JPH05287462A - Superfine crystal alloy for transformer iron core and its production - Google Patents

Superfine crystal alloy for transformer iron core and its production

Info

Publication number
JPH05287462A
JPH05287462A JP4088863A JP8886392A JPH05287462A JP H05287462 A JPH05287462 A JP H05287462A JP 4088863 A JP4088863 A JP 4088863A JP 8886392 A JP8886392 A JP 8886392A JP H05287462 A JPH05287462 A JP H05287462A
Authority
JP
Japan
Prior art keywords
alloy
iron core
iron loss
atom
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4088863A
Other languages
Japanese (ja)
Inventor
Nobuisa Shiga
信勇 志賀
Kiyoshi Shibuya
清 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4088863A priority Critical patent/JPH05287462A/en
Publication of JPH05287462A publication Critical patent/JPH05287462A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an iron core material for transformer minimal in iron loss at a commercial frequency by rapidly cooling and solidifying a molten Fe-Zr-B-Cu alloy of specific composition and applying annealing to the resulting amorphous sheet at specific temp. CONSTITUTION:A molten Fe-Zr-B-Cu alloy having a composition represented by chemical formula Fe100-a-b-cZraBbCuc (where the symbols (a), (b), and (c) stand for, by atom, 2-6%, 4-16%, and 0.1-3%, respectively) is refined, in vacuum of <=10<-3>Torr or in an inert gas atmosphere of Ar, etc., in a vessel made of an oxide type refractory, such as MgO and CaO, having an affinity for O2 at >=1200 deg.C larger than the affinity of Zr for O2. Subsequently, this molten metal is rapidly cooled and solidified in the same atmosphere and the resulting amorphous alloy sheet is annealed at a temp. at which only the crystalline grain of alpha-Fe is precipitated, by which superfine crystalline grains having grain size, e.g. of <=50nm are uniformly precipitated. By this method, the alloy sheet for transformer iron core in which iron loss in 1.3T magnetic flux density at a commercial frequency of 50Hz, etc., is reduced to <=0.1w/kg and which has superior properties can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、トランス鉄心用超微
細結晶合金及びその製造方法に関し、特に50Hzといった
商用周波数を使用条件とするトランス用の鉄心として、
顕著な鉄損特性を有するFe基の超微細結晶合金をその有
利な製造方法とともに提案しようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine crystal alloy for a transformer core and a method for producing the same, and particularly as a core for a transformer whose commercial frequency is 50 Hz.
An attempt is made to propose an Fe-based ultrafine crystal alloy having remarkable iron loss characteristics together with its advantageous manufacturing method.

【0002】[0002]

【従来の技術】従来から、商用周波数で使用されるトラ
ンス鉄心用材料には、高飽和磁束密度で比較的鉄損の小
さい、けい素鋼板があった。しかしながら、このけい素
鋼板は、技術的進歩により鉄損値が次第に低くなってき
たとはいえ、省エネルギーの要請からより鉄損特性の優
れた材料が求められている近年では、鉄損特性が十分に
満足のいくものとは言えず、加えてトランスの発熱等の
点でも不利があった。
2. Description of the Related Art Conventionally, a silicon steel sheet having a high saturation magnetic flux density and a relatively small iron loss has been used as a transformer core material used at a commercial frequency. However, although this silicon steel sheet has been gradually reduced in iron loss value due to technological progress, in recent years, when a material having more excellent iron loss characteristics is demanded due to the demand for energy saving, the iron loss characteristics are sufficiently reduced. It was not satisfactory, and there was also a disadvantage in terms of heat generation of the transformer.

【0003】そこで特開昭62-188748 号公報等に記載さ
れているような、単ロール法により製造されるFe基アモ
ルファス合金薄帯について研究開発が進められた結果、
商用周波数にてけい素鋼板の約1/3 という低鉄損値を示
すものも得られ、一部実用化が始まっている。しかしこ
のFe基アモルファス合金は、鉄損は低いものの磁歪が著
しく大きく、しかも振動や変形による磁気特性の劣化等
の問題もあった。
Therefore, as a result of research and development on an Fe-based amorphous alloy ribbon produced by the single roll method, as described in JP-A-62-188748, etc.,
Some of which have a low iron loss value, which is about 1/3 that of silicon steel sheets at commercial frequencies, have been obtained, and some of them have been put into practical use. However, although this Fe-based amorphous alloy has a low iron loss, it has a large magnetostriction, and also has problems such as deterioration of magnetic properties due to vibration and deformation.

【0004】ここに近年、適当な組成のアモルファス合
金に熱処理を施し、超微細結晶を析出させることによっ
て、上記アモルファス合金の問題点である磁歪及び経時
変化が抑制されるばかりでなく、高周波数領域において
はアモルファス合金に比べても鉄損が著しく低減しかつ
商用周波数である低周波領域においてもアモルファス合
金と同等の低い鉄損値を示すことがわかってきた。この
ような例としては特開昭63-302504 号公報等に記載され
ている材料がある。
In recent years, by subjecting an amorphous alloy of an appropriate composition to a heat treatment to precipitate ultrafine crystals, not only the magnetostriction and aging which are problems of the above-mentioned amorphous alloy are suppressed, but also high frequency region. It has been found that compared with the amorphous alloy, the iron loss is remarkably reduced and the iron loss value is as low as that of the amorphous alloy even in the low frequency region of the commercial frequency. Examples of such materials include the materials described in JP-A-63-302504.

【0005】[0005]

【発明が解決しようとする課題】上掲特開昭63-302504
号公報に記載されたような従来の超微細結晶材料は、特
に高周波における磁気特性の改善を目指したものであ
り、したがって商用周波数領域における鉄損値は、現状
ではアモルファス合金の鉄損値と大差がない。そこで、
成分系、製造条件等を工夫することによって商用周波数
領域においてさらに良好な軟磁気特性が得られる可能性
が残されている。この発明の目的は、比較的飽和磁束密
度が高く、低磁歪で経時変化も小さい超微細結晶材料に
おいて、特に商用周波数で明らかにアモルファス合金よ
りも低鉄損を示すトランス用合金薄帯を新たに提案する
ことにある。
[Problems to be Solved by the Invention] Japanese Patent Laid-Open No. 63-302504
The conventional ultrafine crystal material as described in Japanese Patent Publication is aimed at improving the magnetic characteristics especially at high frequencies, and therefore the iron loss value in the commercial frequency range is currently significantly different from that of amorphous alloys. There is no. Therefore,
There is a possibility that even better soft magnetic characteristics can be obtained in the commercial frequency range by devising the component system, manufacturing conditions, and the like. An object of the present invention is to newly develop an alloy ribbon for a transformer, which has a relatively high saturation magnetic flux density, a low magnetostriction, and a small change over time, and which has a lower iron loss than an amorphous alloy at a commercial frequency. To propose.

【0006】[0006]

【課題を解決するための手段】この発明は、化学式:Fe
100-a-b-c Zr a bCu cで表され、かつこのa,b及び
cがa:2〜6原子%、b:4〜16原子%及びc:0.1
〜3原子%を満足する組成になるトランス鉄心用超微細
結晶合金である。この超微細結晶合金は、特に商用周波
数50Hzにて磁束密度1.3 Tにおける鉄損値が0.1 W/kg以
下であるものが有利である。
The present invention has the chemical formula: Fe
100-abc Zr a B b Cu c , and a, b and c are a: 2 to 6 atom%, b: 4 to 16 atom% and c: 0.1
It is an ultrafine crystal alloy for a transformer iron core having a composition satisfying ~ 3 at%. It is advantageous that the ultrafine crystal alloy has an iron loss value of 0.1 W / kg or less at a commercial frequency of 50 Hz and a magnetic flux density of 1.3 T.

【0007】またこの発明の超微細結晶合金の製造方法
は、化学式:Fe100-a-b-c Zr a bCu cで表され、かつ
このa,b及びcがa:2〜6原子%、b:4〜16原子
%及びc:0.1 〜3原子%を満足する組成に調製した溶
融金属を、急冷凝固させてアモルファス合金薄帯を作製
し、次いでこのアモルファス合金薄帯を焼鈍することに
より微細結晶粒を析出させることを特徴とするものであ
る。
The method for producing an ultrafine crystal alloy of the present invention is represented by the chemical formula: Fe 100-abc Zr a B b Cu c , and a, b and c are a: 2 to 6 atomic%, b: Molten metal prepared to have a composition satisfying 4 to 16 atomic% and c: 0.1 to 3 atomic% is rapidly solidified to produce an amorphous alloy ribbon, and then the amorphous alloy ribbon is annealed to obtain fine crystal grains. Is deposited.

【0008】ここに、 溶融金属の調製時に使用する溶融金属の保持容器は、
1200℃以上における酸素との親和力がZrと酸素との親和
力以上の元素の酸化物系耐火物または複合酸化物からな
ること、 焼鈍温度がα−Feの結晶粒のみを析出させる温度であ
ること、 溶融金属の調製工程、アモルファス合金薄帯の作製工
程及びアモルファス合金薄帯の焼鈍工程を、真空又は不
活性ガス雰囲気にて行うこと、が有利に適合する。
Here, the container for holding the molten metal used when preparing the molten metal is
The affinity for oxygen at 1200 ° C or higher is made of an oxide refractory or a complex oxide of an element having an affinity for Zr and oxygen or higher, and the annealing temperature is a temperature at which only α-Fe crystal grains are precipitated. Advantageously, the step of preparing the molten metal, the step of producing the amorphous alloy ribbon and the step of annealing the amorphous alloy ribbon are performed in a vacuum or an inert gas atmosphere.

【0009】[0009]

【作用】この発明に従い超微細結晶合金の成分組成範囲
を上記のとおりに限定することにより、粒径が20nm程度
の超微細な結晶の合金が得られ、これによって、比較的
飽和磁束密度が大きく、低磁歪で経時変化も小さく、さ
らに商用周波数50Hzにおいて磁束密度1.3 Tでアモルフ
ァス合金よりも低い0.1 W/kg以下という低鉄損値が得ら
れる。
[Function] According to the present invention, by limiting the component composition range of the ultrafine crystal alloy as described above, an ultrafine crystal alloy having a grain size of about 20 nm can be obtained, which results in a relatively high saturation magnetic flux density. It has low magnetostriction, little change over time, and a magnetic flux density of 1.3 T at a commercial frequency of 50 Hz, which is lower than that of amorphous alloys, that is, a low iron loss value of 0.1 W / kg or less.

【0010】この発明において、Cuは必須の成分であ
り、その含有量cは0.1 〜3原子%の範囲である。Cu量
が0.1 原子%より少ないとCu添加による鉄損効果がほと
んどなく、一方3原子%より多いと、薄帯作製時に合金
が既にぜい化し易くなる不利がある。特に好ましいCu含
有量は、0.5 〜2原子%であり、この範囲で特に低鉄損
の合金が得られる。
In the present invention, Cu is an essential component, and its content c is in the range of 0.1 to 3 atom%. If the Cu content is less than 0.1 at%, there is almost no iron loss effect due to the addition of Cu, while if it is more than 3 at%, there is a disadvantage that the alloy is already apt to become brittle at the time of producing the ribbon. A particularly preferable Cu content is 0.5 to 2 atomic%, and in this range, an alloy having a particularly low iron loss can be obtained.

【0011】またZrは、Cuとの複合添加により析出する
結晶粒を微細化する作用を有する。Zrの含有量aは、2
〜6原子%に限定される。Zr量が2原子%未満では十分
な鉄損低減効果がなく、一方6原子%を超えると飽和磁
束密度が低下し、商用周波数用トランス材料として適さ
なくなる。より好ましいZr含有量は、3〜6原子%であ
る。
Further, Zr has a function of refining the crystal grains precipitated by complex addition with Cu. Zr content a is 2
Is limited to 6 atom%. If the Zr content is less than 2 atomic%, there is no sufficient iron loss reducing effect, while if it exceeds 6 atomic%, the saturation magnetic flux density decreases, making it unsuitable as a transformer material for commercial frequencies. A more preferable Zr content is 3 to 6 atomic%.

【0012】またBは、薄帯作製時にアモルファス合金
を形成し易くし、焼鈍時には結晶粒を微細化するのに有
用な成分である。Bの含有量bは、4〜16原子%に限定
される。この範囲を外れると、アモルファス合金を形成
し難くなり、好ましくない。より好ましいB含有量は、
6〜10原子%である。
B is a component useful for facilitating the formation of an amorphous alloy during the production of the ribbon and for refining the crystal grains during annealing. The content b of B is limited to 4 to 16 atom%. If it is out of this range, it becomes difficult to form an amorphous alloy, which is not preferable. More preferable B content is
It is 6 to 10 atom%.

【0013】この発明の合金は、前記組成のアモルファ
ス合金を単ロール法等の液体急冷法により得る工程と、
これを加熱・焼鈍し、超微細な結晶粒を形成する熱処理
工程とによって得られる。かかる熱処理によって形成さ
れる結晶粒は主にα−Fe固溶体からなり、粒径が50nm以
下の超微細な結晶粒がほぼ均一に分布しているものであ
って、これが優れた軟磁性を示すのである。特に優れた
軟磁性を示す合金の場合は、その結晶粒径が20nm程度の
場合が多いことから、好適な結晶粒径は、20nm±10nm程
度である。また、結晶粒はα−Fe固溶体である。合金の
組織は、超微細結晶粒以外の部分は主にアモルファスで
あり、組織内における超微細結晶粒の割合は、60〜100
%程度が好ましい。
The alloy of the present invention comprises the steps of obtaining an amorphous alloy having the above composition by a liquid quenching method such as a single roll method,
It is obtained by a heat treatment step of heating and annealing this to form ultrafine crystal grains. The crystal grains formed by such heat treatment are mainly composed of α-Fe solid solution, and the ultrafine crystal grains having a grain size of 50 nm or less are almost evenly distributed, and this shows excellent soft magnetism. is there. In the case of an alloy exhibiting particularly excellent soft magnetism, the crystal grain size is often about 20 nm, and therefore, a suitable crystal grain size is about 20 nm ± 10 nm. The crystal grains are α-Fe solid solution. The structure of the alloy is mainly amorphous except for the ultrafine crystal grains, and the ratio of the ultrafine crystal grains in the structure is 60 to 100.
% Is preferable.

【0014】また、この発明の超微細結晶合金を製造す
るに際して、特に鉄損値の低い合金試料を製造するため
には次の〜の条件を満足させることが好ましい。 合金溶解時の溶湯保持容器に、1200℃以上における酸
素との親和力がZrと酸素との親和力以上の元素の酸化物
系耐火物または複合酸化物を用いること。 焼鈍をα−Fe相のみが析出する温度に設定して行うこ
と。 溶解、薄帯作製及び焼鈍を、真空または不活性ガス雰
囲気にて行うこと。
In producing the ultrafine crystal alloy of the present invention, it is preferable that the following conditions (1) to (4) are satisfied in order to produce an alloy sample having a particularly low iron loss value. Use an oxide refractory or a complex oxide of an element having an affinity for oxygen at 1200 ° C. or higher and an affinity for Zr and oxygen at or above 1200 ° C. in a molten metal holding container for melting the alloy. Annealing is performed at a temperature at which only the α-Fe phase precipitates. Perform melting, ribbon production and annealing in a vacuum or inert gas atmosphere.

【0015】及びは、合金成分中で、酸素との親和
力が特に強いZrの酸化防止が目的である。本合金の融点
である1200℃以上で合金中のZrが酸化されることにより
生じる非金属介在物の存在は、軟磁気特性を著しく劣化
させる。ここに上記耐火物としては、MgO 、CaO 又はZr
O2等があり、またこれらの2種以上を用いてもよい。さ
らにこれらの耐火物は、不純物成分を極力抑制した、高
純度のものであることが望ましい。
Among the alloy components, and are intended to prevent the oxidation of Zr, which has a particularly strong affinity with oxygen. The presence of non-metallic inclusions caused by the oxidation of Zr in the alloy at a melting point of 1200 ° C or higher, which is the melting point of the present alloy, significantly deteriorates the soft magnetic properties. The refractory material may be MgO, CaO or Zr.
There are O 2 and the like, and two or more of these may be used. Further, it is desirable that these refractories have high purity with the impurity components suppressed as much as possible.

【0016】また、真空雰囲気としては、具体的には、
10-3torr以下の減圧雰囲気が、不活性ガス雰囲気として
は、Ar、He、N2等又はそれらの混合ガスの雰囲気が好ま
しい。
Further, as the vacuum atmosphere, specifically,
As a reduced pressure atmosphere of 10 −3 torr or less and an inert gas atmosphere, an atmosphere of Ar, He, N 2 or the like or a mixed gas thereof is preferable.

【0017】の理由は、α−Fe相のみが超微細結晶を
形成し得る相であるからである。焼鈍をα−Fe相のみが
析出する温度に設定することで、この発明で最適の結晶
組織が得られる。なお、この発明の合金試料におけるア
モルファス相からの結晶化温度のうち、α−Fe相の結晶
化温度が最も低い。したがってこの相のみを結晶化させ
る焼鈍温度を設定することは極めて容易である。この焼
鈍温度は、成分組成にもよるが、480 〜530 ℃程度であ
り、また焼鈍時間は、1〜3hr程度である。焼鈍温度
が、α−Fe相のみが析出する温度よりも高いと、粗大な
Fe基化合物の結晶粒が析出してしまい、磁気特性が劣化
するうれいがある。
The reason is that only the α-Fe phase is a phase capable of forming ultrafine crystals. The optimum crystal structure can be obtained in the present invention by setting the annealing to a temperature at which only the α-Fe phase is precipitated. Among the crystallization temperatures from the amorphous phase in the alloy sample of the present invention, the crystallization temperature of the α-Fe phase is the lowest. Therefore, it is extremely easy to set the annealing temperature for crystallizing only this phase. The annealing temperature is about 480 to 530 ° C., and the annealing time is about 1 to 3 hours, although it depends on the component composition. If the annealing temperature is higher than the temperature at which only the α-Fe phase precipitates, it will be coarse.
It is gratifying that the crystal grains of the Fe-based compound will precipitate and the magnetic properties will deteriorate.

【0018】[0018]

【実施例】表1に示す組成範囲になる種々の母合金を作
製し、これらをそれぞれAr雰囲気で純度98%のMgO 耐火
物のるつぼにて溶解し、次いでAr雰囲気中で単ロール法
にて急冷凝固させて、幅10mm、厚み20μm のアモルファ
ス合金薄帯を作製した。これらのアモルファス薄帯を1
×10-5Torr真空中、400 〜600 ℃の範囲の種々の温度に
て1時間焼鈍した。
[Examples] Various mother alloys having the composition ranges shown in Table 1 were prepared, and these were respectively melted in a crucible of MgO refractory having a purity of 98% in an Ar atmosphere, and then by a single roll method in an Ar atmosphere. It was rapidly solidified to produce an amorphous alloy ribbon with a width of 10 mm and a thickness of 20 μm. 1 of these amorphous ribbons
Annealing was performed for 1 hour at various temperatures in the range of 400 to 600 ° C. in a vacuum of 10 −5 Torr.

【0019】[0019]

【表1】合金成分組成:Fe100-a-b-c Zr a bCu c ここにa:0〜10原子% b:0〜20原子% c:0〜5原子%[Table 1] Alloy composition: Fe 100-abc Zr a B b Cu c where a: 0 to 10 atom% b: 0 to 20 atom% c: 0 to 5 atom%

【0020】焼鈍後の各試料について、周波数50Hz、磁
束密度1.3 Tにおける鉄損値を測定した。各々の組成に
おいて最低鉄損値を示した試料を作製した際の焼鈍温度
を、その組成における最適焼鈍温度とした。それぞれの
組成の最適焼鈍温度における鉄損値と成分元素の含有量
との関係を図1に示す。これによるとZrの含有量は、4
〜6原子%で最も低い鉄損値を得ることがわかる。Bの
含有量、Cuの含有量についてもそれぞれ図2、図3に示
すように、それぞれ7〜9原子%、0.5 〜2原子%が最
適であることがわかった。また、溶湯保持容器にアグネ
シア材を用いた場合は、アルミナ材を用いた場合の約70
%という低い鉄損値(0.07W/kg)を示した。
The iron loss value at a frequency of 50 Hz and a magnetic flux density of 1.3 T was measured for each of the annealed samples. The annealing temperature at the time of producing the sample showing the lowest iron loss value in each composition was taken as the optimum annealing temperature in that composition. FIG. 1 shows the relationship between the iron loss value and the content of the constituent elements at the optimum annealing temperature of each composition. According to this, the content of Zr is 4
It can be seen that the lowest iron loss value is obtained at ~ 6 atom%. As for the B content and the Cu content, as shown in FIGS. 2 and 3, respectively, it was found that the optimum values were 7 to 9 atom% and 0.5 to 2 atom%, respectively. Also, when Agnesia material is used for the molten metal holding container, it is about 70
It showed a low iron loss value (0.07 W / kg).

【0021】図4に示差熱分析における結晶化による発
熱の様子を示し、図5には焼鈍温度と鉄損値との関係を
示す。図4において、示差熱分析における複数の発熱ピ
ークのうち、最も低温側のピークはα−Feの結晶化温度
X1に対応し、それより高温側のピークは、Fe基化合物
の結晶化温度TX2に対応する。図5から明らかなよう
に、焼鈍温度を、α−Feの結晶化温度TX1よりやや高め
で、Fe基化合物の結晶化温度TX2より明らかに低い温度
に設定することにより、最も低い鉄損値を示す。なお図
5に示した成分組成において、TX1:480 ℃であり、ま
たTX2:570 ℃であった。
FIG. 4 shows the state of heat generation due to crystallization in the differential thermal analysis, and FIG. 5 shows the relationship between the annealing temperature and the iron loss value. In FIG. 4, among the plurality of exothermic peaks in the differential thermal analysis, the lowest temperature peak corresponds to the crystallization temperature T X1 of α-Fe, and the higher temperature peak is the crystallization temperature T of the Fe-based compound. Corresponds to X2 . As is clear from FIG. 5, by setting the annealing temperature to a temperature slightly higher than the crystallization temperature T X1 of α-Fe and obviously lower than the crystallization temperature T X2 of the Fe-based compound, the lowest iron loss can be obtained. Indicates a value. In addition, in the component composition shown in FIG. 5, it was T X1 : 480 ° C. and T X2 : 570 ° C.

【0022】最も低い鉄損値が得られた組成、焼鈍温度
による試料の、周波数:50Hz、磁束密度:1.3 Tにおけ
る鉄損値は、0.07W/kgとなった。この値は、代表的なア
モルファス合金の鉄損値の約70%という優れた値であ
る。
The iron loss value at a frequency of 50 Hz and a magnetic flux density of 1.3 T of the sample having the lowest iron loss value and the annealing temperature was 0.07 W / kg. This value is an excellent value of about 70% of the iron loss value of a typical amorphous alloy.

【0023】[0023]

【発明の効果】この発明の合金は、比較的飽和磁束密度
が高く、低磁歪で経時変化も小さく、低周波領域でアモ
ルファス合金よりも明らかに低鉄損であり、低周波用ト
ランス材として優れている。
The alloy of the present invention has a relatively high saturation magnetic flux density, a low magnetostriction and a small change over time, and has a significantly lower iron loss than the amorphous alloy in the low frequency region, and is excellent as a low frequency transformer material. ing.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、鉄損値に及ぼすZr量の影響を示すグラ
フである。
FIG. 1 is a graph showing the effect of Zr amount on iron loss value.

【図2】図2は、鉄損値に及ぼすB量の影響を示すグラ
フである。
FIG. 2 is a graph showing the effect of the amount of B on the iron loss value.

【図3】図3は、鉄損値に及ぼすCu量の影響を示すグラ
フである。
FIG. 3 is a graph showing the effect of Cu amount on the iron loss value.

【図4】図4は、アモルファス合金の示差熱分析による
結晶化を示すグラフである。
FIG. 4 is a graph showing crystallization of an amorphous alloy by differential thermal analysis.

【図5】図5は、鉄損値に及ぼす結晶化温度の影響を示
すグラフである。
FIG. 5 is a graph showing the influence of the crystallization temperature on the iron loss value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 45/02 A H01F 1/153 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 45/02 A H01F 1/153

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 化学式:Fe100-a-b-c Zr a bCu cで表
され、かつこのa,b及びcが a:2〜6原子%、 b:4〜16原子%及び c:0.1 〜3原子% を満足する組成になるトランス鉄心用超微細結晶合金。
1. A chemical formula: Fe 100-abc Zr a B b Cu c , wherein a, b and c are a: 2 to 6 atom%, b: 4 to 16 atom% and c: 0.1 to 3 Ultra-fine crystal alloy for transformer iron core with composition satisfying atomic%.
【請求項2】 商用周波数50Hzにて磁束密度1.3 Tにお
ける鉄損値が0.1 W/kg以下である請求項1記載のトラン
ス鉄心用超微細結晶合金。
2. The ultrafine crystal alloy for a transformer iron core according to claim 1, which has an iron loss value of 0.1 W / kg or less at a commercial frequency of 50 Hz and a magnetic flux density of 1.3 T.
【請求項3】 化学式:Fe100-a-b-c Zr a bCu c で表され、かつこのa,b及びcが a:2〜6原子%、 b:4〜16原子%及び c:0.1 〜3原子% を満足する組成に調製した溶融金属を、急冷凝固させて
アモルファス合金薄帯を作製し、次いでこのアモルファ
ス合金薄帯を焼鈍することにより微細結晶粒を析出させ
ることを特徴とするトランス鉄心用超微細結晶合金の製
造方法。
3. A chemical formula: Fe 100-abc Zr a B b Cu c , wherein a, b and c are a: 2 to 6 atom%, b: 4 to 16 atom% and c: 0.1 to 3 Molten metal prepared to have a composition satisfying atomic% is rapidly solidified to produce an amorphous alloy ribbon, and then this amorphous alloy ribbon is annealed to precipitate fine crystal grains. Manufacturing method of ultrafine crystal alloy.
【請求項4】 溶融金属の調製時に使用する溶融金属の
保持容器は、1200℃以上における酸素との親和力がZrと
酸素との親和力以上の元素の酸化物系耐火物または複合
酸化物からなる請求項3記載のトランス鉄心用超微細結
晶合金の製造方法。
4. The molten metal holding container used when preparing the molten metal is made of an oxide refractory or a complex oxide of an element having an affinity for oxygen at 1200 ° C. or higher that is equal to or higher than the affinity for Zr and oxygen. Item 4. A method for producing an ultrafine crystal alloy for a transformer core according to Item 3.
【請求項5】 焼鈍温度がα−Feの結晶粒のみを析出さ
せる温度である請求項3記載のトランス鉄心用超微細結
晶合金の製造方法。
5. The method for producing an ultrafine crystal alloy for a transformer iron core according to claim 3, wherein the annealing temperature is a temperature at which only α-Fe crystal grains are precipitated.
【請求項6】 溶融金属の調製工程、アモルファス合金
薄帯の作製工程及びアモルファス合金薄帯の焼鈍工程
を、真空又は不活性ガス雰囲気にて行う請求項3又は4
記載のトランス鉄心用超微細結晶合金の製造方法。
6. The method of claim 3, wherein the step of preparing the molten metal, the step of preparing the amorphous alloy ribbon and the step of annealing the amorphous alloy ribbon are performed in a vacuum or an inert gas atmosphere.
A method for producing an ultrafine crystal alloy for a transformer iron core according to the description.
JP4088863A 1992-04-09 1992-04-09 Superfine crystal alloy for transformer iron core and its production Pending JPH05287462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4088863A JPH05287462A (en) 1992-04-09 1992-04-09 Superfine crystal alloy for transformer iron core and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4088863A JPH05287462A (en) 1992-04-09 1992-04-09 Superfine crystal alloy for transformer iron core and its production

Publications (1)

Publication Number Publication Date
JPH05287462A true JPH05287462A (en) 1993-11-02

Family

ID=13954844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4088863A Pending JPH05287462A (en) 1992-04-09 1992-04-09 Superfine crystal alloy for transformer iron core and its production

Country Status (1)

Country Link
JP (1) JPH05287462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244603A1 (en) * 2009-03-31 2010-09-30 General Electric Company Electric machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100244603A1 (en) * 2009-03-31 2010-09-30 General Electric Company Electric machine

Similar Documents

Publication Publication Date Title
US4306908A (en) Ferromagnetic amorphous alloy
JP7387008B2 (en) Iron-based amorphous alloy containing sub-nanoscale ordered clusters, method for preparing the same, and nanocrystalline alloy derivatives using the same
CN109930080B (en) Copper-free nanocrystalline magnetically soft alloy and preparation method thereof
JPH06322472A (en) Production of fe base soft magnetic alloy
JP3342767B2 (en) Fe-based soft magnetic alloy
JP2011195936A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE SAME, AND MAGNETIC PART
JP2550449B2 (en) Amorphous alloy ribbon for transformer core with high magnetic flux density
JPS625972B2 (en)
JP2010150602A (en) Fe-BASED SOFT MAGNETIC THIN STRIP AND HIGH-FREQUENCY MAGNETIC CORE USING THE SAME
JP2006291234A (en) Microcrystalline alloy ribbon
JPS6212296B2 (en)
JPH05287462A (en) Superfine crystal alloy for transformer iron core and its production
JPH0917623A (en) Nano crystal alloy magnetic core and its manufacture
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JPH07145455A (en) Ferrous soft magnetic alloy
CN113278897B (en) Iron-based nanocrystalline magnetically soft alloy and preparation method thereof
JP2812569B2 (en) Low frequency transformer
JPS58150119A (en) Alloy having high magnetic permeability for magnetic recording and reproducing head and its production, and magnetic recording and reproducing head
JPH04229604A (en) Low-frequency transformer
JPS6218619B2 (en)
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH04272159A (en) Ferrous magnetic alloy
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method