JP3628162B2 - Slag thickness detection method for electric ash melting furnace - Google Patents

Slag thickness detection method for electric ash melting furnace Download PDF

Info

Publication number
JP3628162B2
JP3628162B2 JP34349197A JP34349197A JP3628162B2 JP 3628162 B2 JP3628162 B2 JP 3628162B2 JP 34349197 A JP34349197 A JP 34349197A JP 34349197 A JP34349197 A JP 34349197A JP 3628162 B2 JP3628162 B2 JP 3628162B2
Authority
JP
Japan
Prior art keywords
voltage
ash
molten slag
slag
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34349197A
Other languages
Japanese (ja)
Other versions
JPH11173531A (en
Inventor
善利 関口
邦夫 佐々木
和範 中村
詞郎 坂田
浩史 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP34349197A priority Critical patent/JP3628162B2/en
Publication of JPH11173531A publication Critical patent/JPH11173531A/en
Application granted granted Critical
Publication of JP3628162B2 publication Critical patent/JP3628162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電極を有して底部に収容した導電体と間でアークまたはプラズマアークを形成する電気式灰溶融炉において、ベースメタル上の溶融スラグの厚さを検出する方法に関する。
【0002】
【従来の技術】
焼却炉から排出される焼却灰をプラズマ式やアーク式の灰溶融炉で溶融処理する場合、炉底部にメタル溶融層(ベースメタルという)を形成して導電体および熱媒体として利用しており、このベースメタル上で焼却灰を加熱溶融して溶融スラグ層を形成し、オーバーフロー形式で出滓口から取り出している。その時、焼却灰に含まれる金属類がベースメタルに溶け込み、ベースメタルの湯面レベルが灰の処理量の増加とともに上昇してくる。ベースメタルが上昇すると、溶融スラグ層が薄くなり、外乱による溶融スラグ表面の変動で、電気抵抗が大きく変化してプラズマアークまたはアークによる安定した運転が困難になるとともに、溶融スラグ層の滞留時間が短く完全に溶融していない灰を排出するおそれがある。
【0003】
そのため、ベースメタルの湯面レベルが高くなると、灰の滞留時間を長くして完全に溶融させるために、灰の供給量を減少させる灰の供給制御やスラグの排出作業を行う必要がある。
【0004】
このスラグ層の厚さを検知する方法として、従来では灰の溶融量(稼動時間)からおおよそのスラグ層厚を推定したり、またベースメタルとスラグの電気抵抗値を計測することにより行われていた。
【0005】
【発明が解決しようとする課題】
しかし、稼動時間からスラグ層厚を推定する場合には、極めておおよその値でしかなく、正確な灰供給制御やメタル排出時期の割り出しをおこなえない。また電気抵抗値を利用する場合には、炉の運転を一旦停止してセンサー等を直接炉内に挿入する必要があり、溶融スラグやベースメタルの温度低下を招くとともに運転効率を低下させる要因となる。
【0006】
本発明のうち請求項1記載の発明は、上記問題点を解決して、炉の停止や温度低下を招くことなく正確な溶融スラグ層厚を検出できる電気式灰溶融炉のスラグ厚さ検出方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために本発明の請求項1記載の発明は、炉本体の底部にベースメタルを収容するとともに、炉本体の天壁から昇降自在に垂下された複数の電極とベースメタルとの間にアークまたはプラズマアークを形成して、ベースメタル上に投入された灰を加熱溶融し、この溶融スラグをオーバーフローさせて排出する電気式灰溶融炉の溶融スラグの厚さを検出するに際して、一定時間ごとにアーク電圧またはプラズマ電圧を検出して、設定電圧と検出電圧と変動幅を求め、予め計測された電圧変動幅と溶融スラグの層厚の関係から、溶融スラグの層厚を推定し、電圧変動幅により推定される溶融スラグの層厚が薄くなると、灰の供給量を減少させるように制御して、溶融室内での灰の滞留時間を増加させるものである。
【0008】
上記構成によれば、電圧変動幅により推定される溶融スラグの層厚が薄くなると、灰の供給量を減少させて溶融室内の滞留時間を長くすることにより、完全に溶融された溶融スラグのみを排出することができる。
【0009】
【発明の実施の形態】
ここで、本発明に係るプラズマ灰溶融炉の実施の形態を図1および図2に基づいて説明する。
【0010】
1は底部にベースメタルMを収容する溶融室2が形成された炉本体で、一端側の側壁に灰投入口3が形成されて灰ホッパ4と灰プッシャー5が設けられており、他端側の側壁に溶融スラグMSを排出する排滓口6が形成されている。またこの炉本体1の天壁に形成された一対のトーチ挿入孔7A,7Bには、陰電極トーチ8Aと陽電極トーチ8Bがトーチ昇降装置(図示せず)を介してそれぞれ垂下されており、これら電極トーチ8A,8Bに直流電源装置9が接続されている。また図示しない炉壁のガス供給口と各電極トーチ8A,8Bのガス供給孔から溶融室2内に作動ガス(たとえば窒素ガス)が供給されてベースメタルとの間にプラズマアークを形成するように構成される。10は側壁に形成された排ガス排出口である。
【0011】
前記排滓口6には、排滓溝が形成されたスラグ排出堰11が設けられるとともに、スラグ排出堰11に対向してスラグの凝固を防止する予熱バーナー12が配置されている。そして、排滓口6の下部には、溶融スラグMSを水冷して水砕スラグを生成する冷却水槽13aとスラグ排出コンベヤ13bからなるスラグ冷却装置13が配置されている。
【0012】
前記炉本体1は、ベースメタルMを排出する炉傾動装置14を介してメタル排出口と兼用される排滓口6側が下方になるように傾動自在に配置されており、炉傾動装置14は、排滓口6側で水平軸14aを介して底壁を回動自在に支持する支持台14bと、灰投入口3側で底壁を押し上げ自在に配置された傾動ジャッキ14cとで構成されている。
【0013】
21は両電極トーチ8A,8B間で稼動電圧(プラズマ電圧)を測定する測定手段ある電流計で、この計測値はコンピュータの演算手段であるデータ処理装置22に出力され、一定時間毎に計測された実測稼動電圧と、設定された電圧との変動率を演算し、予め計測された電圧変動幅と溶融スラグMSの層厚の関係から、溶融スラグMSの層厚を推定し、この変動幅から溶融スラグMSの層厚がメタル排出限となった時に、表示手段であるメタル排出表示ランプ23を点灯させて作業員に知らせるように構成される。もちろん、表示手段は制御用CRTでの表示や告知ブザーであってもよい。
【0014】
このデータ処理装置22では、たとえば5秒間隔毎に電圧値が検出され、1時間平均の稼動電圧の変動率が演算されており、計算方法は下記の通りである。
【0015】
【数1】

Figure 0003628162
【0016】
上記構成において、直流電源装置9から両電極トーチ8A,8Bに電圧が印加されて電極トーチ8A,8BとベースメタルMとの間にプラズマアークが発生され、ホッパ4の灰Aが灰プッシャー5により溶融室2に所定量ずつ投入されて溶融される。そしてベースメタル上に溶融スラグMS層が形成され、スラグ排出堰11の排滓溝11aのレベルを超えるとオーバーフローして排滓口6からスラグ冷却装置13の冷却水槽13aに滴下排出されて水砕スラグWSが生成される。この時、直流電源装置9から供給された電流は、陽電極トーチ8Bからプラズマアーク、溶融スラグMS、ベースメタルMを通り、ベースメタルMから溶融スラグMS、プラズマアークを介して陰電極トーチ8Aに到達する。
【0017】
この運転時には、直流電源装置9から一定の設定電流が供給され、電圧は一定時間毎に電極トーチ8A,8Bの高さを調節してほぼ一定の設定電圧になるように制御されている。たとえば運転コストを考慮して、設定電流=980Aを給電し、5分間隔で検出した実測稼動電圧と設定電圧=150Vとを比較して設定電圧になるように電極トーチ8A,8Bの高さを制御している。
【0018】
前記実測稼動電圧(プラズマ電圧)は、設定電圧を中心に変動しており、実測電圧の変動幅と溶融スラグMSの層厚との間には相関関係があることを発明者は見出しており、運転する灰溶融炉の特性に対応して、予め実験により得られた実測電圧の変動幅と溶融スラグMSの層厚との関係から、溶融スラグMSの層厚を推定してベースメタルMの排出時期を告知している。
【0019】
すなわち、図2はこのプラズマ式灰溶融炉を連続運転した時の電圧変動割合を示すもので、この炉では、電圧変動幅が8%となった時に、溶融スラグMSの層厚は約70mmとなり、層厚の限界値であることがわかっており、電圧変動幅が8%となった時にベースメタルMの排出時期を告知して、炉傾動装置14により炉本体1を一定角度傾動しベースメタルMを排出している。この結果、ベースメタルMの排出量を測定した結果、ほぼ一定量で排出量から換算した溶融スラグMSの層厚は、ほぼ70mmであったのが確認された。
【0020】
上記実施の形態によれば、一定時間毎に電極8A,8B間の稼動電圧(プラズマ電圧)を計測して電圧変動率を求めることにより、予め実験された稼動電圧と溶融スラグMSの層厚の関係から、溶融スラグMSの実層厚を正確に推定することができ、正確なベースメタルMの排出時期を知ることができる。したがって、従来のように推定される溶融スラグMSの層厚が不正確であったり、炉の運転を停止する必要がない。
【0021】
なお、上記実施の形態では、本発明により推定できる溶融スラグMSの層厚を、ベースメタルMの排出にのみ使用したが、灰の投入量の制御に使用してもよい。すなわち、溶融スラグMSの層厚か薄くなると、スラグ層の溶融不完全の灰が排出されることがあり、この場合には灰の投入量を減少させて溶融室2内の滞留時間を長くすることにより、完全に溶融された溶融スラグMSのみを排出することができる。
【0022】
また、2本の電極トーチを使用したプラズマ式灰溶融炉を示したが、3本以上の電極トーチを使用してもよく、また一方の電極を底部に配置してベースメタルと導通させ、他方の電極トーチとベースメタルとの間にアークまたはプラズマアークを形成してもよい。
【0023】
さらに、プラズマ式灰溶融炉を示したが、アーク式灰溶融炉であっても同様である。
【0024】
【発明の効果】
以上に述べたごとく本発明の請求項1記載の発明によれば、一定時間毎に電極間の稼動アークまたは稼動プラズマ電圧を計測して電圧変動率を求めることにより、容易に溶融スラグの層厚を正確に推定することができ、正確なベースメタルの排出時期を知ることができるとともに、灰供給制御を正確に行うことができる。
【図面の簡単な説明】
【図1】本発明に係るプラズマ式灰溶融炉の実施の形態を示す構成図である。
【図2】同灰溶融炉における稼動電圧の変動割合を示すグラフである。
【符号の説明】
M ベースメタル
MS 溶融スラグ
A 灰
1 炉本体
8A 陰電極トーチ
8B 陽電極トーチ
9 直流電源装置
14 炉傾動装置
14a 傾動ジャッキ
21 電圧計
22 データ処理装置
23 メタル排出告知ランプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting the thickness of molten slag on a base metal in an electric ash melting furnace in which an arc or plasma arc is formed between a conductor having an electrode and housed at the bottom.
[0002]
[Prior art]
When incineration ash discharged from an incinerator is melted in a plasma-type or arc-type ash melting furnace, a metal melt layer (called base metal) is formed at the bottom of the furnace and used as a conductor and heat medium. The incinerated ash is heated and melted on the base metal to form a molten slag layer, which is taken out from the outlet in an overflow manner. At that time, the metals contained in the incinerated ash melt into the base metal, and the hot metal level of the base metal increases as the amount of ash processed increases. As the base metal rises, the molten slag layer becomes thinner, and due to fluctuations in the molten slag surface due to disturbance, the electrical resistance changes greatly, making it difficult to operate stably with a plasma arc or arc, and the residence time of the molten slag layer There is a risk of discharging ash that is short and not completely melted.
[0003]
Therefore, when the hot metal level of the base metal becomes high, it is necessary to perform ash supply control and slag discharge work to reduce the ash supply amount in order to lengthen the ash residence time and completely melt the ash.
[0004]
As a method for detecting the thickness of the slag layer, conventionally, the approximate slag layer thickness is estimated from the melting amount of ash (operation time), or the electric resistance values of the base metal and the slag are measured. It was.
[0005]
[Problems to be solved by the invention]
However, when the slag layer thickness is estimated from the operation time, it is only an approximate value, and accurate ash supply control and metal discharge timing cannot be determined. Also, when using electrical resistance, it is necessary to temporarily stop the operation of the furnace and insert a sensor or the like directly into the furnace, which causes a decrease in the temperature of the molten slag and base metal and a decrease in operating efficiency. Become.
[0006]
The invention described in claim 1 of the present invention solves the above-mentioned problems and can detect the slag thickness of an electric ash melting furnace capable of detecting an accurate molten slag layer thickness without causing the furnace to stop or decrease in temperature. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a base metal is accommodated in a bottom portion of a furnace body, and a plurality of electrodes suspended from the top wall of the furnace body so as to be raised and lowered and the base metal. When detecting the thickness of the molten slag in the electric ash melting furnace that forms an arc or plasma arc between them, heats and melts the ash charged on the base metal, and overflows and discharges this molten slag Arc voltage or plasma voltage is detected every time, set voltage, detection voltage and fluctuation width are obtained, and the thickness of molten slag is estimated from the relationship between the voltage fluctuation width measured beforehand and the thickness of molten slag, When the layer thickness of the molten slag estimated by the voltage fluctuation width is reduced, the amount of ash supplied is controlled so as to increase the ash residence time in the melting chamber .
[0008]
According to the above configuration, when the layer thickness of the molten slag estimated by the voltage fluctuation range is reduced, only the completely molten molten slag is obtained by reducing the supply amount of ash and increasing the residence time in the melting chamber. Can be discharged .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Here, an embodiment of the plasma ash melting furnace according to the present invention will be described based on FIG. 1 and FIG.
[0010]
1 is a furnace body in which a melting chamber 2 for containing a base metal M is formed at the bottom, an ash charging port 3 and an ash hopper 4 and an ash pusher 5 are provided on a side wall on one end side, and the other end side A discharge port 6 for discharging the molten slag MS is formed on the side wall of the slag. Further, a negative electrode torch 8A and a positive electrode torch 8B are suspended from a pair of torch insertion holes 7A and 7B formed in the top wall of the furnace body 1 via a torch lifting device (not shown), A DC power supply 9 is connected to these electrode torches 8A and 8B. Further, a working gas (for example, nitrogen gas) is supplied into the melting chamber 2 from a gas supply port on the furnace wall (not shown) and a gas supply hole of each electrode torch 8A, 8B so as to form a plasma arc between the base metal. Composed. Reference numeral 10 denotes an exhaust gas discharge port formed on the side wall.
[0011]
The drain port 6 is provided with a slag discharge weir 11 in which a drain groove is formed, and a preheating burner 12 is disposed opposite the slag discharge weir 11 to prevent solidification of the slag. And the slag cooling device 13 which consists of the cooling water tank 13a which water-cools the molten slag MS and produces | generates a granulated slag, and the slag discharge | emission conveyor 13b is arrange | positioned in the lower part of the discharge port 6. FIG.
[0012]
The furnace body 1 is disposed so as to be tiltable via a furnace tilting device 14 that discharges the base metal M so that the side of the discharge port 6 that is also used as a metal discharge port is downward. The furnace tilting device 14 is The support base 14b rotatably supports the bottom wall via the horizontal shaft 14a on the discharge port 6 side, and the tilting jack 14c arranged to push up the bottom wall on the ash charging port 3 side. .
[0013]
Reference numeral 21 denotes an ammeter as a measuring means for measuring an operating voltage (plasma voltage) between the electrode torches 8A and 8B. The fluctuation rate between the measured actual operating voltage and the set voltage is calculated, and the layer thickness of the molten slag MS is estimated from the relationship between the voltage fluctuation range measured in advance and the layer thickness of the molten slag MS. When the thickness of the molten slag MS reaches the metal discharge limit, the metal discharge display lamp 23 which is a display means is turned on to notify the worker. Of course, the display means may be a display on a control CRT or a notification buzzer.
[0014]
In this data processing device 22, for example, the voltage value is detected every 5 seconds, and the fluctuation rate of the average operating voltage for one hour is calculated. The calculation method is as follows.
[0015]
[Expression 1]
Figure 0003628162
[0016]
In the above configuration, a voltage is applied from the DC power supply device 9 to the electrode torches 8A and 8B to generate a plasma arc between the electrode torches 8A and 8B and the base metal M, and the ash A of the hopper 4 is removed by the ash pusher 5. A predetermined amount is charged into the melting chamber 2 and melted. When the molten slag MS layer is formed on the base metal and exceeds the level of the drainage groove 11a of the slag discharge weir 11, it overflows and is dripped and discharged from the drainage port 6 to the cooling water tank 13a of the slag cooling device 13 to be granulated. A slug WS is generated. At this time, the current supplied from the DC power supply device 9 passes from the positive electrode torch 8B through the plasma arc, the molten slag MS, and the base metal M, and from the base metal M to the negative electrode torch 8A via the molten slag MS and the plasma arc. To reach.
[0017]
During this operation, a constant set current is supplied from the DC power supply device 9, and the voltage is controlled so as to become a substantially constant set voltage by adjusting the height of the electrode torches 8A and 8B at regular intervals. For example, considering the operating cost, the set current = 980A is supplied, the measured operating voltage detected at 5 minute intervals is compared with the set voltage = 150V, and the height of the electrode torch 8A, 8B is set so that the set voltage is obtained. I have control.
[0018]
The inventor has found that the measured operating voltage (plasma voltage) fluctuates around the set voltage, and there is a correlation between the fluctuation range of the measured voltage and the layer thickness of the molten slag MS, Corresponding to the characteristics of the operating ash melting furnace, the layer thickness of the molten slag MS is estimated from the relationship between the fluctuation range of the measured voltage obtained in advance by experiment and the layer thickness of the molten slag MS, and the base metal M is discharged. The time is announced.
[0019]
That is, FIG. 2 shows the voltage fluctuation ratio when this plasma ash melting furnace is operated continuously. In this furnace, when the voltage fluctuation width becomes 8%, the layer thickness of the molten slag MS becomes about 70 mm. It is known that this is the limit value of the layer thickness, and when the voltage fluctuation width reaches 8%, the discharge timing of the base metal M is notified, and the furnace body 1 is tilted by a certain angle by the furnace tilting device 14 to M is discharged. As a result, as a result of measuring the discharge amount of the base metal M, it was confirmed that the layer thickness of the molten slag MS converted from the discharge amount by a substantially constant amount was approximately 70 mm.
[0020]
According to the above embodiment, the operating voltage (plasma voltage) between the electrodes 8A and 8B is measured at fixed time intervals to obtain the voltage fluctuation rate. From the relationship, the actual layer thickness of the molten slag MS can be accurately estimated, and the accurate discharge time of the base metal M can be known. Therefore, the estimated layer thickness of the molten slag MS is not inaccurate or there is no need to stop the operation of the furnace.
[0021]
In the above embodiment, the layer thickness of the molten slag MS that can be estimated according to the present invention is used only for discharging the base metal M, but it may be used for controlling the amount of ash input. That is, when the layer thickness of the molten slag MS becomes thin, incompletely melted ash of the slag layer may be discharged, and in this case, the amount of ash input is decreased and the residence time in the melting chamber 2 is lengthened. As a result, only the molten slag MS completely melted can be discharged.
[0022]
Moreover, although the plasma type ash melting furnace using two electrode torches was shown, three or more electrode torches may be used, and one electrode is arranged at the bottom to be electrically connected to the base metal, and the other An arc or plasma arc may be formed between the electrode torch and the base metal.
[0023]
Furthermore, although a plasma type ash melting furnace is shown, the same applies to an arc type ash melting furnace.
[0024]
【The invention's effect】
As described above, according to the first aspect of the present invention, the layer thickness of the molten slag can be easily obtained by measuring the operating arc voltage or the operating plasma voltage between the electrodes at fixed time intervals to obtain the voltage fluctuation rate. Can be accurately estimated, the accurate discharge time of the base metal can be known, and the ash supply control can be performed accurately.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a plasma ash melting furnace according to the present invention.
FIG. 2 is a graph showing a variation rate of an operating voltage in the ash melting furnace.
[Explanation of symbols]
M Base metal MS Molten slag A Ash 1 Furnace body 8A Negative electrode torch 8B Positive electrode torch 9 DC power supply device 14 Furnace tilting device 14a Tilt jack 21 Voltmeter 22 Data processing device 23 Metal discharge notification lamp

Claims (4)

炉本体の底部にベースメタルを収容するとともに、炉本体の天壁から昇降自在に垂下された複数の電極とベースメタルとの間にアークまたはプラズマアークを形成して、ベースメタル上に投入された灰を加熱溶融し、この溶融スラグをオーバーフローさせて排出する電気式灰溶融炉の溶融スラグの厚さを検出するに際して、
一定時間ごとにアーク電圧またはプラズマ電圧を検出して、設定電圧と検出電圧と変動幅を求め、
予め計測された電圧変動幅と溶融スラグの層厚の関係から、溶融スラグの層厚を推定し、
電圧変動幅により推定される溶融スラグの層厚が薄くなると、灰の供給量を減少させるように制御して、溶融室内での灰の滞留時間を増加させる
ことを特徴とする電気式灰溶融炉のスラグ厚さ検出方法。
The base metal was housed in the bottom of the furnace body, and an arc or plasma arc was formed between the base metal and a plurality of electrodes suspended from the top wall of the furnace body so that it could be raised and lowered. When detecting the thickness of the molten slag in an electric ash melting furnace that heats and melts the ash and overflows and discharges the molten slag,
The arc voltage or plasma voltage is detected at regular intervals to determine the set voltage, detection voltage, and fluctuation range.
From the relationship between the voltage fluctuation width measured in advance and the layer thickness of the molten slag, the layer thickness of the molten slag is estimated,
Electricity characterized in that when the molten slag layer thickness estimated by the voltage fluctuation range is reduced, the supply amount of ash is controlled to decrease, and the residence time of ash in the melting chamber is increased. Slag thickness detection method for the ash melting furnace.
一定の設定アーク電流または設定プラズマ電流を供給するとともに、アーク電圧またはプラズマ電圧を一定時間ごとに計測して一定の設定電圧になるように電極の高さを制御する
ことを特徴とする請求項1記載の電気式灰溶融炉のスラグ厚さ検出方法。
2. A constant set arc current or a set plasma current is supplied, and an arc voltage or a plasma voltage is measured every predetermined time, and the height of the electrode is controlled to be a constant set voltage. The slag thickness detection method of the electric ash melting furnace as described.
アークまたはプラズマアークが不安定となる溶融スラグの層厚限の電圧変動幅を設定しておき、
電圧変動幅が設定値を越えた時に、ベースメタルの排出作業を行う
ことを特徴とする請求項1または2記載の電気式灰溶融炉のスラグ厚さ検出方法。
Set the voltage fluctuation width of the layer thickness limit of the molten slag where the arc or plasma arc becomes unstable,
The method for detecting the slag thickness of an electric ash melting furnace according to claim 1 or 2, wherein the base metal is discharged when the voltage fluctuation width exceeds a set value.
電圧変動幅により推定される溶融スラグの層厚が薄くなると、灰の供給量を減少させるように制御して、溶融室内での灰の滞留時間を増加させることを特徴とする請求項1または2記載の電気式灰溶融炉のスラグ厚さ検出方法。The ash residence time in the melting chamber is increased by controlling the supply amount of ash to decrease when the layer thickness of the molten slag estimated by the voltage fluctuation range is reduced. The slag thickness detection method of the electric ash melting furnace as described.
JP34349197A 1997-12-15 1997-12-15 Slag thickness detection method for electric ash melting furnace Expired - Lifetime JP3628162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34349197A JP3628162B2 (en) 1997-12-15 1997-12-15 Slag thickness detection method for electric ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34349197A JP3628162B2 (en) 1997-12-15 1997-12-15 Slag thickness detection method for electric ash melting furnace

Publications (2)

Publication Number Publication Date
JPH11173531A JPH11173531A (en) 1999-06-29
JP3628162B2 true JP3628162B2 (en) 2005-03-09

Family

ID=18361940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34349197A Expired - Lifetime JP3628162B2 (en) 1997-12-15 1997-12-15 Slag thickness detection method for electric ash melting furnace

Country Status (1)

Country Link
JP (1) JP3628162B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528378A (en) * 2013-10-24 2014-01-22 昆山良昕环保节能有限公司 Furnace lining detection device of induction furnace body
CN105783511A (en) * 2016-04-27 2016-07-20 佛山市高捷工业炉有限公司 Device and method for checking damage and leakage of smelting furnace in non-contact induction manner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678379B1 (en) 2005-03-26 2007-02-02 최종탁 Manufacturing equipment of glass beads bone meal
CN107504892B (en) * 2017-10-13 2023-04-28 中国恩菲工程技术有限公司 Device and method for detecting thickness of submerged arc furnace slag layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103528378A (en) * 2013-10-24 2014-01-22 昆山良昕环保节能有限公司 Furnace lining detection device of induction furnace body
CN105783511A (en) * 2016-04-27 2016-07-20 佛山市高捷工业炉有限公司 Device and method for checking damage and leakage of smelting furnace in non-contact induction manner

Also Published As

Publication number Publication date
JPH11173531A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
US5586140A (en) Plasma melting method and plasma melting furnace
JP3628162B2 (en) Slag thickness detection method for electric ash melting furnace
JP3585344B2 (en) Apparatus and method for detecting base metal level in plasma type ash melting furnace
JP5007094B2 (en) Control method of plasma melting furnace
JP3986519B2 (en) Electric ash melting furnace and operation method thereof
JP5096797B2 (en) Level measurement method for ash melting furnace
JP2001050528A (en) Operation method of electric melting furnace
JP4245600B2 (en) Operating method of plasma ash melting furnace
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP4007771B2 (en) Molten state control device in plasma melting furnace
JP2794774B2 (en) Operation method of DC arc furnace
JPH10237531A (en) Method and instrument for detecting furnace hearth level of dc arc furnace
JP3534695B2 (en) Operating method of plasma ash melting furnace
JP3534693B2 (en) Operating method of plasma ash melting furnace
JP2000088632A (en) Method for measuring depth of molten slag in plasma type ash melting furnace
JP3542074B2 (en) Automatic controller for electric resistance melting furnace
JP3611299B2 (en) Melting slag depth measurement method
JP2003042428A (en) Ash melting furnace and operation method for the ash melting furnace
JPH09105507A (en) Operating method for ash treating electric resistance melting furnace
JP5060182B2 (en) Control method of plasma melting furnace
SU607431A1 (en) Method of checking burn-out of crystallizer
JP2003090524A (en) Molten metal temperature measuring device for melting furnace
JP2000346559A (en) Control apparatus and method for electrode for electric furnace
JPH10172752A (en) Position setting method of electrode of melting tank and input electric power control method
JPH03285746A (en) Tundish provided with plasma heating apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

EXPY Cancellation because of completion of term