JP2947043B2 - Temperature measurement method for incinerator ash melting furnace - Google Patents

Temperature measurement method for incinerator ash melting furnace

Info

Publication number
JP2947043B2
JP2947043B2 JP34403893A JP34403893A JP2947043B2 JP 2947043 B2 JP2947043 B2 JP 2947043B2 JP 34403893 A JP34403893 A JP 34403893A JP 34403893 A JP34403893 A JP 34403893A JP 2947043 B2 JP2947043 B2 JP 2947043B2
Authority
JP
Japan
Prior art keywords
furnace
molten slag
temperature
incineration ash
ash melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34403893A
Other languages
Japanese (ja)
Other versions
JPH07174638A (en
Inventor
敬峰 向井
忠志 藤岡
慶和 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP34403893A priority Critical patent/JP2947043B2/en
Publication of JPH07174638A publication Critical patent/JPH07174638A/en
Application granted granted Critical
Publication of JP2947043B2 publication Critical patent/JP2947043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、焼却灰溶融炉の炉内
温度測定方法、特に、高価な熱電対を使用する必要がな
く、しかも、1本のプローブによって炉内深さ方向にお
ける溶融スラグの温度分布を正確に測定することができ
る、焼却灰溶融炉の炉内温度測定方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the temperature in a furnace of an incineration ash melting furnace, and in particular, does not require the use of an expensive thermocouple, and furthermore, a single probe can be used to measure the molten slag in the furnace depth direction. The present invention relates to a method for measuring the temperature in a furnace of an incineration ash melting furnace capable of accurately measuring the temperature distribution of the incinerator ash.

【0002】[0002]

【従来の技術】都市ゴミの焼却灰や下水汚泥等の廃棄物
には、各種の無機物や有機物が含まれているが、これら
をそのまま埋め立てると、重大な二次災害を引き起こ
す。そこで、近年、このような廃棄物を無公害化するた
めに、廃棄物の焼却灰を焼却灰溶融炉によって溶融する
ことが行われている。
2. Description of the Related Art Waste such as incinerated ash and sewage sludge of municipal garbage contains various inorganic and organic substances. If these are buried as they are, serious secondary disasters are caused. Then, in recent years, in order to make such wastes non-polluting, incineration ash of waste is melted by an incineration ash melting furnace.

【0003】焼却灰溶融炉内に挿入された焼却灰溶融用
電極や炉壁等に使用されている耐火物は、高温の溶融ス
ラグおよび溶融メタルに、直接、接するために消耗す
る。これらの消耗量は、炉内温度に大きく影響され、炉
内温度が高いほど電極や耐火物の消耗量は大きい。一
方、炉内温度が上昇すると、炉の熱効率が低下して、経
済性が悪化する。
[0003] The refractories used for the incineration ash melting electrode, the furnace wall, and the like inserted in the incineration ash melting furnace are consumed because they come into direct contact with high-temperature molten slag and molten metal. These consumptions are greatly affected by the furnace temperature, and the higher the furnace temperature, the greater the consumption of electrodes and refractories. On the other hand, when the temperature in the furnace increases, the thermal efficiency of the furnace decreases, and the economic efficiency deteriorates.

【0004】しかしながら、一方では、炉内の溶融スラ
グおよび溶融メタルを炉外に安定して排出させるため
に、炉内温度をできるだけ高くして、溶融スラグおよび
溶融メタルの粘性を低下させる必要がある。
However, on the other hand, in order to stably discharge the molten slag and the molten metal in the furnace out of the furnace, it is necessary to raise the temperature in the furnace as much as possible and reduce the viscosity of the molten slag and the molten metal. .

【0005】以上のことから、炉内温度を測定して、炉
内温度を適性に維持する必要がある。従って、炉内の溶
融スラグの温度管理が必須技術となる。この際、炉内深
さ方向における溶融スラグの温度分布を測定することが
要請される。
[0005] From the above, it is necessary to measure the furnace temperature and maintain the furnace temperature appropriately. Therefore, temperature control of the molten slag in the furnace is an essential technology. At this time, it is required to measure the temperature distribution of the molten slag in the depth direction inside the furnace.

【0006】従来、炉内温度の測定手段として、耐熱保
護管によって覆われた熱電対を炉頂から炉内に差し込む
方法があった。
Conventionally, as a means for measuring the temperature in the furnace, there has been a method of inserting a thermocouple covered with a heat-resistant protective tube into the furnace from the furnace top.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術は、使用する熱電対が非常に高価である上、
炉内深さ方向における溶融スラグの温度分布を測定しよ
うとすると、長さの異なる複数の熱電対を使用する必要
があった。
However, in the above-mentioned prior art, the thermocouple used is very expensive,
In order to measure the temperature distribution of the molten slag in the depth direction inside the furnace, it was necessary to use a plurality of thermocouples having different lengths.

【0008】従って、この発明の目的は、高価な熱電対
を使用する必要がなく、しかも、1本のプローブによっ
て炉内深さ方向における溶融スラグの温度分布を正確に
測定することができる、焼却灰溶融炉の炉内温度測定方
法を提供することにある。
Accordingly, an object of the present invention is to provide an incineration method that does not require the use of an expensive thermocouple and that can accurately measure the temperature distribution of molten slag in the furnace depth direction with a single probe. An object of the present invention is to provide a method for measuring the temperature inside a ash melting furnace.

【0009】[0009]

【課題を解決するための手段】この発明は、炉内に挿入
された焼却灰溶融用電極による電気抵抗加熱によって、
前記炉内に装入された焼却灰を溶融する焼却灰溶融炉の
炉内温度測定方法において、前記焼却灰溶融炉の中を、
先端に一対の検出用電極が取り付けられたプローブを下
降させながら、前記焼却灰溶融用電極への通電を断続的
に、短時間、停止し、この間に前記検出用電極間のイン
ピーダンスを測定し、予め求めておいた、前記炉内の溶
融スラグ温度と前記検出用電極間のインピーダンスとの
関係に基づいて、前記炉内深さ方向における溶融スラグ
の温度分布を求めることに特徴を有するものである。
According to the present invention, electric resistance heating is performed by an incineration ash melting electrode inserted into a furnace.
In the furnace temperature measurement method of the incineration ash melting furnace to melt the incineration ash charged in the furnace, in the incineration ash melting furnace,
While lowering the probe attached with a pair of detection electrodes at the tip, intermittently, energization to the incineration ash melting electrode intermittently, for a short time, stop, measure the impedance between the detection electrodes during this time, It is characterized in that the temperature distribution of the molten slag in the furnace depth direction is determined based on a relationship between a previously determined molten slag temperature in the furnace and an impedance between the detection electrodes. .

【0010】[0010]

【作用】先端に一対の検出用電極が取り付けられたプロ
ーブを、検出用電極間に電圧を印加した状態で、炉内の
溶融スラグ中に挿入して、検出用電極間のインピーダン
スを測定すれば、検出用電極間のインピーダンスは、溶
融スラグの温度によって変化することから、溶融スラグ
の温度と検出用電極間のインピーダンスとの関係を予め
求めておけば、炉内深さ方向における溶融スラグの温度
分布を熱電対等を使用することなく、正確に測定するこ
とができる。
A probe having a pair of detection electrodes attached to its tip is inserted into a molten slag in a furnace with a voltage applied between the detection electrodes, and the impedance between the detection electrodes is measured. Since the impedance between the electrodes for detection changes depending on the temperature of the molten slag, if the relationship between the temperature of the molten slag and the impedance between the electrodes for detection is determined in advance, the temperature of the molten slag in the furnace depth direction can be obtained. The distribution can be measured accurately without using a thermocouple or the like.

【0011】[0011]

【実施例】次に、この発明の、焼却灰溶融炉の炉内温度
測定方法の一実施態様を、図面を参照しながら説明す
る。
Next, an embodiment of a method for measuring the temperature in a furnace of an incineration ash melting furnace according to the present invention will be described with reference to the drawings.

【0012】図1は、この発明の、焼却灰溶融炉の炉内
温度測定方法の一実施態様を示すブロック図、図2は、
この発明において使用するプローブの斜視図、図3は、
電極電圧および電極電流とプローブの送り量との関係を
示すグラフ、図4は、電極間インピーダンスとプローブ
の送り量との関係を示すグラフ、図5は、電極間インピ
ーダンスと溶融スラグ温度との関係を示すグラフであ
る。
FIG. 1 is a block diagram showing one embodiment of a method for measuring the temperature in a furnace of an incineration ash melting furnace according to the present invention, and FIG.
FIG. 3 is a perspective view of a probe used in the present invention.
FIG. 4 is a graph showing the relationship between the electrode voltage and electrode current and the feed amount of the probe, FIG. 4 is a graph showing the relationship between the inter-electrode impedance and the feed amount of the probe, and FIG. 5 is the relationship between the inter-electrode impedance and the molten slag temperature. FIG.

【0013】図1において、1は、溶融メタル出口1
A、溶融スラグ出口1Bおよび焼却灰投入口1Cを有す
る焼却灰溶融炉、2は、焼却灰溶融炉1内に挿入された
一対の焼却灰溶融用電極、3は、電極2用電源、4は、
焼却灰溶融炉1底部の溶融メタル、5は、溶融メタル4
上の溶融スラグ、6は、溶融スラグ5上の未溶融スラ
グ、7は、図2に示すように、耐熱性および電気絶縁性
に優れたセラミック等からなる棒状被覆材8と、被覆材
8の下面から下端が突出するように被覆材8内に挿入さ
れた一対の検出用電極9とからなるプローブ、10は、
プローブ7の送り装置、11は、プローブ7の検出用電
極9に検出用電圧を印加する検出用電源、12は、電圧
計、そして、13は、電流計である。
In FIG. 1, 1 is a molten metal outlet 1
A, an incineration ash melting furnace having a molten slag outlet 1B and an incineration ash inlet 1C, 2 is a pair of electrodes for incineration ash melting inserted into the incineration ash melting furnace 1, 3 is a power supply for the electrode 2, 4 is ,
The molten metal at the bottom of the incineration ash melting furnace 1, 5 is the molten metal 4
The upper molten slag, 6 is unmelted slag on the molten slag 5, and 7 is a rod-shaped coating material 8 made of ceramic or the like having excellent heat resistance and electrical insulation, as shown in FIG. A probe 10 including a pair of detection electrodes 9 inserted into the covering member 8 so that the lower end protrudes from the lower surface,
A sending device for the probe 7, a detecting power supply 11 for applying a detecting voltage to the detecting electrode 9 of the probe 7, a voltmeter 12, and an ammeter 13.

【0014】14は、後述するエンコーダからのプロー
ブ7の送り量を示す信号に対応させて、電極9間のイン
ピーダンスを炉内深さ方向に亘って演算するインピーダ
ンス演算手段、15は、送り装置10に接続された、プ
ローブ7の送り量を示す信号をインピーダンス演算手段
14に送るエンコーダ、16は、炉内溶融スラグ温度演
算手段であり、インピーダンス演算手段14によって演
算された、電極9間の炉内深さ方向に亘るインピーダン
ス(図4)、および、予め記憶されている、溶融スラグ
温度と電極9間のインピーダンスとの関係(図5)に基
づいて、炉内深さ方向における溶融スラグの温度を演算
する。そして、17は、このようにして演算された炉内
深さ方向における溶融スラグの温度分布を表示する表示
手段である。
Reference numeral 14 denotes an impedance calculating means for calculating the impedance between the electrodes 9 in the depth direction inside the furnace in accordance with a signal indicating the feed amount of the probe 7 from an encoder described later. And an encoder 16 for sending a signal indicating the feed amount of the probe 7 to the impedance calculating means 14 connected to the furnace, and a melting slag temperature calculating means 16 in the furnace. Based on the impedance in the depth direction (FIG. 4) and the relationship between the molten slag temperature and the impedance between the electrodes 9 (FIG. 5) stored in advance, the temperature of the molten slag in the furnace depth direction is determined. Calculate. Reference numeral 17 denotes display means for displaying the temperature distribution of the molten slag in the furnace depth direction calculated in this manner.

【0015】図3は、炉内溶融スラグ温度が1400℃
の場合におけるプローブ送り量と、電圧計12および電
流計13による電圧および電流値との関係を示すグラフ
である。このときの検出用電源11の供給電圧は、15
Vであった。図3から明らかなように、プローブ8が炉
内の空間にあるときは、電圧計12は、無負荷電圧、そ
して、電流は、ほぼ0Aを示す。プローブ8が下降して
電極9が溶融スラグ5面に接触すると、電極9間電圧は
降下し始め(図3中、A)、溶融メタル4に接触する
と、電極9間電圧はほぼ0Vになる(図3中、D)。溶
融スラグ中における電極9間電圧は、図3中、A、B、
C、Dの順で降下する。ここで、A点とB点との間が傾
斜しているのは、溶融スラグ5の上層は、半溶融スラグ
6が混在しているからである。また、C点とD点とが傾
斜しているのは、溶融スラグ5の下層は、溶融メタル4
が混在しているからである。図3によれば、点Bと点C
との温度分布に余り変化はないが、この間の温度分布が
大きく変化する場合においても、この発明によれば、点
Bと点Cとの溶融スラグ5の温度分布を高精度で求める
ことができる。
FIG. 3 shows that the temperature of the molten slag in the furnace is 1400 ° C.
7 is a graph showing the relationship between the probe feed amount and the voltage and current values obtained by the voltmeter 12 and the ammeter 13 in the case of FIG. The supply voltage of the detection power supply 11 at this time is 15
V. As is apparent from FIG. 3, when the probe 8 is in the space in the furnace, the voltmeter 12 indicates a no-load voltage and the current is almost 0 A. When the probe 8 descends and the electrode 9 comes into contact with the surface of the molten slag 5, the voltage between the electrodes 9 starts to decrease (A in FIG. 3), and when it comes into contact with the molten metal 4, the voltage between the electrodes 9 becomes almost 0 V ( D) in FIG. The voltage between the electrodes 9 in the molten slag is A, B,
It descends in the order of C and D. Here, the point between the point A and the point B is inclined because the semi-molten slag 6 is mixed in the upper layer of the molten slag 5. The reason why the points C and D are inclined is that the lower layer of the molten slag 5
Is mixed. According to FIG. 3, points B and C
According to the present invention, the temperature distribution of the molten slag 5 at the point B and the point C can be obtained with high accuracy even when the temperature distribution during the period does not change much. .

【0016】図4は、炉内溶融スラグ温度が1400℃
の場合におけるプローブ送り量と、電極9間のインピー
ダンスとの関係を示すグラフである。図4中、l0〜l
1は、電極9が溶融スラグ5面に到達するまでのプロー
ブ8の送り量、l1〜l2は、電極9が溶融スラグ5面から
溶融メタル4面に到達するまでのプローブ8の送り量、
l2〜l3は、電極9が溶融メタル4面から炉底に到達する
までのプローブ8の送り量を示す。
FIG. 4 shows that the temperature of the molten slag in the furnace is 1400 ° C.
9 is a graph showing the relationship between the probe feed amount and the impedance between electrodes 9 in the case of FIG. In FIG. 4, l 0 to l
1 is the feed amount of the probe 8 until the electrode 9 reaches the molten slag 5 surface, and l 1 to l 2 are the feed amount of the probe 8 until the electrode 9 reaches the molten slag 5 surface. ,
l 2 to l 3 indicate the feed amount of the probe 8 until the electrode 9 reaches the furnace bottom from the surface of the molten metal 4.

【0017】従って、電極9間のインピーダンスの変化
時点(図3中、A)を溶融スラグ5面としてエンコーダ
15をリセットすれば、インピーダンス演算手段14か
らは、溶融スラグ5の炉内深さ方向における電極9間イ
ンピーダンスが得られる。この結果は、炉内溶融スラグ
温度演算手段16に送られる。炉内溶融スラグ温度演算
手段16には、溶融スラグ温度と電極9間インピーダン
スとの関係が予め記憶されているので、インピーダンス
演算手段14によって演算された電極9間インピーダン
スによって、炉内深さ方向における溶融スラグの温度分
布が演算される。この結果は、表示手段17に表示され
る。
Therefore, if the encoder 15 is reset with the time point of the change in the impedance between the electrodes 9 (A in FIG. 3) as the surface of the molten slag 5, the impedance calculating means 14 outputs the molten slag 5 in the furnace depth direction. The impedance between the electrodes 9 is obtained. This result is sent to the in-furnace molten slag temperature calculating means 16. Since the relationship between the molten slag temperature and the impedance between the electrodes 9 is stored in advance in the in-furnace molten slag temperature calculating means 16, the in-furnace depth direction in the furnace is determined by the impedance between the electrodes 9 calculated by the impedance calculating means 14. The temperature distribution of the molten slag is calculated. This result is displayed on the display unit 17.

【0018】電極9間インピーダンスを演算する間は、
焼却灰溶融用電極2への通電を一時停止する必要があ
る。これは、インピーダンスを演算するために焼却灰溶
融用電極2への通電を停止せずに、検出用電極間の電圧
値、電流値を測定すると、溶融スラグを抵抗加熱する際
に生じる電極2用電源の分布電圧によって、検出用電極
間の電圧値、電流値にノイズが生じて、正確な電極9間
インピーダンスを演算することができないからである。
なお、電極2用電源の出力を、短時間停止しても溶融ス
ラグの熱容量が大きいために、溶融スラグの温度低下や
溶融スラグの対流の停止は殆どないが、熱効率を落とさ
ないためにも、1回の測定で、電極2用電源出力の停止
時間は、0.01から1秒以内が望ましい。
During the calculation of the impedance between the electrodes 9,
It is necessary to temporarily stop energizing the incineration ash melting electrode 2. This is because when the voltage value and the current value between the detection electrodes are measured without stopping the current supply to the incineration ash melting electrode 2 to calculate the impedance, the electrode 2 generated when the molten slag is resistance-heated is measured. This is because the distributed voltage of the power supply causes noise in the voltage value and the current value between the electrodes for detection, and it is not possible to calculate an accurate impedance between the electrodes 9.
In addition, even if the output of the power supply for the electrode 2 is stopped for a short time, the heat capacity of the molten slag is large, so there is almost no decrease in the temperature of the molten slag and the convection of the molten slag is stopped. In one measurement, the stop time of the power supply output for the electrode 2 is preferably within 0.01 to 1 second.

【0019】[0019]

【発明の効果】以上説明したように、この発明によれ
ば、先端に一対の検出用電極が取り付けられたプローブ
を、検出用電極間に電圧を印加した状態で、炉内の溶融
スラグ中に挿入して、検出用電極間のインピーダンスを
測定すれば、検出用電極間のインピーダンスは、溶融ス
ラグの温度によって変化することから、溶融スラグの温
度と検出用電極間のインピーダンスとの関係を予め求め
ておけば、高価な熱電対を使用する必要がなく、しか
も、1本のプローブによって炉内深さ方向における温度
分布を正確に測定することができるといった有用な効果
がもたらされる。
As described above, according to the present invention, a probe having a pair of detection electrodes attached to its tip is placed in a molten slag in a furnace while a voltage is applied between the detection electrodes. By inserting and measuring the impedance between the detection electrodes, the impedance between the detection electrodes changes depending on the temperature of the molten slag, so the relationship between the temperature of the molten slag and the impedance between the detection electrodes is determined in advance. If this is done, it is not necessary to use an expensive thermocouple, and a useful effect such that the temperature distribution in the furnace depth direction can be accurately measured with one probe is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の、焼却灰溶融炉の炉内温度測定方法
の一実施態様を示すブロック図である。
FIG. 1 is a block diagram showing one embodiment of a method for measuring an in-furnace temperature of an incineration ash melting furnace according to the present invention.

【図2】この発明において使用するプローブの斜視図で
ある。
FIG. 2 is a perspective view of a probe used in the present invention.

【図3】電極電圧および電極電流とプローブの送り量と
の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between an electrode voltage and an electrode current and a probe feed amount.

【図4】電極間インピーダンスとプローブの送り量との
関係を示すグラフである。
FIG. 4 is a graph showing a relationship between an inter-electrode impedance and a probe feed amount.

【図5】電極間インピーダンスと溶融スラグ温度との関
係を示すグラフである。
FIG. 5 is a graph showing a relationship between impedance between electrodes and molten slag temperature.

【符号の説明】[Explanation of symbols]

1:焼却灰溶融炉、 2:焼却灰溶融用電極、 3:電極2用電源、 4:溶融メタル、 5:溶融スラグ、 6:半溶融スラグ、 7:プローブ、 8:被覆材、 9:検出用電極、 10:送り装置、 11:検出用電源、 12:電圧計、 13:電流計、 14:インピーダンス演算手段、 15:エンコーダ、 16:溶融スラグ温度演算手段、 17:表示手段。 1: incineration ash melting furnace, 2: incineration ash melting electrode, 3: electrode 2 power supply, 4: molten metal, 5: molten slag, 6: semi-molten slag, 7: probe, 8: coating material, 9: detection Electrodes for use, 10: feeder, 11: power supply for detection, 12: voltmeter, 13: ammeter, 14: impedance calculation means, 15: encoder, 16: molten slag temperature calculation means, 17: display means.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01K 1/14 G01K 7/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01K 1/14 G01K 7/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炉内に挿入された焼却灰溶融用電極によ
る電気抵抗加熱によって、前記炉内に装入された焼却灰
を溶融する焼却灰溶融炉の炉内温度測定方法において、 前記焼却灰溶融炉の中を、先端に一対の検出用電極が取
り付けられたプローブを下降させながら、前記焼却灰溶
融用電極への通電を断続的に、短時間、停止し、この間
に前記検出用電極間のインピーダンスを測定し、予め求
めておいた、前記炉内の溶融スラグ温度と前記検出用電
極間のインピーダンスとの関係に基づいて、前記炉内深
さ方向における溶融スラグの温度分布を求めることを特
徴とする、焼却灰溶融炉の炉内温度測定方法。
1. A method for measuring a temperature in a furnace of an incineration ash melting furnace in which incineration ash charged in the furnace is melted by electric resistance heating by an incineration ash melting electrode inserted into the furnace. In the melting furnace, while lowering the probe having a pair of detection electrodes attached to the tip, the power supply to the incineration ash melting electrode is intermittently stopped for a short time, and during this time, the detection electrode Measuring the impedance of the molten slag in the furnace depth direction, based on the relationship between the molten slag temperature in the furnace and the impedance between the detection electrodes, which has been determined in advance. Characteristic method of measuring the temperature inside the incineration ash melting furnace.
JP34403893A 1993-12-17 1993-12-17 Temperature measurement method for incinerator ash melting furnace Expired - Fee Related JP2947043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34403893A JP2947043B2 (en) 1993-12-17 1993-12-17 Temperature measurement method for incinerator ash melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34403893A JP2947043B2 (en) 1993-12-17 1993-12-17 Temperature measurement method for incinerator ash melting furnace

Publications (2)

Publication Number Publication Date
JPH07174638A JPH07174638A (en) 1995-07-14
JP2947043B2 true JP2947043B2 (en) 1999-09-13

Family

ID=18366182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34403893A Expired - Fee Related JP2947043B2 (en) 1993-12-17 1993-12-17 Temperature measurement method for incinerator ash melting furnace

Country Status (1)

Country Link
JP (1) JP2947043B2 (en)

Also Published As

Publication number Publication date
JPH07174638A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
CA1197289A (en) Probe and a system for detecting wear of refractory wall
US4248809A (en) Method and apparatus for detecting damage of blast furnace inside wall repairing materials
JP2947043B2 (en) Temperature measurement method for incinerator ash melting furnace
US5147137A (en) Refractory thermowell for continuous high temperature measurement of molten metal
KR20200110496A (en) Apparatus and method of determining melt down in dc electric furnace
JP2932875B2 (en) Method and apparatus for measuring molten metal surface depth in incineration ash melting furnace
JP2988313B2 (en) Method and apparatus for measuring depth of molten metal in incineration ash melting furnace
JP2006308497A (en) Method and device for measuring furnace bottom temperature, and method and device for monitoring bottom of melting furnace
JP2629545B2 (en) Method and apparatus for measuring slag surface and electrode position in incineration ash melting furnace
JP2004138500A (en) Temperature measurement system in furnace and operation control method of melting furnace
JP3317792B2 (en) Method for detecting boundary between molten slag layer and molten salt layer in electric resistance melting furnace
CN212963754U (en) Temperature measuring device for copper alloy power frequency electric furnace
JPS59185713A (en) Method and device for measuring eroded region in bottom refractories of blast furnace
JP2000088632A (en) Method for measuring depth of molten slag in plasma type ash melting furnace
JPH06249715A (en) Intermittent temperature measuring method for molten metal
JP3781326B2 (en) Detection method of furnace wall damage in plasma melting furnace
SU1047962A1 (en) Device for monitoring metal temperature in converter
JPS59125003A (en) Method for measuring erosion rate of refractories
JP2629392B2 (en) Melt temperature measuring device for induction heating furnace
JPH11293326A (en) Operation of electric arc furnace
US2584615A (en) Thermocouple device
CN2270965Y (en) Thermal couple for thermometer of glass molten bath with protective casing
JP2003090524A (en) Molten metal temperature measuring device for melting furnace
CN2338739Y (en) Thermo-couple for continuously testing temp. of molten steel in steel smelting furnace
JPH0348441B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees