JPH05284056A - Fm demodulator - Google Patents

Fm demodulator

Info

Publication number
JPH05284056A
JPH05284056A JP4141228A JP14122892A JPH05284056A JP H05284056 A JPH05284056 A JP H05284056A JP 4141228 A JP4141228 A JP 4141228A JP 14122892 A JP14122892 A JP 14122892A JP H05284056 A JPH05284056 A JP H05284056A
Authority
JP
Japan
Prior art keywords
intermediate frequency
temperature coefficient
frequency amplifier
circuit
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4141228A
Other languages
Japanese (ja)
Other versions
JP2842050B2 (en
Inventor
Ryoichi Yokoyama
良一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPH05284056A publication Critical patent/JPH05284056A/en
Application granted granted Critical
Publication of JP2842050B2 publication Critical patent/JP2842050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

PURPOSE:To compensate the temperature characteristic of an entire gain and to enlarge the degree of freedom for designing a high frequency amplifier circuit, coil and transformer or the like by setting the temperature coefficient of the gain of a preintermediate frequency (IF) amplifier corresponding to the temperature coefficients of the gains of the high frequency amplifier in the preceding stage and a frequency mixer according to the resistance value of an external resistor. CONSTITUTION:IF signals are inputted from an input terminal 21 to an IF amplifier 6 provided with six operational pairs composed of transistors Q1-Q12 and two emitter followers composed of transistors Q22 and Q23 and after performing voltage amplification and amplitude limiting, audio signals are demodulated by an FM demodulation circuit 7 and outputted to a demodulated output terminal 25. Since the collector currents of the transistors Q13-Q18 are controlled corresponding to the temperature, the temperature coefficient of the voltage gain of the IF amplifier 6 is decided. This is performed by controlling the potentials of the common base lines of the transistors Q13-Q18 while using a temperature coefficient control circuit 16 and an external resistor REXT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特にFMラジオ用集積
回路に用いられるFM復調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an FM demodulator used in an FM radio integrated circuit.

【0002】[0002]

【従来の技術】FMラジオ受信機を構成する場合、図5
に示すように、周波数混合器(MI)2、局部発振器
(LO)3、および前置FM増幅器(PIA)4を含む
フロントエンド部集積回路14と、中間周波増幅器(I
A)6、FM復調器(FD)7、およびマルチプレクス
復調器(MD)8を含むFM復調用集積回路15との二
つの集積回路で構成されるのが一般的である。この図に
おいて、1は高周波増幅器(HA)、5はバンドパスフ
ィルタ(BF)、9および10は電力増幅器(PA)、
11および12はスピーカ、13はアンテナである。
2. Description of the Related Art In the case of constructing an FM radio receiver, FIG.
, A front-end integrated circuit 14 including a frequency mixer (MI) 2, a local oscillator (LO) 3, and a pre-FM amplifier (PIA) 4, and an intermediate frequency amplifier (I
It is generally composed of two integrated circuits of A) 6, an FM demodulator (FD) 7, and an FM demodulation integrated circuit 15 including a multiplex demodulator (MD) 8. In this figure, 1 is a high frequency amplifier (HA), 5 is a band pass filter (BF), 9 and 10 are power amplifiers (PA),
Reference numerals 11 and 12 are speakers, and 13 is an antenna.

【0003】一方、FM受信機の一般的要求性能とし
て、温度変化に対して受信感度の変動が少ない。すなわ
ち、アンテナ13入力からFM復調器8までの電圧利得
の温度係数が±0であることが望まれる。
On the other hand, as a general required performance of the FM receiver, the fluctuation of the receiving sensitivity with respect to the temperature change is small. That is, it is desired that the temperature coefficient of the voltage gain from the input of the antenna 13 to the FM demodulator 8 is ± 0.

【0004】[0004]

【発明が解決しようとする課題】前述した従来のFM復
調用集積回路においては、これに含まれる中間周波増幅
器6の電圧利得の温度計数は略±0に固定されており、
このためフロントエンド部集積回路14および高周波増
幅器1の全体の電圧利得の温度係数も0に設計する必要
があり、フロントエンド部集積回路14の選択および高
周波増幅器1の設計条件が制約を受ける欠点があった。
すなわち、高周波増幅器の負荷(一般にはコイル,トラ
ンスなど)のインピーダンスおよび使用するトランジス
タのトランスコンダクタンスの温度係数を0に設計する
こと、あるいは相互の温度係数を相補関係に設計するこ
とは極めて限られた条件で可能であり、他の性能とのト
レードオフになり、困難であった。
In the above-mentioned conventional FM demodulation integrated circuit, the temperature coefficient of the voltage gain of the intermediate frequency amplifier 6 included therein is fixed at about ± 0.
Therefore, it is necessary to design the temperature coefficient of the entire voltage gain of the front-end integrated circuit 14 and the high-frequency amplifier 1 to be 0, which causes a drawback that the selection of the front-end integrated circuit 14 and the design condition of the high-frequency amplifier 1 are restricted. there were.
That is, it is extremely limited to design the impedance of the load of the high-frequency amplifier (generally a coil, a transformer, etc.) and the transconductance temperature coefficient of the transistor used to be 0, or to design the mutual temperature coefficients in a complementary relationship. It was possible under the conditions, and it was difficult because it was a trade-off with other performance.

【0005】本発明の目的は、このような欠点を除去す
ることにより、フロントエンド部集積回路の選択および
高周波増幅器の温度係数の許容範囲を拡大し、トータル
利得の温度係数を容易に所望の設定値(例えば0)に設
定できるFM復調装置を提供することにある。
The object of the present invention is to eliminate such drawbacks, thereby expanding the selection of the front end integrated circuit and the allowable range of the temperature coefficient of the high frequency amplifier, and easily setting the temperature coefficient of the total gain to a desired value. It is to provide an FM demodulation device that can be set to a value (for example, 0).

【0006】[0006]

【課題を解決するための手段】本発明の構成は、少なく
とも一つの差動対を有し入力された中間周波信号を増幅
し振幅制限を行う中間周波増幅器と、この中間周波増幅
器の出力信号から音声信号を復調するFM復調器とを備
えたFM復調装置において、前記中間周波増幅器の動作
電流を所定の基準値と比例するように制御する手段と、
前記基準値の温度係数を外付抵抗の値によって決定する
手段とを含む温度係数設定回路を備えたことを特徴とす
る。
The structure of the present invention comprises an intermediate frequency amplifier having at least one differential pair for amplifying an input intermediate frequency signal to limit the amplitude, and an output signal of the intermediate frequency amplifier. An FM demodulator including an FM demodulator for demodulating an audio signal, means for controlling an operating current of the intermediate frequency amplifier so as to be proportional to a predetermined reference value,
And a temperature coefficient setting circuit including means for determining the temperature coefficient of the reference value according to the value of the external resistance.

【0007】また、本発明において、温度係数設定回路
は、極性の相反する温度係数を有する二つの電圧源と、
この二つの電圧源用のトランジスタのベース電圧として
供給するベース電圧供給回路と、前記所定の比を外付抵
抗値により可変する比調整回路とを含むことができる。
Further, in the present invention, the temperature coefficient setting circuit includes two voltage sources having temperature coefficients having opposite polarities.
A base voltage supply circuit that supplies the base voltage of the transistors for the two voltage sources and a ratio adjustment circuit that changes the predetermined ratio by an external resistance value can be included.

【0008】[0008]

【作用】本発明における温度係数設定回路は、例えば、
極性の相反する温度係数を有する二つの電圧源の出力
を、外付抵抗値で定まる所定の比で加算し、この加算し
た基準電圧を中間周波増幅器の差動対を構成する定電流
源用のトランジスタのベース電圧として供給する。これ
により、中間周波増幅器の動作電流は与えられた基準電
圧に比例して変化する。
The temperature coefficient setting circuit in the present invention is, for example,
The outputs of two voltage sources having opposite temperature coefficients of polarities are added at a predetermined ratio determined by the external resistance value, and the added reference voltage is used for the constant current source that constitutes the differential pair of the intermediate frequency amplifier. It is supplied as the base voltage of the transistor. As a result, the operating current of the intermediate frequency amplifier changes in proportion to the given reference voltage.

【0009】前置中間周波増幅器または中間周波増幅器
の利得は動作電流に比例するので、前記所定の比を外付
抵抗値を変えて可変することにより、前置中間周波増幅
器または中間周波増幅器の利得の温度係数を調整するこ
とが可能となる。
Since the gain of the pre-intermediate frequency amplifier or the inter-frequency amplifier is proportional to the operating current, the gain of the pre-intermediate frequency amplifier or the inter-frequency amplifier is changed by changing the predetermined ratio by changing the external resistance value. It is possible to adjust the temperature coefficient of.

【0010】[0010]

【実施例】図1は本発明の一実施例を適用したFMラジ
オ受信機を示すブロック図で、図5の従来例に対応する
ものである。図2は図1の要部を示す回路図で、図1の
FM復調用集積回路15aの要部の一例を示す。
FIG. 1 is a block diagram showing an FM radio receiver to which an embodiment of the present invention is applied, which corresponds to the conventional example of FIG. FIG. 2 is a circuit diagram showing a main part of FIG. 1, and shows an example of a main part of the FM demodulation integrated circuit 15a of FIG.

【0011】図1によると、本実施例は、少なくとも一
つの差動対を有し入力された中間周波信号を増幅し振幅
制限を行う中間周波増幅器(IA)6と、中間周波増幅
器6の出力信号から音声信号を復調するFM復調器(F
D)7と、マルチプレクス復調器(MD)8とを備えた
FM復調用集積回路15aにおいて、本発明の特徴とす
る中間周波増幅器6の動作電流を所定の基準値と比例す
るように制御する手段と、その基準値の温度係数を温度
係数設定端子27に接続した外付抵抗REXT の抵抗値に
よって決定する手段とを含む温度係数設定回路(TC
C)16を備えている。
According to FIG. 1, in the present embodiment, an intermediate frequency amplifier (IA) 6 having at least one differential pair for amplifying an input intermediate frequency signal and limiting the amplitude, and an output of the intermediate frequency amplifier 6. FM demodulator (F
In the FM demodulation integrated circuit 15a including the D) 7 and the multiplex demodulator (MD) 8, the operating current of the intermediate frequency amplifier 6, which is a feature of the present invention, is controlled so as to be proportional to a predetermined reference value. Temperature coefficient setting circuit (TC) including means and means for determining the temperature coefficient of the reference value by the resistance value of the external resistor R EXT connected to the temperature coefficient setting terminal 27.
C) 16 is provided.

【0012】図2によると、中間周波増幅器6は、NP
N型のトランジスタQ1 〜Q23と抵抗R1 〜R23を含
み、温度係数設定回路16は、極性の相反する温度係数
を有する二つの電圧源を構成するトランジスタQ25〜Q
39、Q50、抵抗R25〜R35ならびにコンデンサC1 と、
この二つの電圧源の出力を所定の比で加算し中間周波増
幅器6の差動対を構成する定電流源用のトランジスタQ
13〜Q18のベース電圧として供給するベース電圧供給回
路を構成するトランジスタQ40〜Q47、Q51、Q52、Q
29、抵抗R36〜R41、R29、ならびに演算増幅器A
1 と、前記所定の比を外付抵抗REXT の抵抗値により可
変する比調整回路を構成するトランジスタQ48、Q49
らびに定電圧源(REG)17とを含んでいる。
According to FIG. 2, the intermediate frequency amplifier 6 has an NP
It includes the N-type transistors Q 1 ~Q 23 a resistor R 1 to R 23, the temperature coefficient setting circuit 16, transistor Q 25 which constitute the two voltage sources having opposite temperature coefficient polarity ~Q
39 , Q 50 , resistors R 25 to R 35, and a capacitor C 1 , and
A transistor Q for a constant current source that forms the differential pair of the intermediate frequency amplifier 6 by adding the outputs of these two voltage sources at a predetermined ratio.
13 transistors Q 40 to Q 47 constituting the base voltage supply circuit for supplying a base voltage of ~Q 18, Q 51, Q 52 , Q
29 , resistors R 36 to R 41 , R 29 , and operational amplifier A
1 and transistors Q 48 , Q 49 and a constant voltage source (REG) 17 that form a ratio adjusting circuit that varies the predetermined ratio by the resistance value of the external resistor R EXT .

【0013】なお、図2においてRINは入力抵抗、CIN
およびCNFはバイパス用のコンデンサである。
In FIG. 2, R IN is the input resistance and C IN
And C NF are capacitors for bypass.

【0014】次に、本実施例の動作について説明する。
なお説明には以下の記号を用いることにする。
Next, the operation of this embodiment will be described.
The following symbols will be used in the description.

【0015】AEn トランジスタのエミッタ接地電圧
利得(nはトランジスタの番号) GV 中間周波増幅器の差動対1段当たりの利得 GVIF 中間周波増幅器の利得 Icn コレクタ電流(nはトランジスタの番号) Rm 抵抗値(mは抵抗の番号) REXT 外付抵抗REXT の抵抗値 VBn ベース電圧(nはトランジスタの番号) VRn ベース−エミッタ間電圧(nはトランジスタの
番号) VRm 抵抗の両端間に生じる電位差(mは抵抗の番
号) T 絶対温度 k ボルツマン定数 q 電子の電荷 hFE トランジスタのエミッタ接地電流増幅率。
A En Transistor grounded voltage gain (n is transistor number) G V Intermediate frequency amplifier differential gain per stage G VIF Intermediate frequency amplifier gain I cn Collector current (n is transistor number) R m resistance value (m is resistance number) R EXT External resistance R EXT resistance value V Bn Base voltage (n is transistor number) V Rn Base-emitter voltage (n is transistor number) V Rm Resistance Potential difference between both ends (m is resistance number) T Absolute temperature k Boltzmann constant q Electron charge h FE transistor grounded emitter current amplification factor.

【0016】トランジスタQ1 〜Q12による六つの差動
対と、トランジスタQ22およびQ23からなる二つのエミ
ッタホロワを含む中間周波増幅器6に、入力端子21か
らIF信号が入力され、電圧増幅と振幅制限が行われた
後、FM復調回路7によって音声信号が復調され、復調
出力端子25に出力される。
An IF signal is input from an input terminal 21 to an intermediate frequency amplifier 6 including six differential pairs of transistors Q 1 to Q 12 and two emitter followers composed of transistors Q 22 and Q 23 , and voltage amplification and amplitude are applied. After the limitation is performed, the FM demodulation circuit 7 demodulates the audio signal and outputs it to the demodulation output terminal 25.

【0017】ここで各差動対の電圧利得は、トランジス
タQ13〜Q18と抵抗R14〜R19とからなる定電流源の電
流値に比例し、1段目を例にとると1段あたりの電圧利
得GV は、次の式(1)で与えられる。
Here, the voltage gain of each differential pair is proportional to the current value of the constant current source composed of the transistors Q 13 to Q 18 and the resistors R 14 to R 19, and the first stage is an example. The voltage gain G V per unit is given by the following equation (1).

【0018】 [0018]

【0019】中間周波増幅器6としての利得GVIF は、
6段構成をとるので次の式(2)で与えられる。
The gain G VIF as the intermediate frequency amplifier 6 is
Since it has a six-stage configuration, it is given by the following equation (2).

【0020】 GVIF =GV 6 … (2) 本実施例においては、トランジスタQ13〜Q18のコレク
タ電流を温度に応じて制御することにより、中間周波増
幅器6の電圧利得の温度係数を決定しており、これはト
ランジスタQ13〜Q18の共通ベースラインの電位を温度
係数制御回路16と外部抵抗REXT とにより制御するこ
とで行われる。以下、この動作について説明する。トラ
ンジスタQ25〜Q34ならびに抵抗R25〜R31はワイドラ
ー型バンドギャップレギュレータを構成し、トランジス
タQ44およびQ45のベースに各々次の式(3)および式
(4)で表される電圧を供給する。
G VIF = G V 6 (2) In this embodiment, the temperature coefficient of the voltage gain of the intermediate frequency amplifier 6 is determined by controlling the collector currents of the transistors Q 13 to Q 18 according to the temperature. and is, this is done by controlling the transistor Q 13 common baseline potential external resistance and temperature coefficient control circuit 16 of R EXT in to Q 18. Hereinafter, this operation will be described. The transistors Q 25 to Q 34 and the resistors R 25 to R 31 form a Widlar type bandgap regulator, and the voltages represented by the following formulas (3) and (4) are respectively applied to the bases of the transistors Q 44 and Q 45. Supply.

【0021】 [0021]

【0022】トランジスタQ44およびQ45は抵抗R39お
よびR40と共に定電流源を構成し、その電流は各々次の
式(5)および式(6)となる。
Transistors Q44 and Q45 form a constant current source together with resistors R39 and R40, and their currents are given by the following equations (5) and (6), respectively.

【0023】 [0023]

【0024】次に、トランジスタQ40〜Q43からなる差
動対は、式(5)のIC44 と式(6)のIC45 とを合成
して、トランジスタQ46、Q47、Q51およびQ52からな
るカレントミラーを介して電流IC47 を抵抗R41に供給
し、合成比は、トランジスタQ40、Q41、Q42およびQ
43の各々の差動対のベース電位差ΔVBEによって決ま
り、抵抗R41の電位VR41 は次のように求められる。電
流IC47 は次の式(7)で与えられる。
Next, the differential pair consisting of the transistors Q 40 to Q 43 synthesizes I C44 of the equation (5) and I C45 of the equation (6) to form transistors Q 46 , Q 47 , Q 51 and supplying a current I C47 to the resistor R41 via the current mirror consisting of Q 52, synthesis ratio, transistors Q 40, Q 41, Q 42 and Q
Determined by the base potential difference ΔV BE of each differential pair of 43 , the potential V R41 of the resistor R 41 is obtained as follows. The current I C47 is given by the following equation (7).

【0025】 [0025]

【0026】ここでΔVBEはトランジスタQ48とQ49
エミッタ電位差であり、次の式(8)で与えられる。
Here, ΔV BE is the emitter potential difference between the transistors Q 48 and Q 49 and is given by the following equation (8).

【0027】 [0027]

【0028】また、VR41 =IC47 ×R41であるから、
次の式(9)となり、この式(9)と式(6),(7)
とにより式(10)が得られる。
Since V R41 = I C47 × R 41 ,
The following expression (9) is obtained, and this expression (9) and expressions (6) and (7)
Equation (10) is obtained from and.

【0029】 [0029]

【0030】次に、この抵抗R41の電位VR41 は、演算
増幅器A1 に入力され、演算増幅器A1 の出力、すなわ
ち、トランジスタQ13〜Q18のコレクタ電流、すなわ
ち、各差動対の動作電流は、一段目を例にとると次の式
(11)で与えられる。
Next, the potential V R41 of the resistor R 41 is input to the operational amplifier A 1, the output of the operational amplifier A 1, i.e., the collector current of the transistor Q 13 to Q 18, namely, of each differential pair Taking the first stage as an example, the operating current is given by the following equation (11).

【0031】 IC13 =(VR41 +VBE24−VBE13)/R14 ≒VR41 /R14 … (11) 従って、中間周波増幅器6一段あたりの電圧利得G
V は、式(1)、式(10)および式(11)より次の
式(12)で与えられる。
I C13 = (V R41 + V BE24 −V BE13 ) / R 14 ≈V R41 / R 14 (11) Therefore, the voltage gain G per one stage of the intermediate frequency amplifier 6
V is given by the following equation (12) from the equations (1), (10) and (11).

【0032】 [0032]

【0033】次に、前記電圧利得GV の温度係数δGV
/δTを求めると、次の式(13)で与えられる。
Next, the temperature coefficient of the voltage gain G V .delta.G V
Obtaining / δ T is given by the following equation (13).

【0034】 [0034]

【0035】式(13)においてR39=R40=R41と設
定すれば、δVBE/δTは一般的に−2mV/℃の値で
あるので、式(14)の関係が得られる。
If R 39 = R 40 = R 41 is set in the equation (13), δV BE / δT is generally a value of −2 mV / ° C., so that the relation of the equation (14) is obtained.

【0036】 [0036]

【0037】いま、具体的数値として、δVBE/δT=
−2mV/℃、VBE=0.7V、(R1 +R2 )/R14
=1/6のとき、R42/10〈REXT 〈10R42の範囲
でδGV /δTは+0.55〜−0.55%/℃の値が
得られ、中間周波増幅器トータルの温度係数としては、
中間周波増幅器6が6段構成であるから+3.3〜−
3.3%/℃が得られる。
Now, as a concrete numerical value, δV BE / δT =
-2 mV / ° C, V BE = 0.7V, (R 1 + R 2 ) / R 14
= When 1/6, R 42/10 <δG V / δT in the range of R EXT <10R 42 is + value of 0.55~-0.55% / ℃ is obtained, as the temperature coefficient of the intermediate frequency amplifier Total Is
Since the intermediate frequency amplifier 6 has a six-stage configuration, +3.3 to −
3.3% / ° C is obtained.

【0038】このように、外付抵抗REXT の抵抗値によ
って中間周波増幅器の利得温度係数を任意に設定するこ
とができる。また、式(9)から基準温度においてI
C44 =IC45 と設定すれば外付抵抗REXT を変化させて
も、基準温度における中間周波増幅器の利得は変化しな
いようにでき、温度係数のみ独立に設定可能となる。
As described above, the gain temperature coefficient of the intermediate frequency amplifier can be arbitrarily set by the resistance value of the external resistor R EXT . Further, from the formula (9), I at the reference temperature
If C44 = I C45 is set, even if the external resistance R EXT is changed, the gain of the intermediate frequency amplifier at the reference temperature does not change, and only the temperature coefficient can be set independently.

【0039】本実施例で得られた−3.3〜+3.3%
/℃の設定範囲であれば、一般的なフロントエンド部集
積回路の温度係数(±2%/℃程度)を十分に補償する
ことが可能である。
The value obtained in this example is -3.3 to + 3.3%.
Within the setting range of / ° C, it is possible to sufficiently compensate for the temperature coefficient (about ± 2% / ° C) of a general front end integrated circuit.

【0040】図3は本発明の第2の実施例を適用したF
Mラジオ受信機を示すブロック図、図4は図3の要部を
示す回路図で、図1のFM集積回路14aの要部の一例
を示す。
FIG. 3 shows an F to which the second embodiment of the present invention is applied.
FIG. 4 is a block diagram showing an M radio receiver, and FIG. 4 is a circuit diagram showing a main part of FIG. 3, showing an example of a main part of the FM integrated circuit 14a of FIG.

【0041】本実施例は、局部発振器(RO)3と、周
波数混合回路(MI)2と、少なくとも1つの差動対を
含む前置中間周波増幅器(PIA)4aとを備え、周波
数混合器(MI)2の出力である所定の中間周波信号を
前置中間周波信号増幅器(PIA)4aで増幅し出力す
る様に構成されたFMフロントエンド集積回路14aに
おいて、前置中間周波増幅器4aの動作電流を所定の基
準値と比例するように制御する手段と、前記基準値の温
度係数を温度係数設定端子27に接続した外付抵抗R
EXT の抵抗値によって決定する手段とを含む温度係数設
定回路(TCC)16を備えている。
This embodiment comprises a local oscillator (RO) 3, a frequency mixing circuit (MI) 2, a pre-intermediate frequency amplifier (PIA) 4a including at least one differential pair, and a frequency mixer ( In the FM front-end integrated circuit 14a configured to amplify and output a predetermined intermediate frequency signal which is the output of MI) 2 by the pre-intermediate frequency signal amplifier (PIA) 4a, the operating current of the pre-intermediate frequency amplifier 4a. To control the temperature coefficient of the reference value to be proportional to a predetermined reference value, and an external resistor R connected to the temperature coefficient setting terminal 27.
A temperature coefficient setting circuit (TCC) 16 including means for determining the resistance value of EXT is provided.

【0042】図4によると、前置中間周波増幅器4a
は、NPN型のトランジスタQ51〜Q57,Q61〜Q64
抵抗R51〜R56,R62〜R68を含み、温度係数設定回路
16は、極性の相反する温度係数を有する二つの電圧源
を構成するトランジスタQ25〜Q39、Q50、抵抗R25
35ならびにコンデンサC1 と、この二つの電圧源の出
力を所定の比で加算し前置中間周波増幅器4aの差動対
を構成する定電流源用のトランジスタQ61〜Q63のベー
ス電圧として供給するベース電圧供給回路を構成するト
ランジスタQ40〜Q47、Q51、Q52、Q29、抵抗R36
41、R29ならびに演算増幅器A1 と、前記所定の比を
外付抵抗REXT の抵抗値により可変する比調整回路を構
成するトランジスタQ48、Q49ならびに定電圧源(RE
G)17とを含んでいる。なお、CINはバイパス用のコ
ンデンサである。
According to FIG. 4, the pre-intermediate frequency amplifier 4a
Includes NPN type transistors Q 51 to Q 57 , Q 61 to Q 64 and resistors R 51 to R 56 , R 62 to R 68 , and the temperature coefficient setting circuit 16 has two temperature coefficients having polarities opposite to each other. Transistors Q 25 to Q 39 , Q 50 and resistor R 25 to constitute a voltage source
R 35 and capacitor C 1 and the outputs of these two voltage sources are added at a predetermined ratio and supplied as the base voltage of transistors Q 61 to Q 63 for the constant current source forming the differential pair of the pre-intermediate frequency amplifier 4 a. transistor Q 40 ~Q 47, Q 51, Q 52, Q 29 constituting the base voltage supply circuit for the resistance R 36 ~
R 41 , R 29, operational amplifier A 1, and transistors Q 48 , Q 49 and a constant voltage source (RE) forming a ratio adjusting circuit for varying the predetermined ratio by the resistance value of the external resistor R EXT.
G) 17 is included. Note that C IN is a bypass capacitor.

【0043】トランジスタQ51〜Q56による三つの差動
対と、トランジスタQ57からなるエミッタホロワを含む
前置中間周波増幅器4aに、入力端子21から周波数混
合回路(MI)2を経てIF信号が入力され、電圧増幅
が行われた後、信号出力端子28に出力される。
[0043] and three differential pairs of the transistors Q 51 to Q 56, the置中between frequency amplifier 4a before including emitter followers composed of the transistors Q 57, IF signal from the input terminal 21 via a frequency mixing circuit (MI) 2 is input Then, the voltage is amplified and output to the signal output terminal 28.

【0044】ここで、前記各差動対の電圧利得は、トラ
ンジスタQ61〜Q63と抵抗R64〜R66とからなる定電流
源の電流値に比例し、1段目を例にとると1段あたりの
電圧利得GV は、次の式(1)で与えられる。
Here, the voltage gain of each differential pair is proportional to the current value of the constant current source consisting of the transistors Q 61 to Q 63 and the resistors R 64 to R 66, and taking the first stage as an example. The voltage gain G V per stage is given by the following equation (1).

【0045】 [0045]

【0046】前置中間周波増幅器4aとしての利得G
VIF は、3段構成をとるので次の式(16)で与えられ
る。
Gain G as preintermediate frequency amplifier 4a
Since VIF has a three-stage configuration, it is given by the following equation (16).

【0047】 GVIF =GV 3 … (16) 本実施例においては、トランジスタQ61〜Q63のコレク
タ電流を温度に応じて制御することにより、前置中間周
波増幅器4aの電圧利得の温度係数を決定しており、こ
れはトランジスタQ61〜Q65の共通ベースラインの電位
を温度係数制御回路16と外部抵抗REXT とにより制御
することで行われる。
G VIF = G V 3 (16) In the present embodiment, the temperature coefficient of the voltage gain of the pre-intermediate frequency amplifier 4a is controlled by controlling the collector currents of the transistors Q 61 to Q 63 according to the temperature. This is performed by controlling the potential of the common baseline of the transistors Q 61 to Q 65 by the temperature coefficient control circuit 16 and the external resistor REXT.

【0048】この温度係数制御回路16の動作は、第1
の実施例と同様である。この温度係数制御回路16の演
算増幅器A1 の出力、すなわち、トランジスタQ61〜Q
63のベース電圧は、VR41 +VBE24となる。さらに、ト
ランジスタQ61〜Q63のコレクタ電流、すなわち、各差
動対の動作電流は、一段目を例にとると前述の式(1
1)と同様に与えられる。従って、前置中間周波増幅器
4aの一段あたりの電圧利得GV は、前述の式(12)
で与えられる。
The operation of the temperature coefficient control circuit 16 is as follows.
It is similar to the embodiment of. The output of the operational amplifier A 1 of the temperature coefficient control circuit 16, that is, the transistors Q 61 to Q
The base voltage of 63 is V R41 + V BE24 . Further, the collector currents of the transistors Q 61 to Q 63 , that is, the operating currents of the respective differential pairs are expressed by the above formula (1) taking the first stage as an example.
It is given as in 1). Therefore, the voltage gain G V per one stage of the pre-intermediate frequency amplifier 4a is calculated by the above equation (12).
Given in.

【0049】この電圧利得GV の温度係数δGV /δT
も前述の式(13)で与えられる。この式(13)にお
いてR39=R40=R41と設定すれば、δVBE/δTは一
般的に−2mV/℃の値であるので、前述の式(14)
の関係が得られる。また、具体的数値も第1の実施例と
同様とすると、R42/10〈REXT 〈10R42の範囲で
δGV /δTは+0.55〜−0.55%/℃の値が得
られ、中間周波増幅器トータルの温度係数としては、前
置中間周波増幅器4aが3段構成であるから+1.65
〜−1.65%/℃が得られる。
The temperature coefficient of this voltage gain G V δG V / δT
Is also given by the above equation (13). If R 39 = R 40 = R 41 is set in this equation (13), δV BE / δT is generally a value of −2 mV / ° C., so that the above equation (14)
Can be obtained. Further, if also the same as in the first embodiment specific values, the value of R 42/10 <δG V / δT in the range of R EXT <10R 42 is + 0.55~-0.55% / ℃ was obtained The total temperature coefficient of the intermediate frequency amplifier is +1.65 because the front intermediate frequency amplifier 4a has a three-stage configuration.
~ -1.65% / ° C is obtained.

【0050】このように、外付抵抗REXT の抵抗値によ
って中間周波増幅器の利得温度係数を任意に設定するこ
とができる。また、式(9)から基準温度においてI
C44 =IC45 と設定すれば外付抵抗REXT を変化させて
も、基準温度における中間周波増幅器の利得は変化しな
いようにでき、温度係数のみ独立に設定可能となる。
As described above, the gain temperature coefficient of the intermediate frequency amplifier can be arbitrarily set by the resistance value of the external resistor R EXT . Further, from the formula (9), I at the reference temperature
If C44 = I C45 is set, even if the external resistance R EXT is changed, the gain of the intermediate frequency amplifier at the reference temperature does not change, and only the temperature coefficient can be set independently.

【0051】本実施例で得られた−1.65〜+1.6
5%/℃の設定範囲であれば、一般的な高周波増幅回路
の温度係数及び周波数混合回路の温度係数を十分に補償
することが可能である。
-1.65 to +1.6 obtained in this example.
Within the setting range of 5% / ° C., it is possible to sufficiently compensate the temperature coefficient of a general high frequency amplifier circuit and the temperature coefficient of a frequency mixing circuit.

【0052】[0052]

【発明の効果】以上説明したように、本発明は、外付抵
抗の抵抗値によって前置中間周波増幅器の利得の温度係
数を任意に設定できるようにしたので、前段の高周波増
幅器および周波数混合器の利得の温度係数に応じて設定
することにより、全体の利得の温度特性を補償できる。
このため高周波増幅回路及びコイル,トランス等の設計
自由度が拡大できるという効果がある。
As described above, according to the present invention, the temperature coefficient of the gain of the pre-intermediate frequency amplifier can be arbitrarily set by the resistance value of the external resistor. Therefore, the high frequency amplifier and the frequency mixer in the preceding stage can be set. The temperature characteristic of the overall gain can be compensated by setting it according to the temperature coefficient of the gain.
Therefore, there is an effect that the degree of freedom in designing the high frequency amplifier circuit, the coil, the transformer and the like can be expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のFMラジオ受信機を示
すブロック図。
FIG. 1 is a block diagram showing an FM radio receiver according to a first embodiment of the present invention.

【図2】図1の実施例の要部を示す回路図。FIG. 2 is a circuit diagram showing a main part of the embodiment shown in FIG.

【図3】本発明の第2の実施例のブロック図。FIG. 3 is a block diagram of a second embodiment of the present invention.

【図4】図3の実施例の要部を示す回路図。FIG. 4 is a circuit diagram showing a main part of the embodiment of FIG.

【図5】従来例によるFMラジオ受信機を示すブロック
構成図。
FIG. 5 is a block configuration diagram showing an FM radio receiver according to a conventional example.

【符号の説明】[Explanation of symbols]

1 高周波増幅器(HA) 2 周波数混合器(MI) 3 局部発振器(RO) 4,4a 前置中間周波増幅器(PIA) 5 バンドパスフィルタ(BF) 6,6a 中間周波増幅器(IA) 7 FM復調器(FD) 8 マルチプレクス復調器(MD) 9,10 電力増幅器(PA) 11,12 スピーカ 13 アンテナ 14,14a フロントエンド部集積回路 15,15a FM復調用集積回路 16 温度係数設定回路(TCC) 17 定電圧源(REG) 21 入力端子 22 バイパス端子 24 電源端子 25 復調出力端子 26 接地端子 27 温度係数設定端子 28 出力端子 A1 演算増幅器 CIN,CNF コンデンサ Q1 〜Q64 (NPN型の)トランジスタ R1 〜R68 抵抗 RIN 入力抵抗 REXT 外付抵抗1 high frequency amplifier (HA) 2 frequency mixer (MI) 3 local oscillator (RO) 4, 4a pre-intermediate frequency amplifier (PIA) 5 band pass filter (BF) 6, 6a intermediate frequency amplifier (IA) 7 FM demodulator (FD) 8 Multiplex demodulator (MD) 9, 10 Power amplifier (PA) 11, 12 Speaker 13 Antenna 14, 14a Front end integrated circuit 15, 15a FM demodulation integrated circuit 16 Temperature coefficient setting circuit (TCC) 17 Constant voltage source (REG) 21 Input terminal 22 Bypass terminal 24 Power supply terminal 25 Demodulation output terminal 26 Grounding terminal 27 Temperature coefficient setting terminal 28 Output terminal A 1 Operational amplifier C IN , C NF capacitors Q 1 to Q 64 (NPN type) Transistor R 1 to R 68 resistance R IN input resistance R EXT external resistance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一つの差動対を有し入力され
た中間周波信号を増幅し振幅制限を行う中間周波増幅器
と、この中間周波増幅器の出力信号から音声信号を復調
するFM復調器とを備えたFM復調装置において、前記
中間周波増幅器の動作電流を所定の基準値と比例するよ
うに制御する手段と、前記基準値の温度係数を外付抵抗
の値によって決定する手段とを含む温度係数設定回路を
備えたことを特徴とするFM復調装置。
1. An intermediate frequency amplifier having at least one differential pair for amplifying an input intermediate frequency signal to limit the amplitude, and an FM demodulator for demodulating an audio signal from an output signal of the intermediate frequency amplifier. In an FM demodulator provided, a temperature coefficient including means for controlling an operating current of the intermediate frequency amplifier so as to be proportional to a predetermined reference value, and means for determining a temperature coefficient of the reference value by a value of an external resistor. An FM demodulator having a setting circuit.
【請求項2】 高周波入力信号を局部発振回路からの信
号と混合し所定中間周波信号に変換する周波数混合回路
と、この周波数混合回路の中間周波信号を増幅し少くと
も一つの差動対を含む前置中間周波増幅回路とを備え、
前記前置中間周波数信号から音声信号を復調するFM復
調装置において、前記前置中間周波増幅器の動作電流を
所定の基準値と比例するように制御する手段と、前記基
準値の温度係数を外付抵抗の値によって決定する手段と
を含む温度係数設定回路を備えたことを特徴とするFM
復調装置。
2. A frequency mixing circuit for mixing a high frequency input signal with a signal from a local oscillator circuit to convert it into a predetermined intermediate frequency signal, and an intermediate frequency signal of the frequency mixing circuit for amplifying and at least one differential pair. With a pre-intermediate frequency amplifier circuit,
In an FM demodulator for demodulating a voice signal from the pre-intermediate frequency signal, means for controlling the operating current of the pre-intermediate frequency amplifier so as to be proportional to a predetermined reference value, and an external temperature coefficient of the reference value. An FM having a temperature coefficient setting circuit including means for determining the resistance value.
Demodulator.
【請求項3】 温度係数設定回路は、極性の相反する温
度係数を有する二つの電圧源と、この二つの電圧源の出
力を所定の比で加算して中間周波増幅器または前記前置
中間周波増幅器の差動対を構成する定電流源用のトラン
ジスタのベース電圧として供給するベース電圧供給回路
と、前記所定の比を外付抵抗値により可変する比調整回
路とを含む請求項1または請求項2に記載のFM復調装
置。
3. The temperature coefficient setting circuit adds two voltage sources having temperature coefficients whose polarities are opposite to each other and outputs of the two voltage sources at a predetermined ratio to add the intermediate frequency amplifier or the pre-intermediate frequency amplifier. 3. A base voltage supply circuit for supplying as a base voltage of a transistor for a constant current source forming a differential pair of the above, and a ratio adjusting circuit for changing the predetermined ratio by an external resistance value. The FM demodulator according to item 1.
JP4141228A 1991-06-18 1992-06-02 FM demodulator Expired - Lifetime JP2842050B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-174425 1991-06-18
JP17442591 1991-06-18

Publications (2)

Publication Number Publication Date
JPH05284056A true JPH05284056A (en) 1993-10-29
JP2842050B2 JP2842050B2 (en) 1998-12-24

Family

ID=15978324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141228A Expired - Lifetime JP2842050B2 (en) 1991-06-18 1992-06-02 FM demodulator

Country Status (1)

Country Link
JP (1) JP2842050B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072297A (en) * 2014-09-26 2016-05-09 セイコーエプソン株式会社 Semiconductor circuit, oscillator, electronic apparatus and mobile body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016072297A (en) * 2014-09-26 2016-05-09 セイコーエプソン株式会社 Semiconductor circuit, oscillator, electronic apparatus and mobile body

Also Published As

Publication number Publication date
JP2842050B2 (en) 1998-12-24

Similar Documents

Publication Publication Date Title
US20090302948A1 (en) Post amplifier with selectable gain
JPS62200808A (en) Transconductance amplifier
JPH07183741A (en) Differential input circuit
GB2107947A (en) Improvements in or relating to transistor mixer and amplifier input stages for radio receivers
US6188280B1 (en) Differential amplifier with gain linearization through transconductance compensation
JPH0121642B2 (en)
JPH0621756A (en) Temperature of mutual conductance at mutual conductor stage and circuit for restraint of production-process variable
EP0415620B1 (en) Electrical circuit
JP3486072B2 (en) Variable gain amplifier
JPH07162248A (en) Differential amplifier
JPH10150330A (en) Dc offset cancellation circuit and differential amplifier circuit using the same
US5666087A (en) Active resistor for stability compensation
US4048577A (en) Resistor-controlled circuit for improving bandwidth of current gain cells
JP2842050B2 (en) FM demodulator
US5028882A (en) Multiple output operational amplifier
US4167708A (en) Transistor amplifier
US6167284A (en) Device for converting a symmetrical signal into an asymmetrical signal
JPH0113453Y2 (en)
WO2002051002A2 (en) A variable transconductance amplifier
JPH0418251Y2 (en)
JP3140107B2 (en) Differential amplifier
US20070085607A1 (en) Electronic circuit for amplification of a bipolar signal
JP2926591B2 (en) Differential transistor circuit
JPH0513051Y2 (en)
JPH01126816A (en) Broad band variable gain amplifier circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980922