JPH05283701A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05283701A
JPH05283701A JP4074493A JP7449392A JPH05283701A JP H05283701 A JPH05283701 A JP H05283701A JP 4074493 A JP4074493 A JP 4074493A JP 7449392 A JP7449392 A JP 7449392A JP H05283701 A JPH05283701 A JP H05283701A
Authority
JP
Japan
Prior art keywords
region
insulating film
mask
semiconductor
mask body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4074493A
Other languages
Japanese (ja)
Other versions
JP2858384B2 (en
Inventor
Yasuaki Tsuzuki
康明 都築
Akira Kuroyanagi
晃 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4074493A priority Critical patent/JP2858384B2/en
Publication of JPH05283701A publication Critical patent/JPH05283701A/en
Priority to US08/469,622 priority patent/US5798550A/en
Application granted granted Critical
Publication of JP2858384B2 publication Critical patent/JP2858384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor device with which no damage is given to a semiconductor region when it is formed on a insulating film of the semiconductor device to be double-doped using an electrode body and a mask body as a mask after the electrode side face on the insulating film has been protected by a special mask body formed by RIE. CONSTITUTION:The title manufacturing method consists of a mask-forming process in which a mask body 10, covering the side face of an electrode body 7, is formed by ion-etching on the side face of the electrode body 7 on the insulating film 81 of a semiconductor substrate 1, a double diffusion region forming process in which double diffusion regions 4 and 5 are formed on the substrate 1 by double-doping impurities using the electrode body 7 and the mask body 10 as a mask, and a semiconductor region forming process in which semiconductor regions of prescribed shape are formed on the prescribed region of an insulating film 82 after the mask body 10 has been formed. As a result, the damage caused on semiconductor regions 11 and 12 can be prevented by RIE without having substantial extension of process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁膜上に電極体及び
半導体領域を有する半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having an electrode body and a semiconductor region on an insulating film.

【0002】[0002]

【従来の技術】本出願人の出願に係る特開昭62ー22
9866号公報は、縦型チャンネルの二重拡散型絶縁ゲ
ートトランジスタ(DMOS)を複数集積してなる電力
用半導体装置において、絶縁膜上にポリシリコン領域を
形成し、このポリシリコン領域に温度検出用の接合ダイ
オードを形成することを開示している。本出願人の出願
に係る特開平2ー288366号公報は、DMOSを複
数集積してなる電力用半導体装置において、絶縁膜上に
ポリシリコン領域を形成し、このポリシリコン領域に高
電圧保護用のツェナダイオードを形成することを開示し
ている。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 62-22
Japanese Patent No. 9866 discloses a power semiconductor device in which a plurality of vertical channel double-diffused insulated gate transistors (DMOS) are integrated, in which a polysilicon region is formed on an insulating film and the polysilicon region is used for temperature detection. Forming a junction diode of Japanese Patent Application Laid-Open No. 2-288366 filed by the applicant of the present invention discloses a power semiconductor device in which a plurality of DMOSs are integrated, in which a polysilicon region is formed on an insulating film and the polysilicon region is used for high voltage protection. It discloses forming a Zener diode.

【0003】上記したようにこの種の電力用半導体装置
においては、絶縁膜上にダイオードなどの半導体素子を
集積して装置の保護などを行うことが知られている。こ
れらダイオードは、通常、フィールド酸化膜上にポリシ
リコン膜を堆積し、このポリシリコン膜をフォトエッチ
して所定形状のポリシリコン領域を形成し、通常はその
表面保護のために薄い酸化膜を形成し、その後の工程で
ポリシリコン領域に接合形成用のドープを行うのが一般
的である。なお、上記したポリシリコン領域の形成まで
の工程は、基板表面へのダメージを減らし、工程短縮の
ためにDMOSのゲート絶縁膜及びゲート電極形成前に
行っておき、しかる後、DMOS用の基板表面を熱酸
化、酸化膜エッチなどして清浄化し、その後、ゲート電
極形成工程に進むのが通常である。
As described above, in this type of power semiconductor device, it is known that semiconductor elements such as diodes are integrated on an insulating film to protect the device. In these diodes, a polysilicon film is usually deposited on a field oxide film, and the polysilicon film is photo-etched to form a polysilicon region having a predetermined shape. Usually, a thin oxide film is formed to protect the surface of the polysilicon region. Then, in a subsequent step, the polysilicon region is generally doped for junction formation. The steps up to the formation of the polysilicon region are performed before the gate insulating film and the gate electrode of the DMOS are formed in order to reduce damage to the surface of the substrate and shorten the steps, and thereafter, the surface of the substrate for the DMOS is formed. Is usually cleaned by thermal oxidation, oxide film etching, etc., and then the gate electrode forming step is usually performed.

【0004】[0004]

【発明が解決しようとする課題】また本出願人は、DM
OSなどの縦型半導体装置においてゲート電極など、半
導体基板上に絶縁膜を介して形成された電極体の側面に
特別のマスク体を反応性イオンエッチング(RIE)を
用いて形成し、これら電極体及びマスク体をマスクとし
て半導体基板の表面部にウエル領域及びソース領域をダ
ブルドープして、耐圧及びオン抵抗低減に有効な電力用
半導体装置を提案している(特願平2ー264701
号)ところが上記マスク体採用の装置に上述のダイオー
ドなどの集積を図る場合、このようなゲート電極形成後
にRIEを行うと、RIEによりポリシリコン領域がエ
ッチバックされたり、その表面が荒れたりする不具合が
生じた。ポリシリコン領域の上に厚い保護マスクパタン
を形成することも可能であるが、その形成、パターニン
グ、除去などの工程及びこれら工程による汚染が問題と
なる。
The applicant of the present invention is DM
In a vertical semiconductor device such as an OS, a special mask body is formed by reactive ion etching (RIE) on a side surface of an electrode body such as a gate electrode formed on a semiconductor substrate with an insulating film interposed therebetween. Also, there is proposed a power semiconductor device which is effective in reducing the withstand voltage and the on-resistance by double-doping the well region and the source region on the surface portion of the semiconductor substrate using the mask body as a mask (Japanese Patent Application No. Hei 2-264701).
However, when RIE is performed after forming such a gate electrode in order to integrate the above-mentioned diode in the device using the mask body, the RIE etches back the polysilicon region or roughens the surface. Has occurred. Although it is possible to form a thick protective mask pattern on the polysilicon region, the steps of forming, patterning, removing, etc., and contamination by these steps pose a problem.

【0005】本発明は上記問題点に鑑みなされたもので
あり、絶縁膜上の電極体側面をRIEにより形成された
特別のマスク体で保護した後、これら電極体及びマスク
体をマスクとしてダブルドープする半導体装置の絶縁膜
上に半導体領域を形成するに際し、半導体領域の損傷を
回避し得る半導体装置を提供することを、その目的とし
ている。
The present invention has been made in view of the above problems. After the side surfaces of the electrode body on the insulating film are protected by a special mask body formed by RIE, the electrode body and the mask body are used as a mask for double doping. It is an object of the present invention to provide a semiconductor device capable of avoiding damage to the semiconductor region when forming the semiconductor region on the insulating film of the semiconductor device.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に絶縁膜を形成し、前記絶縁膜
上に電極体を形成する電極体形成工程と、前記基板及び
電極体上に側壁用絶縁膜を形成し、前記側壁用絶縁膜を
反応性イオンエッチングして前記電極体の側面を覆うマ
スク体を形成するマスク体形成工程と、前記電極体及び
マスク体をマスクとして前記基板の表面部に不純物を二
重にドープして二重拡散領域を形成する二重拡散領域形
成工程と、前記マスク体形成後に前記絶縁膜の所定領域
上に所定形状の半導体領域を形成する半導体領域形成工
程とを備えることを特徴としている。
A method of manufacturing a semiconductor device according to the present invention comprises an electrode body forming step of forming an insulating film on a semiconductor substrate and an electrode body on the insulating film, and the substrate and the electrode body. A mask body forming step of forming an insulating film for the side wall on the insulating film, forming a mask body covering the side surface of the electrode body by reactive ion etching the insulating film for the side wall, and using the electrode body and the mask body as a mask Double-diffusion region forming step of forming a double-diffusion region by double-doping impurities on the surface of the substrate, and a semiconductor forming a predetermined-shape semiconductor region on a predetermined region of the insulating film after forming the mask body. And a region forming step.

【0007】[0007]

【発明の効果】以上説明したように本発明の半導体装置
は、絶縁膜上の電極体側面をRIEにより形成された特
別のマスク体で保護した後、これら電極体及びマスク体
をマスクとしてダブルドープする半導体装置の絶縁膜上
に半導体領域を形成するに際し、半導体領域をマスク体
形成後に形成するので、大幅な工程延長を招くことなく
RIEによる半導体領域の損傷を回避し、半導体領域中
に形成する半導体素子の特性が劣化するのを防止するこ
とができる。
As described above, in the semiconductor device of the present invention, the side surface of the electrode body on the insulating film is protected by a special mask body formed by RIE, and then double doping is performed using the electrode body and the mask body as a mask. In forming the semiconductor region on the insulating film of the semiconductor device, the semiconductor region is formed after the mask body is formed. Therefore, the semiconductor region is prevented from being damaged by RIE without a significant process extension, and the semiconductor region is formed in the semiconductor region. It is possible to prevent the characteristics of the semiconductor element from deteriorating.

【0008】[0008]

【実施例】以下、本発明の一実施例を示す断面図を図1
に示す。この半導体装置において、1はN+ シリコン基
板(半導体基板)、2はN- エピタキシャル層、31は
深いP- ウエル領域、32は電界緩和用のP- ウエル領
域、4はP- チャンネルウエル領域、5はDMOSのN
+ ソース領域、6はP+コンタクト領域、7はドープポ
リシリコンからなるゲート電極(本発明でいう電極
体)、81はシリコン酸化膜からなるゲート絶縁膜、8
2は厚いシリコン酸化膜(フィールド酸化膜)、83は
ゲート電極7の上面保護用のシリコン酸化膜、84はB
PSG等のシリコン酸化膜からなる層間絶縁膜、91か
ら95はアルミニウムからなる電極部、10はシリコン
酸化膜からなるゲート電極側面囲覆用のマスク体、11
はポリシリ抵抗用のポリシリコン領域(本発明でいう半
導体領域)、12はツェナダイオード用のポリシリコン
領域(本発明でいう半導体領域)である。
1 is a sectional view showing an embodiment of the present invention.
Shown in. In this semiconductor device, 1 is an N + silicon substrate (semiconductor substrate), 2 is an N epitaxial layer, 31 is a deep P well region, 32 is a P well region for relaxing an electric field, 4 is a P channel well region, 5 is N of DMOS
+ Source region, 6 is a P + contact region, 7 is a gate electrode made of doped polysilicon (electrode body in the present invention), 81 is a gate insulating film made of a silicon oxide film, 8
2 is a thick silicon oxide film (field oxide film), 83 is a silicon oxide film for protecting the upper surface of the gate electrode 7, and 84 is B.
An interlayer insulating film made of a silicon oxide film such as PSG, 91 to 95 are electrode portions made of aluminum, 10 is a mask body for covering the side surface of the gate electrode made of a silicon oxide film, 11
Is a polysilicon region for the polysilicon resistor (semiconductor region in the present invention), and 12 is a polysilicon region for the Zener diode (semiconductor region in the present invention).

【0009】N+ ソース領域5はP- ウエル領域31の
表面部にP- チャンネルウエル領域4とともに、後述す
るようにマスク体10で区画される開口13からの二重
イオン注入により形成されている。P- ウエル領域32
は深いP- ウエル領域31と同時に形成されている。こ
の実施例ではチップ上には多数のDMOSセルが配設さ
れ、各セルは平面形状が略正方形であるチャンネルウエ
ル領域4を多数有し、その上方には略正方形の開口をも
つ格子パターンのゲート電極7と、このゲート電極7の
側面を覆うマスク体10とが形成されている。
The N + source region 5 is formed on the surface of the P well region 31 together with the P channel well region 4 by double ion implantation from the opening 13 defined by the mask body 10 as described later. .. P - well region 32
Are formed simultaneously with the deep P - well region 31. In this embodiment, a large number of DMOS cells are arranged on a chip, each cell has a large number of channel well regions 4 each having a substantially square planar shape, and a gate having a lattice pattern having substantially square openings above the channel well regions 4. An electrode 7 and a mask body 10 that covers the side surface of the gate electrode 7 are formed.

【0010】以下、上記装置の製造工程を図1から図5
を参照して詳述する。まず図2に示すように、比抵抗
0.01Ω・cm以下のN+ シリコン基板1を用意し、
その上に1×1016原子/cm3 のN- エピタキシャル
層2を7〜15μmの厚さに形成する。その後、N-
ピタキシャル層2上にマスクとしてのシリコン酸化膜
(図示せず)を7000オングストローム程度形成す
る。次に、深いP- ウエル領域31、32形成のために
上記シリコン酸化膜のフォトエッチングを行って、ボロ
ンを3〜5×1013dose/cm角、60keVの条件でイ
オン注入する。次に、ドライブイン(1170℃、4〜
5時間、N2 )を行い、深いP - ウェル領域31、32
を形成する。
The manufacturing process of the above device will be described below with reference to FIGS.
Will be described in detail. First, as shown in FIG.
N of 0.01 Ω · cm or less+Prepare the silicon substrate 1,
1x10 on it16Atom / cm3N-Epitaxial
Form layer 2 to a thickness of 7 to 15 μm. Then N-D
Silicon oxide film as a mask on the epitaxial layer 2
(Not shown) about 7000 angstrom
It Next, deep P-To form the well regions 31 and 32
The silicon oxide film is photo-etched to
3 to 5 x 1013b under the conditions of dose / cm square and 60 keV
Inject on. Next, drive-in (1170 ℃, 4 ~
5 hours, N2) And do a deep P -Well regions 31, 32
To form.

【0011】次に、上記シリコン酸化膜を除去し、その
後、9000オングストローム程度の厚いシリコン酸化
膜(フィールド酸化膜)82を形成し、P- ウエル領域
32の上を残して他の部分を除去し、その後、約300
〜1000オングストロームのゲート絶縁膜81を熱酸
化法により形成する。次に、LPCVD法により300
0〜5000オングストローム程度堆積しリン拡散を行
ったポリシリコン膜を形成し、その表面を酸化して薄い
シリコン酸化膜(図示せず)を形成した後、その上に厚
さ約1μmのシリコン酸化膜をCVD法により堆積し、
これらポリシリコン膜及びシリコン酸化膜をフォトエッ
チングしてゲート電極7と、ゲート電極7の上面を覆う
シリコン酸化膜83とを形成する。次に、ゲート電極7
の側面に酸化により薄いシリコン酸化膜(図示せず)を
形成している。
Next, the silicon oxide film is removed, and thereafter a thick silicon oxide film (field oxide film) 82 having a thickness of about 9000 angstrom is formed, and the other portions are removed except the P - well region 32. , Then about 300
A gate insulating film 81 of about 1000 Å is formed by a thermal oxidation method. Next, 300 by LPCVD method.
A polysilicon film having a thickness of 0 to 5000 angstroms and being subjected to phosphorus diffusion is formed, the surface is oxidized to form a thin silicon oxide film (not shown), and then a silicon oxide film having a thickness of about 1 μm is formed thereon. Is deposited by the CVD method,
The polysilicon film and the silicon oxide film are photo-etched to form the gate electrode 7 and the silicon oxide film 83 covering the upper surface of the gate electrode 7. Next, the gate electrode 7
A thin silicon oxide film (not shown) is formed on the side surface of the substrate by oxidation.

【0012】次に図3に示すように、全面にステップカ
バ−の良好なTEOSのCVDシリコン酸化膜15を1
μm程度形成する。次に図4に示すように、CVDシリ
コン酸化膜15を反応性イオンエッチングによりエッチ
バックしてゲート電極7の側面にCVDシリコン酸化膜
15によるマスク体10を形成する。なお、このマスク
体10の最下部での幅Lmは、ゲート電極7とその上の
シリコン酸化膜83とによる積層膜厚すなわち、エピ層
2の表面からエッチングバック後のシリコン酸化膜83
の上面までの距離とエッチバック前のTEOS膜厚とに
より決定される。
Next, as shown in FIG. 3, a CVD silicon oxide film 15 of TEOS having a good step coverage is formed on the entire surface.
It is formed in a thickness of about μm. Next, as shown in FIG. 4, the CVD silicon oxide film 15 is etched back by reactive ion etching to form a mask body 10 of the CVD silicon oxide film 15 on the side surface of the gate electrode 7. The width Lm at the lowermost portion of the mask body 10 is the film thickness of the gate electrode 7 and the silicon oxide film 83 thereon, that is, the silicon oxide film 83 after etching back from the surface of the epi layer 2.
Is determined by the distance to the upper surface of the film and the TEOS film thickness before etchback.

【0013】次に図5に示すように露出するエピ層2の
表面に薄いシリコン酸化膜19を酸化により形成し、そ
の上に厚さ約3000〜5000オングストロームの低
濃度のポリシリコン膜(図示せず)を形成し、このポリ
シリコン膜をフォトエッチしてフィールド絶縁膜82上
にポリシリコン領域11、12を形成する。次に、この
ポリシリコン領域11、12表面を熱酸化して薄いシリ
コン酸化膜11a,11bを形成する。
Next, as shown in FIG. 5, a thin silicon oxide film 19 is formed on the exposed surface of the epi layer 2 by oxidation, and a low-concentration polysilicon film (not shown) having a thickness of about 3000 to 5000 angstrom is formed thereon. No.) is formed and the polysilicon film is photo-etched to form polysilicon regions 11 and 12 on the field insulating film 82. Next, the surfaces of the polysilicon regions 11 and 12 are thermally oxidized to form thin silicon oxide films 11a and 11b.

【0014】次に図1に示すように、シリコン酸化膜1
9、11a、11bを貫通してボロンを6×1013〜9
×1013dose/cm角、40keVの条件でイオン注入を
行い、さらに、ドライブインを1170℃、100分程
度行い、エピタキシャル層2の表面部に浅いP- チャン
ネルウエル領域4を形成する。次に、フォトリソグラフ
ィによりパターニングをしたレジストマスクを用いて、
3〜5×1015dose/cm角、100keVの条件でP-
チャンネルウエル領域4の表面部及びポリシリコン領域
12の右半分にリンをイオン注入し、P- ウエル領域4
の表面にN+ ソース領域5を形成し、N+ ポリシリコン
領域12aを形成する。次に、上記マスクを除去して5
〜7×1013dose/cm角、40keVの条件でボロンを
イオン注入し、ウエル領域4の表面中央部にウエルコン
タクト用のP+ 領域6を形成し、ポリシリコン領域11
をP+ 抵抗線とし、ポリシリコン領域12の左半分にP
+ ポリシリコン領域12bを形成する。これによりポリ
シリコン領域12は多結晶のツェナダイオードとなる。
Next, as shown in FIG. 1, a silicon oxide film 1 is formed.
Boron is penetrated through 9, 11a, and 11b to form 6 × 10 13 to 9 boron.
Ion implantation is performed under the conditions of × 10 13 dose / cm square and 40 keV, and further drive-in is performed at 1170 ° C. for about 100 minutes to form a shallow P channel well region 4 on the surface of the epitaxial layer 2. Next, using a resist mask patterned by photolithography,
3~5 × 10 15 dose / cm square, P in the conditions of 100 keV -
Phosphorus is ion-implanted into the surface of the channel well region 4 and the right half of the polysilicon region 12, and the P well region 4 is formed.
Of the N + source region 5 is formed on the surface, to form the N + polysilicon region 12a. Next, the mask is removed and 5
Boron is ion-implanted under the conditions of ˜7 × 10 13 dose / cm 2 and 40 keV to form a P + region 6 for well contact at the center of the surface of the well region 4, and to form a polysilicon region 11
As a P + resistance line, and P in the left half of the polysilicon region 12.
+ Polysilicon region 12b is formed. As a result, the polysilicon region 12 becomes a polycrystalline Zener diode.

【0015】次に、N2 雰囲気中でアニールを行い、N
+ ソース領域5及びP+ コンタクト領域6、ポリシリコ
ン領域11、12を活性化する。なお、N+ 領域5のゲ
ート電極側の端部は上記レジストマスクの形状によらず
マスク体10の端部位置により規定され、その結果、ゲ
ート電極下のDMOSチャンネル長は上記二回のイオン
注入の横方向広がりの差により決定される。
Next, annealing is performed in an N 2 atmosphere to produce N 2.
The + source region 5, the P + contact region 6 and the polysilicon regions 11 and 12 are activated. The end of the N + region 5 on the side of the gate electrode is defined by the end position of the mask body 10 regardless of the shape of the resist mask, and as a result, the DMOS channel length under the gate electrode is the same as the above two ion implantations. Is determined by the difference in the lateral spread of.

【0016】次に、全面に例えばBPSGよりなる層間
絶縁膜84をCVDにより堆積するとともに、ホトリソ
工程により層間絶縁膜84の所定領域を除去して、コン
タクト用の開口を形成する。次に、アルミニウムからな
る電極部91から95を形成する。また基板1の裏面に
もDMOSのドレイン電極(図示せず)を形成する。こ
れにより、多数の縦型DMOSパワートランジスタとと
もに、フィールド絶縁膜82上にP+ ポリシリコン抵抗
及びツェナダイオードを有する半導体装置が完成する。
Next, an interlayer insulating film 84 made of, for example, BPSG is deposited on the entire surface by CVD, and a predetermined region of the interlayer insulating film 84 is removed by a photolithography process to form a contact opening. Next, the electrode portions 91 to 95 made of aluminum are formed. A drain electrode (not shown) of the DMOS is also formed on the back surface of the substrate 1. As a result, a semiconductor device having a P + polysilicon resistance and a Zener diode on the field insulating film 82 together with a large number of vertical DMOS power transistors is completed.

【0017】ここで、マスク体10の幅Lmは、図1に
おけるN+ ソース領域5の深さの0.85倍以下となっ
ている。つまり、1980年2月に出版の“IEEE
Transactions on Electron Devices”VOL.EDー2
7,NO.2,P.356〜367に記載されているよ
うに、イオン注入された領域の横方向拡散距離は縦方向
拡散距離のほぼ0.85倍となるので、LmをN+ ソー
ス領域5の深さの0.85倍以下とすれば、N+ ソース
領域5の先端がゲート電極7の直下に達する。また、P
- チャンネルウエル領域4の先端はN+ ソース領域5の
先端より更にゲート電極7の直下に入り込む。
Here, the width Lm of the mask body 10 is 0.85 times or less the depth of the N + source region 5 in FIG. In other words, published in February 1980, "IEEE
Transactions on Electron Devices "VOL.ED-2"
7, NO. 2, P.I. As described in 356-367, since the lateral diffusion distance of the ion-implanted region is approximately 0.85 times the vertical diffusion distance, Lm is 0.85 of the depth of the N + source region 5. If it is set to be equal to or less than twice, the tip of the N + source region 5 reaches directly under the gate electrode 7. Also, P
- the tip of the channel well region 4 further enters just below the gate electrode 7 from the front end of the N + source region 5.

【0018】以下、このゲート電極側面をRIEで形成
したマスク体10で覆うDMOSの特徴を説明する。こ
のDMOSでは、マスク体10の外端部からダブルドー
プされた不純物イオンの横方向拡散が始まるので、従来
のようにゲート電極の端部から上記横方向拡散が始まる
場合に比べて、諸条件を同じとすれば上記マスク体の幅
Lm分だけDMOSセルの横方向寸法が短縮され、その
分、DMOS集積度が上がり、オン抵抗が低減できる。
The features of the DMOS in which the side surface of the gate electrode is covered with the mask body 10 formed by RIE will be described below. In this DMOS, since the lateral diffusion of the double-doped impurity ions starts from the outer end of the mask body 10, various conditions are required as compared with the conventional case where the lateral diffusion starts from the end of the gate electrode. If it is the same, the lateral dimension of the DMOS cell is reduced by the width Lm of the mask body, the DMOS integration degree is increased, and the ON resistance can be reduced.

【0019】またこの実施例では、従来と比べて、Al
電極ゲート−電極間の距離を同じとすれば、アルミ電極
とN+ ソース領域5との接触面の端からN+ ソース領域
5とP- チャンネルウエル領域との境界までの距離が減
るので、そこのN+ ソース領域5の距離縮小分だけ抵抗
が削減される。更にこの実施例では、上記マスク体10
の幅Lmの2倍分だけゲート電極7直下のN- エピ層の
横幅、引いてはそこに形成される縦チャンネル部の横幅
が増大するので、この部位におけるJFET抵抗損失を
低減できる。
Further, in this embodiment, Al
If the distance between the electrode gate and the electrode is the same, the distance from the end of the contact surface between the aluminum electrode and the N + source region 5 to the boundary between the N + source region 5 and the P channel well region decreases. The resistance is reduced by the amount corresponding to the reduction in the distance of the N + source region 5. Further, in this embodiment, the mask body 10 is
Since the lateral width of the N - epi layer immediately below the gate electrode 7, that is, the lateral width of the vertical channel portion formed there, is increased by twice the width Lm, the JFET resistance loss at this portion can be reduced.

【0020】更にこの実施例では、従来構造上削減困難
であったゲート/ソース容量を削減できる。すなわちこ
の実施例ではマスク体10の横幅Lmだけゲート電極7
とソース領域5とのオーバーラップが減り、それだけゲ
ート/ソース容量すなわち装置の入力容量が減り、この
DMOSを小さい電流駆動能力をもつ素子により高速駆
動することができるという優れた効果を奏することがで
き、ゲート/ソース間の耐圧確保にも有利である。
Furthermore, in this embodiment, it is possible to reduce the gate / source capacitance which was difficult to reduce in the conventional structure. That is, in this embodiment, the gate electrode 7 is formed by the width Lm of the mask body 10.
And the source region 5 are reduced in overlap, and accordingly, the gate / source capacitance, that is, the input capacitance of the device is reduced, and the excellent effect that this DMOS can be driven at high speed by an element having a small current driving capability can be obtained. It is also advantageous for ensuring the breakdown voltage between the gate and the source.

【0021】以下、この装置の作動を説明する。電極部
91を接地し、基板1を不図示の裏面電極部及び負荷を
通じて正電位電源に接続する。ゲート電極7に正の共通
制御電圧を印加すると、ソース領域5はウエル領域4表
面のN型チャンネルを通じて、N+ 基板1に導通する。
なお、ウエル領域4はソース領域5と同一電位にバイア
スされている。
The operation of this device will be described below. The electrode portion 91 is grounded, and the substrate 1 is connected to a positive potential power source through a back electrode portion (not shown) and a load. When a positive common control voltage is applied to the gate electrode 7, the source region 5 is electrically connected to the N + substrate 1 through the N-type channel on the surface of the well region 4.
The well region 4 is biased to the same potential as the source region 5.

【0022】また、ポリシリコン領域11は抵抗線とし
て、ポリシリコン領域12はツェナダイオードとしてD
MOSとともに集積されるが、これらはエピタキシャル
層2の表面に形成されないので、DMOS電位変動の影
響を受けることはない。またこの実施例では、上記ポリ
シリコン領域11、12の形成をマスク体10のRIE
の後で行うようにしたので、ポリシリコン領域11、1
2がRIEによりエッチバックされて損傷するという不
具合を回避することができる。
The polysilicon region 11 serves as a resistance line, and the polysilicon region 12 serves as a Zener diode.
Although integrated with the MOS, these are not formed on the surface of the epitaxial layer 2 and therefore are not affected by the DMOS potential fluctuation. In this embodiment, the polysilicon regions 11 and 12 are formed by RIE of the mask body 10.
Since it is performed after the above, the polysilicon regions 11 and 1
It is possible to avoid the problem that 2 is etched back by RIE and damaged.

【0023】なお上記実施例では、ポリシリコン領域1
1、12へのド−プ工程をDMOSへのド−プ工程と共
用したが、互いに独立に行えることは当然である。また
上記実施例では、DMOSをパワー素子としたが、IG
BTなどに変更できることは当然である。また、ポリシ
リコン領域11、12のレーザーアニールや、ポリシリ
コン領域11、12へのMOSトランジスタ形成なども
可能であることは当然である。
In the above embodiment, the polysilicon region 1 is used.
Although the doping process for 1 and 12 is shared with the doping process for DMOS, it is natural that they can be performed independently of each other. In the above embodiment, the DMOS is used as the power element, but the IG
Of course, it can be changed to BT or the like. Further, it goes without saying that laser annealing of the polysilicon regions 11 and 12 and formation of MOS transistors in the polysilicon regions 11 and 12 are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図、FIG. 1 is a sectional view showing an embodiment of the present invention,

【図2】図1の装置の製造プロセスを示す断面図、2 is a sectional view showing a manufacturing process of the device of FIG.

【図3】図1の装置の製造プロセスを示す断面図、3 is a sectional view showing a manufacturing process of the device of FIG.

【図4】図1の装置の製造プロセスを示す断面図、4 is a sectional view showing a manufacturing process of the device of FIG.

【図5】図1の装置の製造プロセスを示す断面図、5 is a cross-sectional view showing a manufacturing process of the device of FIG. 1,

【符号の説明】[Explanation of symbols]

1はN+ シリコン基板(半導体基板)、2はN- エピ
層、31、32はP- ウエル領域4はP- チャンネルウ
エル領域、5はN+ ソース領域、7はゲート電極(本発
明でいう電極体)、81はゲート絶縁膜、82はシリコ
ン酸化膜(フィールド絶縁膜)、10はマスク体、1
1、12はポリシリコン領域(本発明でいう半導体領
域)。
1 is an N + silicon substrate (semiconductor substrate), 2 is an N epitaxial layer, 31 and 32 are P well regions 4, P channel well regions, 5 are N + source regions, and 7 is a gate electrode (referred to in the present invention). Electrode body), 81 is a gate insulating film, 82 is a silicon oxide film (field insulating film), 10 is a mask body, 1
Reference numerals 1 and 12 are polysilicon regions (semiconductor regions in the present invention).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に絶縁膜を形成し、前記絶
縁膜上に電極体を形成する電極体形成工程と、 前記基板及び電極体上に側壁用絶縁膜を形成し、前記側
壁用絶縁膜を反応性イオンエッチングして前記電極体の
側面を覆うマスク体を形成するマスク体形成工程と、 前記電極体及びマスク体をマスクとして前記基板の表面
部に不純物を二重にドープして二重拡散領域を形成する
二重拡散領域形成工程と、 前記マスク体形成後に前記絶縁膜の所定領域上に所定形
状の半導体領域を形成する半導体領域形成工程とを備え
ることを特徴とする半導体装置の製造方法。
1. An electrode body forming step of forming an insulating film on a semiconductor substrate and forming an electrode body on the insulating film; and forming a sidewall insulating film on the substrate and the electrode body to form the sidewall insulating film. A mask body forming step of forming a mask body covering the side surface of the electrode body by reactive ion etching the film; and dope the surface of the substrate doubly with impurities by using the electrode body and the mask body as a mask. A semiconductor device comprising: a double diffusion region forming step of forming a heavy diffusion region; and a semiconductor region forming step of forming a semiconductor region having a predetermined shape on a predetermined region of the insulating film after forming the mask body. Production method.
JP4074493A 1990-10-01 1992-03-30 Method for manufacturing semiconductor device Expired - Lifetime JP2858384B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4074493A JP2858384B2 (en) 1992-03-30 1992-03-30 Method for manufacturing semiconductor device
US08/469,622 US5798550A (en) 1990-10-01 1995-06-06 Vertical type semiconductor device and gate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074493A JP2858384B2 (en) 1992-03-30 1992-03-30 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05283701A true JPH05283701A (en) 1993-10-29
JP2858384B2 JP2858384B2 (en) 1999-02-17

Family

ID=13548886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074493A Expired - Lifetime JP2858384B2 (en) 1990-10-01 1992-03-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2858384B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2949065A1 (en) * 1978-12-12 1980-11-06 Yamanouchi Pharma Co Ltd 7 ALPHA METHOXYCEPHALOSPORINE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF
JP2005347771A (en) * 1998-01-27 2005-12-15 Fuji Electric Device Technology Co Ltd Mos semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2949065A1 (en) * 1978-12-12 1980-11-06 Yamanouchi Pharma Co Ltd 7 ALPHA METHOXYCEPHALOSPORINE DERIVATIVES AND METHOD FOR THE PRODUCTION THEREOF
JP2005347771A (en) * 1998-01-27 2005-12-15 Fuji Electric Device Technology Co Ltd Mos semiconductor device

Also Published As

Publication number Publication date
JP2858384B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US5567634A (en) Method of fabricating self-aligned contact trench DMOS transistors
US6252277B1 (en) Embedded polysilicon gate MOSFET
JP4180800B2 (en) Super self-aligned trench DMOSFET with reduced on-resistance
US4682405A (en) Methods for forming lateral and vertical DMOS transistors
US4757032A (en) Method for DMOS semiconductor device fabrication
US6710383B2 (en) MISFET semiconductor device having a high dielectric constant insulating film with tapered end portions
JP4018780B2 (en) Manufacturing method of DMOS transistor
US5382536A (en) Method of fabricating lateral DMOS structure
JP4490094B2 (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device
JPH11297984A (en) Structure of ldd type mos transistor and forming method
US6133099A (en) Vertical MOSFET and method of manufacturing thereof
US6225663B1 (en) Semiconductor device having SOI structure and method of fabricating the same
US4151635A (en) Method for making a complementary silicon gate MOS structure
US7419883B2 (en) Method for fabricating a semiconductor structure having selective dopant regions
US6451645B1 (en) Method for manufacturing semiconductor device with power semiconductor element and diode
JP2858384B2 (en) Method for manufacturing semiconductor device
JP2834058B2 (en) Method for manufacturing semiconductor device
JP3283458B2 (en) Method for manufacturing semiconductor device
JPH07283302A (en) Manufacture of semiconductor integrated circuit device
EP0614218A1 (en) Method for manufacturing capacitor and MIS transistor
US5869372A (en) Method of manufacturing a power semiconductor device
JP2856603B2 (en) Method for manufacturing semiconductor device
JPH10190002A (en) High voltage device with insulated gate pinchi-off structure
JPH05275691A (en) Semiconductor device and manufacture thereof
KR0183669B1 (en) High voltage semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101204

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111204

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 14