JPH0528453A - Perpendicular magnetic recording medium - Google Patents

Perpendicular magnetic recording medium

Info

Publication number
JPH0528453A
JPH0528453A JP3175497A JP17549791A JPH0528453A JP H0528453 A JPH0528453 A JP H0528453A JP 3175497 A JP3175497 A JP 3175497A JP 17549791 A JP17549791 A JP 17549791A JP H0528453 A JPH0528453 A JP H0528453A
Authority
JP
Japan
Prior art keywords
layer
magnetic recording
magnetic
perpendicular magnetic
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3175497A
Other languages
Japanese (ja)
Inventor
Katsumi Kiuchi
克己 木内
Hiroaki Wakamatsu
弘晃 若松
Fumitake Suzuki
文武 鈴木
Katsutake Kaizu
功剛 貝津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3175497A priority Critical patent/JPH0528453A/en
Publication of JPH0528453A publication Critical patent/JPH0528453A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the magnetic recording medium having high output and high resolving power by specifying the film thickness of a nonmagnetic intermediate layer and the film thickness of a perpendicular magnetic recording layer to prescribed ranges. CONSTITUTION:This recording medium is constituted by successively laminating the nonmagnetic intermediate layer 3 and the perpendicular magnetic recording layer 4 via a high permeability magnetic layer 2 on a nonmagnetic substrate 1. The film thickness of this nonmagnetic intermediate layer 3 is specified to 10 to 200Angstrom and the film thickness of the perpendicular magnetic recording layer 4 to 0.05 to 0.15mum. The extremely thin nonmagnetic intermediate film 3 and the perpendicular magnetic recording film 4 which is not degraded in coercive force (Hcrt. angle) in the initial layer and has the prescribed film thickness are constituted on the nonmagnetic substrate 1 in such a manner, by which the high-density characteristics of the high output and high dissolving power are obtd. The size of the magnetic disk device is, therefore, reduced and the larger capacity thereof is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコンピュータの外部記憶
媒体として用いられている磁気ディスク装置又は磁気テ
ープ装置等に搭載される磁気記録媒体に関し、特に記憶
再生特性に優れた垂直磁気記録媒体の構造に関する。水
平磁気記録とは磁気媒体の膜面方向に残留磁気を形成す
るものであるが、近年、磁気ディスク装置又は磁気テー
プ装置の小型化或いは高密度化に伴い、従来の水平磁気
記録を上回る高密度記録方式として、媒体膜の厚さ方向
に残留磁気を形成し、信号記録を行う垂直磁気記録方式
が注目され、各社で研究・開発が進められている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium mounted on a magnetic disk device or a magnetic tape device used as an external storage medium of a computer, and more particularly to a structure of a perpendicular magnetic recording medium excellent in storage and reproduction characteristics. Regarding Horizontal magnetic recording is a method of forming remanence in the film surface direction of a magnetic medium. In recent years, with the miniaturization or higher density of magnetic disk devices or magnetic tape devices, higher density than conventional horizontal magnetic recording has been achieved. As a recording method, a perpendicular magnetic recording method in which a residual magnetism is formed in the thickness direction of a medium film to perform signal recording is drawing attention, and research and development are being promoted by each company.

【0002】[0002]

【従来の技術】この垂直磁気記録方式を実現する媒体と
しては、従来、非磁性基板上にパーマロイ等の高誘電率
層を介してコバルト・クロム合金(CoCr)等の垂直
磁気記録層を形成した二層膜構造の垂直磁気記録媒体
(図8)が知られている。図8において、11は非磁性
基板、12は高透磁率層、14は垂直記録層である。
2. Description of the Related Art Conventionally, as a medium for realizing this perpendicular magnetic recording system, a perpendicular magnetic recording layer of cobalt-chromium alloy (CoCr) or the like is formed on a non-magnetic substrate via a high dielectric constant layer of permalloy or the like. A perpendicular magnetic recording medium having a double-layer film structure (FIG. 8) is known. In FIG. 8, 11 is a non-magnetic substrate, 12 is a high magnetic permeability layer, and 14 is a perpendicular recording layer.

【0003】しかし、この種の従来の垂直磁気記録媒体
においては、高透磁率層12が垂直磁気記録層14の垂
直磁気異方性を劣化させるという問題を生じることか
ら、例えば、特開昭58−14318号公報や特開昭6
1−233413号公報では記録層14と高透磁率層1
2の間に非磁性中間層13を設け、垂直配向性を改善す
る提案がなされている(図9)。
However, in the conventional perpendicular magnetic recording medium of this kind, the high magnetic permeability layer 12 causes a problem that the perpendicular magnetic anisotropy of the perpendicular magnetic recording layer 14 is deteriorated, and therefore, for example, Japanese Patent Laid-Open No. 58-58. -14318 and JP-A-6
In JP-A-12333413, the recording layer 14 and the high magnetic permeability layer 1 are disclosed.
It has been proposed that a non-magnetic intermediate layer 13 be provided between the two to improve the vertical orientation (FIG. 9).

【0004】[0004]

【発明が解決しようとする課題】この発明の発明者ら
は、上記の特開昭58−14318号公報や特開昭61
−233413号公報に記載されている発明に基づい
て、非磁性中間層を有する媒体と、比較のために非磁性
中間層の無い媒体とを作成した。ここで、媒体構成は、
記録層(CoCr)の厚さを0.3μmとし、高透磁率
層(NiFe)の厚さを2μmとし、そして中間層の非
磁性材としてはチタニウム(Ti)を選び、膜厚を50
0Åとした。
DISCLOSURE OF THE INVENTION The inventors of the present invention have found that the above-mentioned JP-A-58-14318 and JP-A-61
Based on the invention described in Japanese Patent No. 233413, a medium having a nonmagnetic intermediate layer and a medium having no nonmagnetic intermediate layer were prepared for comparison. Here, the medium structure is
The recording layer (CoCr) has a thickness of 0.3 μm, the high-permeability layer (NiFe) has a thickness of 2 μm, and titanium (Ti) is selected as the non-magnetic material for the intermediate layer.
It was 0Å.

【0005】非磁性中間層等の挿入によって、確かに記
録層(CoCr)の初期層から垂直配向性の改善が見ら
れると共に明瞭な柱状構造の形成を促進し、均一な磁気
特性を提供した。図6は非磁性中間層(Ti)の有る媒
体と無い媒体で、記録層(CoCr)の膜厚方向の保磁
力(Hc⊥)を比較したものである。ここで、垂直記録
において、保磁力(Hc⊥)は再生出力に強く依存する
重要な媒体定数である。中間層(Ti)の無い媒体では
高透磁率層(NiFe)の界面に向かって保磁力(Hc
⊥)が急激に低下してしまうのに対し、中間層(Ti)
を挿入した媒体では初期形成層から保磁力(Hc⊥)が
均一な膜を形成している。
By inserting a non-magnetic intermediate layer or the like, the vertical orientation was certainly improved from the initial layer of the recording layer (CoCr) and the formation of a clear columnar structure was promoted to provide uniform magnetic characteristics. FIG. 6 compares the coercive force (Hc⊥) in the film thickness direction of the recording layer (CoCr) with and without the non-magnetic intermediate layer (Ti). Here, in perpendicular recording, the coercive force (Hc⊥) is an important medium constant that strongly depends on the reproduction output. In the medium without the intermediate layer (Ti), the coercive force (Hc) is increased toward the interface of the high magnetic permeability layer (NiFe).
⊥) drops sharply, while the intermediate layer (Ti)
In the medium in which is inserted, a film having a uniform coercive force (Hc⊥) is formed from the initial formation layer.

【0006】図7は単磁極型ヘッドを用いて記録再生を
行った両媒体の記録密度特性を比較したものである。図
から明らかなように、中間層(Ti)の有無によらず再
生出力は同等である一方、分割能(D50)は中間層(T
i)を挿入することによりむしろ低下する結果となっ
た。発明者らが鋭意検討した結果、二層膜構造の垂直磁
気記録媒体を単磁極型ヘッドを用いて記録再生を行う方
式では、ヘッド主磁極と近接する垂直記録膜の表層側が
主に再生出力に寄与することが判明した。したがって、
非磁性層を挿入した媒体の初期形成層の改善による出力
向上効果は所定の垂直記録膜厚の範囲でのみ有効とな
る。また、非磁性中間層が存在することにより、実質的
にはヘッド・媒体間の間隔を増加する結果となることか
ら、高分解能特性を維持するためには非磁性中間層をで
きるだけ薄層化することが必要である。
FIG. 7 compares the recording density characteristics of both media on which recording and reproduction were performed using a single magnetic pole type head. As is clear from the figure, the reproduction output is the same regardless of the presence or absence of the intermediate layer (Ti), while the dividing ability (D 50 ) is
Insertion of i) resulted in rather lower results. As a result of earnest studies by the inventors, in the method of recording / reproducing a perpendicular magnetic recording medium having a double-layered film structure using a single-pole type head, the surface layer side of the perpendicular recording film, which is close to the head main pole, mainly produces a reproduction output. It turned out to contribute. Therefore,
The effect of improving the output by improving the initial formation layer of the medium in which the non-magnetic layer is inserted is effective only within a predetermined perpendicular recording film thickness range. Further, the presence of the non-magnetic intermediate layer substantially increases the distance between the head and the medium. Therefore, in order to maintain high resolution characteristics, the non-magnetic intermediate layer should be as thin as possible. It is necessary.

【0007】本発明は上記観点に立って、垂直記録層及
び非磁性中間層に対し、各々の最適な膜厚を規定するこ
とにより、従来に比べ、優れた高密度特性を有する垂直
磁気記録媒体を提供することを目的とする。
In view of the above, the present invention defines the optimum film thicknesses for the perpendicular recording layer and the non-magnetic intermediate layer, thereby providing a perpendicular magnetic recording medium having excellent high density characteristics as compared with the conventional one. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るために、本発明によれば、非磁性基板上に高透磁率磁
性層を介して非磁性中間層及び垂直磁気記録層を順次積
層した垂直磁気記録媒体において、前記非磁性中間層の
膜厚を10〜200Åの範囲、前記垂直磁気記録層の膜
厚を0.05〜0.15μmの範囲に規定したことを特
徴とする垂直磁気記録媒体が提供される。
In order to solve such a problem, according to the present invention, a nonmagnetic intermediate layer and a perpendicular magnetic recording layer are sequentially laminated on a nonmagnetic substrate with a high magnetic permeability magnetic layer interposed therebetween. In the perpendicular magnetic recording medium described above, the thickness of the non-magnetic intermediate layer is defined in the range of 10 to 200Å and the thickness of the perpendicular magnetic recording layer is defined in the range of 0.05 to 0.15 μm. A recording medium is provided.

【0009】[0009]

【作用】本発明の垂直磁気記録媒体では非磁性基板上に
高透磁率膜を介して、極めて薄い非磁性中間膜と、初期
層における保磁力(Hc⊥)の低下が無く、所定の膜厚
を有する垂直記録膜とから構成されるため、その結果、
高出力・高分割能の高密度特性を得ることが可能とな
る。
In the perpendicular magnetic recording medium of the present invention, a very thin non-magnetic intermediate film and a coercive force (Hc⊥) in the initial layer are not lowered through a high-permeability film on a non-magnetic substrate, and a predetermined film thickness is obtained. And a vertical recording film having
It is possible to obtain high-density characteristics with high output and high resolution.

【0010】[0010]

【実施例】以下、本発明を実施例によって詳細に説明す
る。図1は本発明の実施例に係る二重膜構造の垂直磁気
記録媒体を示す。ガラス基板等の非磁性基板1上に、1
μm厚のパーマロイ高透磁率層(μ〜2000)2を介
して、チタニウム(Ti)から成る非磁性中間層3とし
て200Å厚の範囲、コバルト・クロム合金(CoC
r)から成る記録層を0.05〜0.15μm厚の範囲
に順次積層した構造とする。この場合に、媒体の各層の
成膜にはスパッタリング法を用いた。勿論、蒸着法等の
他の薄膜形成法を用いても良い。
EXAMPLES The present invention will be described in detail below with reference to examples. FIG. 1 shows a perpendicular magnetic recording medium having a double film structure according to an embodiment of the present invention. 1 on a non-magnetic substrate 1 such as a glass substrate
A non-magnetic intermediate layer 3 made of titanium (Ti) having a thickness of 200Å through a permalloy high magnetic permeability layer (μ to 2000) 2 having a thickness of μm, a cobalt-chromium alloy (CoC).
The recording layer consisting of r) is sequentially laminated in the thickness range of 0.05 to 0.15 μm. In this case, the sputtering method was used for forming each layer of the medium. Of course, another thin film forming method such as a vapor deposition method may be used.

【0011】以下に本発明の根拠となる実験例について
説明する。 実験例1 図2は非磁性中間層(Ti)の有無による媒体の孤立波
出力比と記録層(CoCr)の厚さとの関係を示したも
のである。この時、高透磁率層として1μm厚のパーマ
ロイ膜(μ〜2000)、非磁性中間層としては200
Å厚のTi膜を用い、記録再生には単磁極ヘッドを使用
した。図2より、記録層(CoCr)の膜厚が0.15
μm以上の厚い領域ではTi層を挿入しても何ら効果が
ないことが明らかである。
Experimental examples which form the basis of the present invention will be described below. Experimental Example 1 FIG. 2 shows the relationship between the solitary wave output ratio of the medium and the thickness of the recording layer (CoCr) depending on the presence or absence of the non-magnetic intermediate layer (Ti). At this time, a 1 μm thick permalloy film (μ to 2000) as the high magnetic permeability layer and 200 as the non-magnetic intermediate layer.
A Å thick Ti film was used, and a single pole head was used for recording and reproduction. From FIG. 2, the recording layer (CoCr) has a film thickness of 0.15.
It is clear that the insertion of the Ti layer has no effect in the thick region of μm or more.

【0012】また、図3は非磁性中間層(Ti)の有り
の媒体の孤立波出力と記録層(CoCr)の膜厚との関
係を示したものである。再生出力は0.05μm以下で
急激に低下し、0.15μm以上で漸増の状態となる。
以上の結果と高分解能を得るには記録層(CoCr)を
できる限り薄くすることが望ましいことから、高密度化
に好適な記録層(CoCr)層の膜厚は0.05μm〜
0.15μmの範囲と限定できる。
FIG. 3 shows the relationship between the solitary wave output of a medium having a non-magnetic intermediate layer (Ti) and the film thickness of the recording layer (CoCr). The reproduction output sharply drops below 0.05 μm and gradually increases above 0.15 μm.
Since it is desirable to make the recording layer (CoCr) as thin as possible in order to obtain the above results and high resolution, the film thickness of the recording layer (CoCr) layer suitable for high density is 0.05 μm to
The range can be limited to 0.15 μm.

【0013】実験例2 図4は孤立波出力と非磁性中間層(Ti)の膜厚との関
係を示す。この場合、高透磁率層は1μm厚のパーマロ
イ膜(μ〜2000)、記録層は0.1μm厚のCoC
r膜である。図4より、非磁性中間層(Ti)の膜厚は
わずか10Åの厚さにおいても出力向上に寄与できるこ
とが明らかである。
Experimental Example 2 FIG. 4 shows the relationship between the solitary wave output and the film thickness of the nonmagnetic intermediate layer (Ti). In this case, the high magnetic permeability layer is a 1 μm thick permalloy film (μ to 2000) and the recording layer is a 0.1 μm thick CoC film.
r film. From FIG. 4, it is clear that even if the thickness of the non-magnetic intermediate layer (Ti) is only 10 Å, it can contribute to the output improvement.

【0014】また、図5は分解能(D50)と非磁性中間
層(Ti)の膜厚との関係を示したものである。なお縦
軸はTi厚0μm、即ちTi層など媒体のD50で規格化
してある。非磁性中間層(Ti)の膜厚の増加に伴い実
効間隔が増加し、分解能が低下する。即ち、非磁性中間
層(Ti)が200Åの厚さ以上では20%以上の分割
能の低下を引き起こしてしまう。
Further, FIG. 5 shows the relationship between the resolution (D 50 ) and the film thickness of the nonmagnetic intermediate layer (Ti). The vertical axis is standardized by the Ti thickness of 0 μm, that is, D 50 of the medium such as the Ti layer. As the thickness of the non-magnetic intermediate layer (Ti) increases, the effective spacing increases and the resolution decreases. That is, when the thickness of the non-magnetic intermediate layer (Ti) is 200 Å or more, the division ability is reduced by 20% or more.

【0015】したがって、高密度化に好適な非磁性中間
層(Ti)の膜厚は10〜200Åと限定できる。以上
実験結果に基づいて説明したように、垂直磁気記録媒体
の高密度化に好適な媒体構成は非磁性層の膜厚を10〜
200Åの範囲、垂直磁気記録層の膜厚を0.05μm
〜0.15μmの範囲とすればよいことは明らかであ
る。
Therefore, the film thickness of the non-magnetic intermediate layer (Ti) suitable for increasing the density can be limited to 10 to 200Å. As described above based on the experimental results, the medium structure suitable for increasing the density of the perpendicular magnetic recording medium has a nonmagnetic layer thickness of 10 to 10
Range of 200Å, thickness of perpendicular magnetic recording layer is 0.05μm
It is obvious that the range is 0.15 μm.

【0016】なお、本実施例では非磁性中間層として六
方最密格子構造のチタニウム(Ti)を用いたが、その
他のタングステン(W)、マグネシウム(Mg)等の金
属、さらに、酸化珪素(SiO2 )、酸化チタニウム
(TiO2 )等の非晶質材でも同様の効果が得られる。
Although titanium (Ti) having a hexagonal close-packed lattice structure is used as the non-magnetic intermediate layer in this embodiment, other metals such as tungsten (W) and magnesium (Mg), and silicon oxide (SiO 2). 2 ), an amorphous material such as titanium oxide (TiO 2 ) can achieve the same effect.

【0017】[0017]

【発明の効果】以上に説明したように、本発明によれ
ば、高出力・高分解能の特性を有する垂直磁気記録媒体
が実現できるため、磁気ディスク装置の小型化・大容量
化に寄与するところが非常に大きい。
As described above, according to the present invention, a perpendicular magnetic recording medium having high output and high resolution characteristics can be realized, which contributes to miniaturization and large capacity of a magnetic disk device. Very big.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の垂直磁気記録媒体の断面構造を示す模
式図である。
FIG. 1 is a schematic diagram showing a cross-sectional structure of a perpendicular magnetic recording medium of the present invention.

【図2】非磁性中間層(Ti)を挿入した場合の出力向
上の効果を示す図である。
FIG. 2 is a diagram showing an effect of improving output when a non-magnetic intermediate layer (Ti) is inserted.

【図3】非磁性中間層(Ti)を挿入した場合の媒体の
記録層(CoCr)の膜厚と孤立波出力との関係を示す
図である。
FIG. 3 is a diagram showing the relationship between the thickness of the recording layer (CoCr) of the medium and the solitary wave output when a nonmagnetic intermediate layer (Ti) is inserted.

【図4】孤立波出力と非磁性中間層(Ti)の膜厚との
関係を示す図である。
FIG. 4 is a diagram showing a relationship between a solitary wave output and a film thickness of a nonmagnetic intermediate layer (Ti).

【図5】分割能と非磁性中間層(Ti)の膜厚との関係
を示す図である。
FIG. 5 is a diagram showing the relationship between the dividing power and the film thickness of a non-magnetic intermediate layer (Ti).

【図6】記録層(CoCr)層の膜厚方向の保磁力分布
を示す図である。
FIG. 6 is a diagram showing a coercive force distribution in a film thickness direction of a recording layer (CoCr) layer.

【図7】非磁性中間層(Ti)の有無による記録密度特
性の比較を示す図である。
FIG. 7 is a diagram showing a comparison of recording density characteristics with and without a non-magnetic intermediate layer (Ti).

【図8】従来の垂直磁気記録媒体の断面構造を示す模式
図(従来例1)である。
FIG. 8 is a schematic diagram (Conventional example 1) showing a cross-sectional structure of a conventional perpendicular magnetic recording medium.

【図9】非磁性中間層を挿入した垂直磁気記録媒体の断
面構造を示す模式図(従来例2)である。
FIG. 9 is a schematic diagram (prior art example 2) showing a cross-sectional structure of a perpendicular magnetic recording medium having a non-magnetic intermediate layer inserted therein.

【符号の説明】[Explanation of symbols]

1…ガラス基板 2…NiFe高透磁率層(1μm) 3…Ti非磁性中間層(10〜200Å) 4…CoCr垂直記録層(0.05〜0.15μm) 1 ... Glass substrate 2 ... NiFe high magnetic permeability layer (1 μm) 3 ... Ti non-magnetic intermediate layer (10 to 200Å) 4 ... CoCr perpendicular recording layer (0.05 to 0.15 μm)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 貝津 功剛 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor K. Tsuyoshi             1015 Kamiodanaka, Nakahara-ku, Kawasaki City, Kanagawa Prefecture             Within Fujitsu Limited

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基板(1)上に高透磁率磁性層
(2)を介して非磁性中間層(3)及び垂直磁気記録層
(4)を順次積層した垂直磁気記録媒体において、前記
非磁性中間層(3)の膜厚を10〜200Åの範囲、前
記垂直磁気記録層(4)の膜厚を0.05〜0.15μ
mの範囲に規定したことを特徴とする垂直磁気記録媒
体。
1. A perpendicular magnetic recording medium in which a non-magnetic intermediate layer (3) and a perpendicular magnetic recording layer (4) are sequentially laminated on a non-magnetic substrate (1) with a high-permeability magnetic layer (2) interposed therebetween. The thickness of the non-magnetic intermediate layer (3) is in the range of 10 to 200Å, and the thickness of the perpendicular magnetic recording layer (4) is 0.05 to 0.15 μ.
A perpendicular magnetic recording medium characterized by being defined in the range of m.
【請求項2】 前記非磁性中間層(3)として六方最密
格子構造の金属薄膜を用いることを特徴とする請求項1
に記載の垂直磁気記録媒体。
2. The metal thin film having a hexagonal close-packed lattice structure is used as the non-magnetic intermediate layer (3).
The perpendicular magnetic recording medium according to 1.
【請求項3】 前記非磁性中間層(3)として非晶質薄
膜を用いることを特徴とする請求項1に記載の垂直磁気
記録媒体。
3. The perpendicular magnetic recording medium according to claim 1, wherein an amorphous thin film is used as the non-magnetic intermediate layer (3).
【請求項4】 前記非磁性中間層(3)をチタニウム
(Ti)で形成し、前記垂直磁気記録層(4)をコバル
ト・クロム合金(CoCr)で形成したことを特徴とす
る請求項1に記載の垂直磁気記録媒体。
4. The non-magnetic intermediate layer (3) is made of titanium (Ti), and the perpendicular magnetic recording layer (4) is made of cobalt-chromium alloy (CoCr). The perpendicular magnetic recording medium described.
JP3175497A 1991-07-16 1991-07-16 Perpendicular magnetic recording medium Withdrawn JPH0528453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3175497A JPH0528453A (en) 1991-07-16 1991-07-16 Perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3175497A JPH0528453A (en) 1991-07-16 1991-07-16 Perpendicular magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0528453A true JPH0528453A (en) 1993-02-05

Family

ID=15997078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3175497A Withdrawn JPH0528453A (en) 1991-07-16 1991-07-16 Perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0528453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074638A (en) * 2000-08-24 2002-03-15 Fujitsu Ltd Magnetic information recording medium
WO2004075178A1 (en) * 2003-02-20 2004-09-02 Fujitsu Limited Vertical magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002074638A (en) * 2000-08-24 2002-03-15 Fujitsu Ltd Magnetic information recording medium
WO2004075178A1 (en) * 2003-02-20 2004-09-02 Fujitsu Limited Vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
JP5117895B2 (en) Magnetic recording medium and method for manufacturing the same
US8367228B2 (en) Magnetic recording medium having patterned auxiliary recording layer and method for manufacturing such magnetic recording medium
JPWO2007116813A1 (en) Method for manufacturing perpendicular magnetic recording disk and perpendicular magnetic recording disk
JP2008084433A (en) Manufacturing method of magnetic recording medium
US20030030947A1 (en) Magnetic sensing element having hard bias layer formed on bias underlayer and process for manufacturing the same
JP2002230733A (en) Perpendicular magnetic recording disk
CN104240730B (en) Perpendicular magnetic recording medium and magnetic storage apparatus
JPH0528453A (en) Perpendicular magnetic recording medium
JP2780588B2 (en) Stacked magnetic head core
KR100464318B1 (en) Magnetic recording media
JPH07134820A (en) Magnetic recording medium and magnetic recorder using the medium
JPH07135111A (en) Multilayered magnetic film
US7125615B2 (en) Magnetic recording medium and magnetic recording device
JPS63317922A (en) Perpendicular magnetic recording medium
JP3222141B2 (en) Magnetic recording medium and magnetic storage device
JP2007102833A (en) Perpendicular magnetic recording medium
JPH1074314A (en) Magnetic recording medium and magnetic recording device
JPH09293207A (en) Magnetic head
JP4667720B2 (en) Magnetic recording medium and method for manufacturing the same
JPH10154619A (en) Hard magnetic film structure and magneto-resistance effect element, magnetic head, magnetic recording/ reproducing head, magnetic recording medium, and magnetic recording device
JP2004227667A (en) Method for manufacturing magnetic recording medium
JPH0778316A (en) Magneto-resistance effect element
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
KR100259386B1 (en) Thin film magnetic head
JPH07262546A (en) Magnetic recording medium and magnetic recording and reproducing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008