用した実施例について説
明したが、本実施例によればこの素線(電極)を直接煉
瓦内に埋め込む構造のセンサー煉瓦を使用することによ
り、素線間の絶縁距離が充分に確保することができ、従
って他のセンサー(例えば、シース熱電対方式の溶損検
知センサなど)に見られるような素線間距離が短いため
の溶湯スプラッシュ付着による再導通(誤検出)などの
問題が解消される。
In the above, the repair device of the present invention has been described with reference to the embodiment in which the sensor brick is used as the refractory residual thickness detecting means. According to this embodiment, this strand (electrode) is directly embedded in the brick. By using a sensor brick with a structure, it is possible to secure a sufficient insulation distance between the wires, and therefore the wires that can be found in other sensors (for example, sheath thermocouple type melt detection sensor). Problems such as re-conduction (erroneous detection) due to molten metal splash adhesion due to the short distance are eliminated.

【0029】尚、この一旦断線した部分の再導通による
残厚誤検出問題に対しては、上述したセンサー煉瓦の使
用に加えて、制御回路内に一度、断線した部分の再導通
に対してこれをキャンセルする回路(リレー回路)を設
けることで、その残厚測定の信頼性を向上するようにし
ても良い。又、制御回路の出力としては、上述した補修
装置の駆動制御に加え、図3や図5に示すようなグラフ
をCRT画面に表示し、作業者に現在の耐火物残存状況
や補修材使用状況を知らせ、注意を喚起させるようにし
ても良い。
To solve the problem of residual thickness erroneous detection due to re-conduction of the part that has once been disconnected, in addition to the use of the above-mentioned sensor brick, re-conduction of the part that has been once disconnected in the control circuit By providing a circuit (relay circuit) for canceling the above, the reliability of the residual thickness measurement may be improved. As the output of the control circuit, in addition to the drive control of the repair device described above, graphs such as those shown in FIG. 3 and FIG. May be notified to call attention.

【0030】更に、本発明装置の残厚測定インターバル
は実施例にあげた毎回のチャージ毎に限定されるもので
はなく、当然ながら複数回のチャージ毎に測定するもの
でも良く、又残厚検出手段の配置も各過剰溶損領域に対
応して夫々設け、夫々の検出値に対応して補修装置を駆
動制御するようにしても良い。
Furthermore, the residual thickness measurement interval of the device of the present invention is not limited to each charge described in the embodiment, and it is of course possible to measure the residual thickness every plural charges, and the residual thickness detecting means. Alternatively, the arrangement may be provided corresponding to each excessive melting region, and the repair device may be drive-controlled corresponding to each detected value.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
所定のインターバル毎に検出された過剰溶損領域の耐火
物残厚を金属溶解炉操業開始後の出湯回数に対応して予
め定められた所定残厚値と比較し、その差に応じて順次
補修制御しながら操業を繰り返すため、その炉操業を予
め定められた効率の良い操業状態に近づけることがで
き、補修材の原単位が従来と比べて、約20%向上し、
また炉寿命が従来の200〜600チャージから500
〜700チャージに延長した。
As described above, according to the present invention,
The residual refractory thickness in the excess erosion region detected at predetermined intervals is compared with a predetermined residual thickness value that corresponds to the number of taps after the start of the metal melting furnace operation, and repairs are performed sequentially according to the difference. Since the operation is repeated while controlling, the furnace operation can be brought close to a predetermined efficient operating state, and the basic unit of repair material is improved by about 20% compared with the conventional one,
Also, the furnace life is 500 from the conventional 200-600 charge.
-Extended to 700 charges.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の耐火物残厚検出手段のセンサー煉
瓦外観を示し、(a)はその上方からの図、(b)はそ
の側方から見た図である。
1A and 1B show the appearance of a sensor brick of a refractory residual thickness detecting means of a device of the present invention, wherein FIG. 1A is a view from above and FIG. 1B is a view from a side thereof.

【図2】本発明による補修装置と金属溶解炉を示す概略
構成図である。
FIG. 2 is a schematic configuration diagram showing a repair device and a metal melting furnace according to the present invention.

【図3】本実施例による装置の補修制御にあたって、そ
の溶損目標として予め設定される煉瓦残厚と炉寿命の関
係を示す図である。
FIG. 3 is a diagram showing a relationship between a brick residual thickness and a furnace life preset as a melting loss target in repair control of the apparatus according to the present embodiment.

【図4】本実施例による装置の制御回路作動を説明する
制御フローチャート図である。
FIG. 4 is a control flowchart illustrating the operation of the control circuit of the device according to the present embodiment.

【図5】本実施例による装置の炉補修にあたって、その
補修材使用目標として予め設定される補修材使用量と炉
寿命の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the amount of repair material used and the life of the furnace, which is preset as a target for using the repair material in the furnace repair of the apparatus according to the present embodiment.

【符号の説明】[Explanation of symbols]

1…センサー煉瓦 5…金属溶解炉 6…補修装置 9…制御回路 10…補修装置 1 ... Sensor brick 5 ... Metal melting furnace 6 ... Repair device 9 ... Control circuit 10 ... Repair device

フロントページの続き (72)発明者 名越 啓敏 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内Front Page Continuation (72) Inventor Keitoshi Nagoshi 3434 Shimada, Hikari City, Yamaguchi Prefecture Nippon Steel Corporation Hikari Steel Works Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属溶解炉の断続的操業に伴って溶損す
る内張り耐火物の溶損領域を耐火物補修材で補修するた
めの金属溶解炉用補修装置において、 予め上記金属溶解炉の溶損し易い領域に埋設されて、所
定のインターバル毎に出湯後残留した内張り耐火物の残
厚を検出する耐火物残厚検出手段と、該耐火物残厚検出
手段によって検出された残厚を金属溶解炉操業開始後の
出湯回数に対応して予め定められた所定残厚値と比較
し、少なくとも上記残厚が所定残厚値よりも小さいとき
上記過剰溶損領域を上記耐火物補修材で補修する補修制
御手段とを有することを特徴とする金属溶解炉用補修装
置。
1. A repair device for a metal melting furnace for repairing a melted region of a refractory lining, which is melted due to intermittent operation of the metal melting furnace, with a repair device for the metal melting furnace, wherein the metal melting furnace is previously melted. A refractory residual thickness detecting means for detecting the residual thickness of the lining refractory remaining after tapping at a predetermined interval and a metal melting furnace for measuring the residual thickness detected by the refractory residual thickness detecting means. A repair to compare the excess melt damage area with the refractory repair material when at least the above residual thickness is smaller than the predetermined residual thickness value by comparing with a predetermined residual thickness value that corresponds to the number of taps after the start of operation. A repair device for a metal melting furnace, comprising: a control means.
JP8402092A 1992-04-06 1992-04-06 Repairing device for metal smelting furnace Withdrawn JPH05288477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8402092A JPH05288477A (en) 1992-04-06 1992-04-06 Repairing device for metal smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8402092A JPH05288477A (en) 1992-04-06 1992-04-06 Repairing device for metal smelting furnace

Publications (1)

Publication Number Publication Date
JPH05288477A true JPH05288477A (en) 1993-11-02

Family

ID=13818889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8402092A Withdrawn JPH05288477A (en) 1992-04-06 1992-04-06 Repairing device for metal smelting furnace

Country Status (1)

Country Link
JP (1) JPH05288477A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040486A1 (en) * 2008-10-08 2010-04-15 Uwe Geib Melting furnace having an infinite furnace campaign
JP2010156471A (en) * 2008-12-26 2010-07-15 Kobe Steel Ltd Method of managing refractory body of molten iron container

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010040486A1 (en) * 2008-10-08 2010-04-15 Uwe Geib Melting furnace having an infinite furnace campaign
CN102227385A (en) * 2008-10-08 2011-10-26 乌韦·盖布 Melting furnace having infinite furnace campaign
JP2010156471A (en) * 2008-12-26 2010-07-15 Kobe Steel Ltd Method of managing refractory body of molten iron container

Similar Documents

Publication Publication Date Title
US20080198894A1 (en) Method For Regulating the Melting Process in an Electric-Arc Furnace
US20160282049A1 (en) Method for determining the state of a refractory lining of a metallurgical vessel for molten metal in particular
EP0060069B1 (en) A probe and a system for detecting wear of refractory wall
JPH05288477A (en) Repairing device for metal smelting furnace
US5539768A (en) Electric arc furnace electrode consumption analyzer
JP5344906B2 (en) Refractory management method for molten iron containers
US20030002560A1 (en) Dipping type optical fiber radiation thermometer for molten metal thermometry and thermometry method for molten metal
JPH0894264A (en) Refractory residual thickness detecting method for electric furnace
JP2755813B2 (en) Refractory repair time judgment device
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
JPH08273826A (en) Computing method for optimum target total quantity of electricity supply for electric furnace and electric furnace installation
JPH10237531A (en) Method and instrument for detecting furnace hearth level of dc arc furnace
JPH0832925B2 (en) Method for diagnosing erosion life of refractory lining refractory car
JPH01230711A (en) Method for measuring residual thickness of brick in steelmaking furnace
JP2524933B2 (en) Control method of molten steel temperature in arc type electric furnace refining.
JP3628162B2 (en) Slag thickness detection method for electric ash melting furnace
US11678412B1 (en) Method for determining electrode consumption with machine vision
JPH03223658A (en) Method for monitoring surface state of refractory material and repairing-time judging apparatus for refractory material
JP7482658B2 (en) Method for supporting electric furnace operation and method for steelmaking using electric furnace
JP2947043B2 (en) Temperature measurement method for incinerator ash melting furnace
JP2003155507A (en) Method for estimating pig iron slag height in blast furnace and its estimating instrument
JP3550673B2 (en) Furnace
JPH09133468A (en) Method and apparatus for judgement of time for additional instruction of stock material into electric furnace or tapping of molten metal
KR20230045941A (en) Meltdown Judgment Accuracy Improvement System of DC Electric Furnace
KR100568828B1 (en) Arc welding method and arc welding apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608