JPH05288102A - Fuel supply device for internal combustion engine - Google Patents

Fuel supply device for internal combustion engine

Info

Publication number
JPH05288102A
JPH05288102A JP9109392A JP9109392A JPH05288102A JP H05288102 A JPH05288102 A JP H05288102A JP 9109392 A JP9109392 A JP 9109392A JP 9109392 A JP9109392 A JP 9109392A JP H05288102 A JPH05288102 A JP H05288102A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
fuel supply
acceleration
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9109392A
Other languages
Japanese (ja)
Inventor
Kenichi Machida
憲一 町田
Akihiko Araki
昭彦 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP9109392A priority Critical patent/JPH05288102A/en
Publication of JPH05288102A publication Critical patent/JPH05288102A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To suppress NOX emission while enhancing acceleration performance at the time of acceleration operation from the lean burn control region where air fuel ratio is less than theoretical air-fuel ratio. CONSTITUTION:When the timing of acceleration operation from the lean burn control region is detected (S1), an acceleration increment correction factor is retrieved from a map for having approximately a multiple of the theoretical air-fuel ratio with respect to a set air fuel ratio in lean burn controlling (S2), and with this correction factor, a fuel injection quantity in lean burn controlling is corrected (S4).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の燃料供給装
置に関し、特に所定運転領域にて空燃比を理論空燃比よ
り希薄な所定空燃比に制御するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel supply device for an internal combustion engine, and more particularly to a device for controlling an air-fuel ratio to a predetermined air-fuel ratio leaner than a stoichiometric air-fuel ratio in a predetermined operating region.

【0002】[0002]

【従来の技術】この種の内燃機関の燃料供給装置の従来
例として、以下のようなものがある(特開昭63−105
256号公報,特開昭60−135634号公報,特開昭
61−11440号公報参照)。すなわち、高出力を必要
とせず希薄燃焼させてもよい所定の低速低負荷運転領域
において、空燃比を理論空燃比(14.8)よりも希薄な
所定空燃比(例えば22〜25)になるように燃料噴射量を
演算して機関に供給し(以下、リーン制御と称す)、燃
費の向上と排気の浄化を図るようにしている。また、前
記以外の運転領域では空燃比が略理論空燃比になるよう
に燃料噴射量を演算し、高速高負荷運転領域では、空燃
比が理論空燃比より濃い所定空燃比になるように燃料噴
射量を演算するようにしている。
2. Description of the Related Art The following is a conventional example of a fuel supply system for an internal combustion engine of this type (Japanese Patent Laid-Open No. 63-105).
256, JP-A-60-135634, JP-A-60-135634
61-11440). That is, in a predetermined low speed and low load operation region where lean combustion is possible without requiring high output, the air-fuel ratio becomes a predetermined air-fuel ratio leaner than the theoretical air-fuel ratio (14.8) (for example, 22 to 25). The fuel injection amount is calculated and supplied to the engine (hereinafter referred to as lean control) to improve fuel efficiency and purify exhaust gas. Further, in the operating region other than the above, the fuel injection amount is calculated so that the air-fuel ratio becomes substantially the theoretical air-fuel ratio, and in the high-speed high-load operating region, the fuel injection is performed so that the air-fuel ratio becomes a predetermined air-fuel ratio which is richer than the theoretical air-fuel ratio. I am trying to calculate the amount.

【0003】また、リーン制御中に加速動作が検出され
ると、例えばエアフローメータにより検出された吸入空
気量に加速時補正吸入空気量を加算して燃料噴射量を増
量し空燃比を濃化するようにしている。
When an acceleration operation is detected during lean control, the intake air amount detected by, for example, an air flow meter is added to the corrected intake air amount during acceleration to increase the fuel injection amount and enrich the air-fuel ratio. I am trying.

【0004】[0004]

【発明が解決しようとする課題】ところで、NOX 排出
量は図6に示すように、理論空燃比から希薄化するに従
って増大すると共にその後希薄化するほど減少する特性
を有しており、リーン制御領域ではNOX 排出量を充分
に低下できるようになっている。しかし、リーン制御中
における加速運転時に吸入空気量に加速時補正吸入空気
量を単に加算して空燃比を濃化させるようにすると、空
燃比をNOX を低減させるのに最適な値に設定できずN
X 排出量が増大するという不具合がある。
By the way, as shown in FIG. 6, the NO x emission amount has a characteristic that it increases as the air-fuel ratio becomes leaner than the stoichiometric air-fuel ratio and then decreases as it leans. In the region, the NO X emission amount can be sufficiently reduced. However, by simply adding the acceleration correction intake air amount to the intake air amount during acceleration operation during the lean control so as to enrich the air-fuel ratio can be set the air-fuel ratio to an optimum value for reducing the NO X Without N
O X emissions there is a problem of increasing.

【0005】本考案は、このような実状に鑑みてなされ
たもので、加速運転時に加速性能を向上させつつNOX
排出量を抑制することを目的とする。
[0005] The present invention has been made in view of such circumstances, while improving the acceleration performance during acceleration operation NO X
The purpose is to reduce the amount of emissions.

【0006】[0006]

【課題を解決するための手段】このため、本発明は、図
1に示すように、所定のリーン制御域で実際の空燃比が
理論空燃比より希薄な設定空燃比になるように燃料供給
量を設定する燃料供給量設定手段Aを備えるものにおい
て、 加速運転状態を検出する加速運転状態検出手段B
と、前記設定空燃比に対し量理論空燃比の倍数となる加
速増量補正係数を設定する補正係数設定手段Cと、前記
リーン制御域からの加速運転状態が検出されたときに前
記燃料供給量を前記加速増量補正係数に基づいて増量補
正する補正手段Dと、補正された燃料供給量に基づいて
燃料供給手段Eを駆動制御する駆動制御手段Fと、を備
えるようにした。
Therefore, according to the present invention, as shown in FIG. 1, the fuel supply amount is set so that the actual air-fuel ratio becomes a set air-fuel ratio leaner than the stoichiometric air-fuel ratio in a predetermined lean control range. Which includes the fuel supply amount setting means A for setting the acceleration operation state detecting means B for detecting the acceleration operation state.
And a correction coefficient setting means C for setting an acceleration increase correction coefficient that is a multiple of the stoichiometric air-fuel ratio with respect to the set air-fuel ratio, and the fuel supply amount when the acceleration operation state from the lean control range is detected. A correction unit D for increasing the amount based on the acceleration amount increase correction coefficient, and a drive control unit F for driving and controlling the fuel supply unit E based on the corrected fuel supply amount are provided.

【0007】[0007]

【作用】そして、リーン制御域からの加速運転時に、リ
ーン制御時の設定空燃比に対し略理論空燃比の倍数とな
る加速増量補正係数により燃料供給量を補正し、リーン
制御時からの加速時の空燃比を略理論空燃比になるよう
に制御するようにした。
In the acceleration operation from the lean control range, the fuel supply amount is corrected by the acceleration increase correction coefficient that is a multiple of the approximate stoichiometric air-fuel ratio with respect to the set air-fuel ratio during lean control. The air-fuel ratio of is controlled so as to be substantially the theoretical air-fuel ratio.

【0008】[0008]

【実施例】以下に、本発明の一実施例を図2〜図5に基
づいて説明する。図2において、マイクロコンピュータ
等からなる制御装置1には、機関回転速度を検出する回
転速度センサ2と、吸入空気量を検出するエアフローメ
ータ3と、冷却水温度を検出する水温センサ4と、排気
中の酸素濃度から空燃比を検出する酸素センサ5と、ス
ロットル弁開度を検出する加速運転状態検出手段として
のスロットルセンサ6と、から検出信号が入力されてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 2, a control device 1 including a microcomputer includes a rotation speed sensor 2 that detects an engine rotation speed, an air flow meter 3 that detects an intake air amount, a water temperature sensor 4 that detects a cooling water temperature, and an exhaust gas. Detection signals are input from an oxygen sensor 5 that detects an air-fuel ratio from the oxygen concentration therein and a throttle sensor 6 that serves as an acceleration operating state detection unit that detects the throttle valve opening.

【0009】制御装置1は、燃料供給手段としての燃料
噴射弁7に駆動回路8を介して噴射パルス信号を出力し
燃料噴射作動を行わせるようになっている。ここでは、
制御装置1が燃料供給量設定手段と補正係数設定手段と
補正手段とを構成する。また、制御装置1と駆動回路8
とが駆動制御手段を構成する。次に、作用を図3のフロ
ーチャートに従って説明する。
The control device 1 outputs an injection pulse signal to a fuel injection valve 7 as a fuel supply means via a drive circuit 8 to perform a fuel injection operation. here,
The control device 1 constitutes a fuel supply amount setting means, a correction coefficient setting means, and a correction means. In addition, the control device 1 and the drive circuit 8
And constitute drive control means. Next, the operation will be described with reference to the flowchart of FIG.

【0010】まず、リーン制御を説明すると、機関回転
速度が所定範囲でかつ基本噴射量等の機関負荷が所定範
囲の低速低負荷運転領域と判定され、かつ冷却水温度が
所定値(例えば80°C)で車速が所定値(例えば8km
/h)以上のときに、リーン制御条件が成立したと判断
する。そして、リーン制御条件が成立したと判定された
ときに、実際の空燃比が理論空燃比より希薄な設定空燃
比(例えば20〜25であって図4に示すように機関回転速
度と機関回転速度と基本噴射量とに対応させて設定され
ている。)になるように燃料噴射量を後述の演算式によ
り演算し、演算された燃料噴射量に基づいて燃料噴射弁
7を駆動回路8を介して駆動制御する。
First, the lean control will be described. It is determined that the engine speed is within a predetermined range and the engine load such as the basic injection amount is within a predetermined range in a low speed low load operation region, and the cooling water temperature is a predetermined value (for example, 80 °). C) the vehicle speed is a predetermined value (for example, 8 km)
/ H) or more, it is determined that the lean control condition is satisfied. Then, when it is determined that the lean control condition is satisfied, the actual air-fuel ratio is leaner than the stoichiometric air-fuel ratio (for example, 20 to 25, and the engine rotation speed and the engine rotation speed are as shown in FIG. 4). And the basic injection amount are set according to the following equation, and the fuel injection valve 7 is driven through the drive circuit 8 based on the calculated fuel injection amount. Drive control.

【0011】また、リーン制御条件の不成立時には、空
燃比が理論空燃比(14.8)になるように燃料噴射量を演
算し、その燃料噴射量に基づいて燃料噴射弁7を駆動制
御する。また、高速高負荷域では理論空燃比より濃い空
燃比になるように燃料噴射量が演算される。かかるリー
ン制御中に図3のS1において、前記スロットルセンサ
6により検出されたスロットル弁の開度変化量に基づい
て加速運転か否かを判定し、YESのときにはS2に進
みNOのときにはS3に進む。
Further, when the lean control condition is not satisfied, the fuel injection amount is calculated so that the air-fuel ratio becomes the stoichiometric air-fuel ratio (14.8), and the fuel injection valve 7 is drive-controlled based on the fuel injection amount. Further, in the high speed and high load region, the fuel injection amount is calculated so that the air-fuel ratio is higher than the theoretical air-fuel ratio. During the lean control, in S1 of FIG. 3, it is determined whether or not the acceleration operation is performed based on the opening change amount of the throttle valve detected by the throttle sensor 6. If YES, the process proceeds to S2, and if NO, the process proceeds to S3. ..

【0012】S2では、検出された機関回転速度と前回
のルーチンで演算された基本噴射量とに基づいて、加速
増量補正係数K1をマップから検索する。この加速増量
補正係数K1は、図5に示すように、機関回転速度と基
本噴射量とにより区分された領域毎に異ならせて設定さ
れている。これらの加速増量補正係数K1は、前記設定
空燃比に対して理論空燃比の倍数に設定されている。
In S2, the acceleration increase correction coefficient K1 is searched from the map based on the detected engine speed and the basic injection amount calculated in the previous routine. As shown in FIG. 5, the acceleration amount increase correction coefficient K1 is set to be different for each region divided by the engine rotation speed and the basic injection amount. These acceleration increase correction coefficient K1 is set to a multiple of the theoretical air-fuel ratio with respect to the set air-fuel ratio.

【0013】S3では、水温補正を主とする各種補正係
数COEFを演算する。S4では、燃料噴射量Ti を次
式により演算する。 Ti =Tp ×COEF×LBC×K1+TS Tp は機関回転速度Nと吸入空気量Qとから演算される
基本噴射量(=KQ/N,Kは定数)、LBCは前記設
定空燃比若しくは理論空燃比に対応する空燃比補正係
数、TSはバッテリ電圧による補正分である。
At S3, various correction factors COEF mainly for water temperature correction are calculated. In S4, the fuel injection amount T i is calculated by the following equation. T i = T p × COEF × LBC × K1 + TS T p is a basic injection amount (= KQ / N, K is a constant) calculated from the engine speed N and the intake air amount Q, and LBC is the set air-fuel ratio or the theoretical value. An air-fuel ratio correction coefficient corresponding to the air-fuel ratio, TS is a correction amount by the battery voltage.

【0014】そして、演算された燃料噴射量Ti に基づ
いて燃料噴射弁7に駆動回路8を介して噴射パルス信号
に出力し、燃料を機関に供給する。以上説明したよう
に、リーン制御中からの加速運転時には設定空燃比に対
し理論空燃比の倍数に設定された加速増量補正係数K1
を演算式に乗じて燃料噴射量を演算するようにしたの
で、加速運転時の空燃比は略理論空燃比に維持できるた
め、加速運転時のNOX 排出量を大幅に抑制できる(図
6参照)と共に加速性能を向上できる。
Then, based on the calculated fuel injection amount T i , an injection pulse signal is output to the fuel injection valve 7 via the drive circuit 8 to supply fuel to the engine. As described above, during the acceleration operation from the lean control, the acceleration increase correction coefficient K1 set to a multiple of the theoretical air-fuel ratio with respect to the set air-fuel ratio.
Since the fuel injection amount is calculated by multiplying by the formula, the air-fuel ratio during acceleration operation can be maintained at a substantially stoichiometric air-fuel ratio, so the NO X emission amount during acceleration operation can be greatly suppressed (see FIG. 6). ) And acceleration performance can be improved.

【0015】尚、前記加速増量補正係数は前記各種補正
係数のパラメータとして導入させてもよい。
The acceleration increase correction coefficient may be introduced as a parameter of the various correction coefficients.

【0016】[0016]

【発明の効果】本発明は、以上説明したように、リーン
制御域からの加速運転時に、リーン制御時の設定空燃比
に対し略理論空燃比の倍数となる加速増量補正係数にて
燃料供給量を増量補正するようにしたので、リーン制御
域からの加速運転時の空燃比を略理論空燃比に維持で
き、加速性能を向上させつつNOx 排出量を抑制でき
る。
As described above, according to the present invention, during the acceleration operation from the lean control range, the fuel supply amount is increased by the acceleration increase correction coefficient which is a multiple of the substantially theoretical air-fuel ratio with respect to the set air-fuel ratio during lean control. since was such that increasing correction, can maintain the air-fuel ratio at the time of acceleration operation from the lean control area to the stoichiometric air-fuel ratio, while improving the acceleration performance can be suppressed NO x emissions amount.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のクレーム対応図FIG. 1 is a diagram for responding to a claim of the present invention.

【図2】本発明の一実施例を示す構成図FIG. 2 is a configuration diagram showing an embodiment of the present invention.

【図3】同上のフローチャートFIG. 3 Flowchart of the above

【図4】同上の作用を説明するための図FIG. 4 is a diagram for explaining the operation of the above.

【図5】同上の作用を説明するための他の図FIG. 5 is another diagram for explaining the operation of the above.

【図6】従来の欠点を説明するための図FIG. 6 is a diagram for explaining a conventional defect.

【符号の説明】[Explanation of symbols]

1 制御装置 2 回転センサ 3 エアフローメータ 6 スロットルセンサ 7 燃料噴射弁 8 駆動回路 1 Control Device 2 Rotation Sensor 3 Air Flow Meter 6 Throttle Sensor 7 Fuel Injection Valve 8 Drive Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所定のリーン制御域で実際の空燃比が理論
空燃比より希薄な設定空燃比になるように燃料供給量を
設定する燃料供給量設定手段を備える内燃機関の燃料供
給装置において、 加速運転状態を検出する加速運転状態検出手段と、前記
設定空燃比に対し略理論空燃比の倍数となる加速増量補
正係数を設定する補正係数設定手段と、前記リーン制御
域からの加速運転状態が検出されたときに前記燃料供給
量を前記加速増量補正係数に基づいて増量補正する補正
手段と、補正された燃料供給量に基づいて燃料供給手段
を駆動制御する駆動制御手段と、を備えたことを特徴と
する内燃機関の燃料供給装置。
1. A fuel supply device for an internal combustion engine, comprising fuel supply amount setting means for setting a fuel supply amount such that an actual air-fuel ratio becomes a set air-fuel ratio leaner than a theoretical air-fuel ratio in a predetermined lean control range. Acceleration operating state detection means for detecting an acceleration operating state, correction coefficient setting means for setting an acceleration increase correction coefficient that is a multiple of a substantially stoichiometric air-fuel ratio with respect to the set air-fuel ratio, and acceleration operating state from the lean control range Correction means for increasing and correcting the fuel supply amount based on the acceleration increase correction coefficient when detected, and drive control means for driving and controlling the fuel supply means based on the corrected fuel supply amount. A fuel supply device for an internal combustion engine, comprising:
JP9109392A 1992-04-10 1992-04-10 Fuel supply device for internal combustion engine Pending JPH05288102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9109392A JPH05288102A (en) 1992-04-10 1992-04-10 Fuel supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9109392A JPH05288102A (en) 1992-04-10 1992-04-10 Fuel supply device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH05288102A true JPH05288102A (en) 1993-11-02

Family

ID=14016908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9109392A Pending JPH05288102A (en) 1992-04-10 1992-04-10 Fuel supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH05288102A (en)

Similar Documents

Publication Publication Date Title
JP2985578B2 (en) Air-fuel ratio control device for lean burn engine
JP3768780B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008150970A (en) Control device of internal combustion engine
JP2518247B2 (en) Air-fuel ratio control device for internal combustion engine
US4662339A (en) Air-fuel ratio control for internal combustion engine
JPH05288102A (en) Fuel supply device for internal combustion engine
JP3061277B2 (en) Air-fuel ratio learning control method and device
JP2521039B2 (en) Engine air-fuel ratio control device
JPH0689686B2 (en) Air-fuel ratio controller for engine
US4646699A (en) Method for controlling air/fuel ratio of fuel supply for an internal combustion engine
JPS61108847A (en) Control device of fuel increase in quantity in internal-combustion engine
JPH07119520A (en) Air-fuel ratio controller of engine
JP3538862B2 (en) Engine ignition timing control device
JP2805822B2 (en) Air-fuel ratio control method for internal combustion engine
JPS61232346A (en) Air-fuel ratio controller for internal-combustion engine
JP3593388B2 (en) Air-fuel ratio control device for internal combustion engine
JP3528315B2 (en) Engine air-fuel ratio control device
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JP2000027681A (en) Control method of excess air ratio in internal combustion engine
JPH01177433A (en) Air-fuel ratio control device for internal combustion engine
JPS6394044A (en) Accelerating fuel increment control device for electronically controlled fuel injection type internal combustion engine
JPH0472433A (en) Fuel supply device of internal combustion engine
JPS63105256A (en) Air-fuel ratio control device for electronically controlled fuel-injection internal combustion engine
JPS61237857A (en) Control device for air-fuel ratio in internal-combustion engine
JPS6394047A (en) Deceleration fuel decrement controller for electronic control fuel injection internal combustion engine