JPH05281379A - Fusion device - Google Patents

Fusion device

Info

Publication number
JPH05281379A
JPH05281379A JP4113063A JP11306392A JPH05281379A JP H05281379 A JPH05281379 A JP H05281379A JP 4113063 A JP4113063 A JP 4113063A JP 11306392 A JP11306392 A JP 11306392A JP H05281379 A JPH05281379 A JP H05281379A
Authority
JP
Japan
Prior art keywords
hydrogen absorbing
absorbing metal
ultrasonic
hydrogen storage
duterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4113063A
Other languages
Japanese (ja)
Inventor
Hiroshi Kubota
博 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4113063A priority Critical patent/JPH05281379A/en
Publication of JPH05281379A publication Critical patent/JPH05281379A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To increase the probability of stable fusion and shorten the time for duterium being absorbed in hydrogen absorbing metal crystal by arranging an arbitrary number of ultrasonic generation elements and ultrasonic reflector. CONSTITUTION:The inner wall of a vessel having eliptical cross section of the inner surface totally or partly is made of ultrasonic reflector 6. On one focus of the two, a negative electrode 1 of hydrogen absorbing metal such as paradium is and on the other focus, an ultrasonic generator element 5 is arranged, and the vessel is filled with duterium water 2. Platinum positive electrode 4 is placed and electric current is applied between the both electrodes. The duterium produced by the electrolysis of the duterium water 2 is produced on the surface of the hydrogen absorbing metal and soon absorbed in the hydrogen absorbing metal. At this moment, the ultrasonic wave generated by the ultrasonic generator element 5 having the hydrogen absorbing metal at the focus gathers to the hydrogen absorbing metal. Therefore, very high pressure is added on the hydrogen absorbing metal and the generated duterium is taken inside of the hydrogen absorbing metal without escaping from the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵金属を使用し
た核融合装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fusion device using a hydrogen storage metal.

【0002】[0002]

【従来の技術】従来、水素吸蔵金属を使用した常温核融
合装置には、陰極にパラジウム、チタン等の水素吸蔵金
属を、陽極に白金を使用し、これを重水に浸し、両電極
に電流を流して電気分解をする方法、水素吸蔵金属に重
水素を吸収させ加圧する方法、重水素を吸収させた水素
吸蔵金属に真空中で電流を流す方法等があった。
2. Description of the Related Art Conventionally, in a cold fusion device using a hydrogen storage metal, a hydrogen storage metal such as palladium or titanium is used for the cathode and platinum is used for the anode, and the platinum is immersed in heavy water to apply an electric current to both electrodes. There are a method of flowing and electrolyzing, a method of absorbing and pressurizing deuterium in a hydrogen storage metal, a method of passing an electric current in a vacuum in the hydrogen storage metal that has absorbed deuterium.

【0003】[0003]

【発明が解決しようとする課題】従来の常温核融合装置
においては、水素吸蔵金属を陰極に、白金を陽極として
重水の電気分解を行うと、陽極に酸素が、陰極に重水素
が発生するが、陰極に使用されている電極が水素吸蔵金
属であるために、電気分解されて生成された重水素は水
素吸蔵金属の中に吸収される。しかし、重水の電気分解
を続けていく内に水素吸蔵金属中の重水素の密度が高く
なるに従い、生成された重水素は水素吸蔵金属に吸収さ
れにくくなり水素吸蔵金属の表面から逃げていってしま
うため、核融合に必要な密度には濃縮されないまま終わ
っていたため、安定した核融合には至らず反応が一時的
で再現性がないという決定的な欠点があった。又、こう
した場合には熱エネルギーを取り出すことが難しかっ
た。
In the conventional cold fusion apparatus, when heavy water is electrolyzed using a hydrogen storage metal as a cathode and platinum as an anode, oxygen is generated at the anode and deuterium is generated at the cathode. Since the electrode used for the cathode is a hydrogen storage metal, the deuterium produced by electrolysis is absorbed in the hydrogen storage metal. However, as the density of deuterium in the hydrogen storage metal increased as the electrolysis of heavy water continued, the generated deuterium became difficult to be absorbed by the hydrogen storage metal and escaped from the surface of the hydrogen storage metal. Since it ended up without being concentrated to the density required for nuclear fusion, there was a decisive drawback that stable fusion was not achieved and the reaction was temporary and non-reproducible. Moreover, in such a case, it was difficult to extract thermal energy.

【0004】[0004]

【課題を解決するための手段】水素吸蔵金属(1)を使
用した核融合装置において、水素吸蔵金属(1)が焦点
となる位置に、任意の数の超音波発生素子(5)と超音
波反射材(6)を配置する。
In a fusion device using a hydrogen storage metal (1), an arbitrary number of ultrasonic wave generating elements (5) and ultrasonic waves are placed at a position where the hydrogen storage metal (1) is a focal point. A reflector (6) is placed.

【0005】[0005]

【作用】本発明において、重水の電気分解によって生成
された重水素は水素吸蔵金属の表面に生成されたあとす
ぐに水素吸蔵金属に吸収されるが、このときに水素吸蔵
金属を焦点とする超音波発生素子によって発生した超音
波は焦点である水素吸蔵金属に一斉に向かうため、水素
吸蔵金属の周囲から非常に強い圧力が加えられることに
なる。従って、生成された重水素は水素吸蔵金属の表面
から逃げていくことなく、水素吸蔵金属の中に押し込ま
れる形で吸収される。この密度は水素吸蔵金属の持つ重
水素吸収能力の限界まで重水素を吸蔵させることが出来
るため核融合に必要な高密度を達成出来る。又、一秒間
に数万回もの超音波による振動によって水素吸蔵金属の
陰極と白金の陽極の表面を常に洗浄している状態となる
ので、電極の活性状態が持続し重水の電気分解の効率が
高くなる。
In the present invention, deuterium produced by the electrolysis of heavy water is absorbed by the hydrogen storage metal immediately after being produced on the surface of the hydrogen storage metal. The ultrasonic waves generated by the sound wave generation element are directed to the hydrogen storage metal, which is the focal point, all at once, so that a very strong pressure is applied from around the hydrogen storage metal. Therefore, the generated deuterium is absorbed by being pushed into the hydrogen storage metal without escaping from the surface of the hydrogen storage metal. Since this density can store deuterium up to the limit of the deuterium absorption capacity of the hydrogen storage metal, the high density required for fusion can be achieved. Also, because the surfaces of the hydrogen storage metal cathode and the platinum anode are constantly cleaned by ultrasonic vibrations of tens of thousands of times per second, the active state of the electrode is maintained and the efficiency of electrolysis of heavy water is improved. Get higher

【0006】[0006]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例の説明図であり、内面の全
部又は一部の断面が楕円である容器の内壁を超音波反射
材(6)とし、2つの焦点の一方にパラジウム等の水素
吸蔵金属の陰極(1)を、他方の焦点に超音波発生素子
(5)を配置し、容器内には重水(2)を満たし、白金
の陽極(4)を設置して両電極間に電気を流すよう配置
したものである。このとき、超音波反射材(6)の一部
を白金で作りこれを白金の陽極(4)としても良い。図
2は本発明の一実施例の説明図であり、内面の全部又は
一部が球又は円筒である容器の中心にパラジウム等の水
素吸蔵金属の陰極(1)を、球内壁に超音波発生素子
(5)および超音波反射材(6)を配置し、白金の陽極
(4)を設置し、容器内に重水(2)満たして両電極間
に電気を流すよう配置したものである。図3は本発明の
一実施例の断面図であり、パラジウム等の水素吸蔵金属
の陰極(1)が焦点となるような位置に内面が放物面で
ある超音波反射材(6)と、超音波発生素子(5)を配
置し、白金の陽極(4)を配置し、容器内に重水(2)
を満たして両電極に電流を流すことが出来るように配置
したものである。なお、本発明は、前述の重水の電気分
解による核融合装置以外にも、水素吸蔵金属に重水素を
吸収させ加圧する常温核融合にも適用出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of an embodiment of the present invention, in which an inner wall of a container having an elliptical cross section of the whole or a part of the inner surface is an ultrasonic reflector (6), and one of two focal points is made of hydrogen such as palladium. The cathode (1) made of an occlusion metal and the ultrasonic wave generating element (5) are placed at the other focal point, the container is filled with heavy water (2), and the platinum anode (4) is installed to generate electricity between both electrodes. It is arranged to flow. At this time, a part of the ultrasonic reflecting material (6) may be made of platinum and used as the platinum anode (4). FIG. 2 is an explanatory view of an embodiment of the present invention, in which a cathode (1) made of a hydrogen storage metal such as palladium is formed at the center of a container whose inner surface is wholly or partially a sphere or a cylinder, and ultrasonic waves are generated on the inner wall of the sphere. The element (5) and the ultrasonic wave reflecting material (6) are arranged, the platinum anode (4) is arranged, the container is filled with heavy water (2), and electricity is passed between both electrodes. FIG. 3 is a cross-sectional view of an embodiment of the present invention, in which an ultrasonic reflector (6) having an inner surface that is a paraboloid at a position where the cathode (1) of a hydrogen storage metal such as palladium is the focal point, An ultrasonic wave generating element (5) is arranged, a platinum anode (4) is arranged, and heavy water (2) is placed in the container.
Is arranged so that the current can be passed through both electrodes. The present invention can be applied not only to the nuclear fusion device by electrolysis of heavy water described above, but also to cold fusion in which deuterium is absorbed in a hydrogen storage metal and pressurized.

【0007】[0007]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0008】従来の常温核融合装置に比べて、電気分解
によって生成された重水素(3)が次々とパラジウム等
の水素吸蔵金属(1)の結晶内部に重水素(3)が吸収
されていくが、従来は水素吸蔵金属(1)中の密度が高
くなるにつれて水素吸蔵金属(1)の表面から逃げてい
た重水素(3)が、超音波の働きにより重水素(3)は
水素吸蔵金属(1)の表面から逃げていくことが出来ず
にパラジウム等の水素吸蔵金属(1)の中に強制的に入
っていくのでパラジウム結晶内部は高密度に圧縮される
ので、安定した核融合の確率が飛躍的に増大する。又、
重水素(3)が水素吸蔵金属(1)結晶に吸収されるま
での時間が大幅に短縮される。又、これにより、従来核
融合が不安定であったものが安定した核融合に至る。更
に、超音波発生素子(5)は一秒間に数万回の振動を発
生させるため、水素吸蔵金属の陰極(1)及び白金の陽
極(4)の表面が常に洗浄された状態となるため、活性
化された状態を保つので、電気分解による重水素生成効
率が落ちない。
As compared with the conventional cold fusion apparatus, deuterium (3) produced by electrolysis is successively absorbed in the crystal of the hydrogen storage metal (1) such as palladium. However, deuterium (3), which has conventionally escaped from the surface of the hydrogen storage metal (1) as the density in the hydrogen storage metal (1) increases, is changed to deuterium (3) by the action of ultrasonic waves. Since it cannot escape from the surface of (1) and forcibly enters into the hydrogen storage metal (1) such as palladium, the inside of the palladium crystal is compressed at a high density, which results in stable fusion. The probability increases dramatically. or,
The time taken for the deuterium (3) to be absorbed by the hydrogen storage metal (1) crystal is significantly shortened. In addition, this leads to stable fusion which was previously unstable. Furthermore, since the ultrasonic wave generating element (5) generates vibrations of tens of thousands of times per second, the surfaces of the hydrogen storage metal cathode (1) and the platinum anode (4) are always cleaned, Since the activated state is maintained, deuterium production efficiency by electrolysis does not decrease.

【0009】[0009]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による常温核融合装置の一実施例の説明
図で装置断面が楕円のもの。
FIG. 1 is an explanatory view of an embodiment of a cold fusion device according to the present invention, which has an oval cross section.

【図2】本発明による常温核融合装置の一実施例の説明
図で断面が球であるもの。
FIG. 2 is an explanatory view of an embodiment of the cold fusion apparatus according to the present invention, which has a spherical section.

【図3】本発明による常温核融合装置の一実施例の説明
図で超音波反射材が放物面であるもの。
FIG. 3 is an explanatory view of an embodiment of the cold fusion device according to the present invention, in which the ultrasonic reflecting material is a paraboloid.

【符号の説明】[Explanation of symbols]

1 水素吸蔵金属の陰極 2 重水 3 重水素 4 白金の陰極 5 超音波発生素子 6 超音波反射材 7 超音波発生装置 8 熱交換用パイプ 9 酸素ガス取り出し口 10 電源 11 酸素 1 Hydrogen Storage Metal Cathode 2 Deuterium Water 3 Deuterium 4 Platinum Cathode 5 Ultrasonic Generator 6 Ultrasonic Reflector 7 Ultrasonic Generator 8 Heat Exchange Pipe 9 Oxygen Gas Outlet 10 Power Supply 11 Oxygen

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵金属(1)を使用した核融合装
置において、水素吸蔵金属(1)が焦点となる位置に、
任意の数の超音波発生素子(5)と超音波反射材(6)
を配置したことを特徴とした核融合装置。
1. A fusion device using a hydrogen storage metal (1), wherein the hydrogen storage metal (1) is at a focal point,
Any number of ultrasonic wave generating elements (5) and ultrasonic wave reflecting materials (6)
A nuclear fusion device characterized in that
JP4113063A 1992-04-05 1992-04-05 Fusion device Pending JPH05281379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4113063A JPH05281379A (en) 1992-04-05 1992-04-05 Fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4113063A JPH05281379A (en) 1992-04-05 1992-04-05 Fusion device

Publications (1)

Publication Number Publication Date
JPH05281379A true JPH05281379A (en) 1993-10-29

Family

ID=14602564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4113063A Pending JPH05281379A (en) 1992-04-05 1992-04-05 Fusion device

Country Status (1)

Country Link
JP (1) JPH05281379A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075901A1 (en) * 2000-03-30 2001-10-11 Isao Sakamoto Apparatus for nuclear fusion using thetapinch of hydrogen-occluding metal
WO2003034441A1 (en) * 2001-10-18 2003-04-24 Ian Robert Symons Fusion reactor and method for generating energy by fusion
JP2008261868A (en) * 2008-05-09 2008-10-30 Yoshiaki Arata Method of generating a lot of heat and helium by nuclear fusion using superhigh-density deuterated nanoparticle and its device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075901A1 (en) * 2000-03-30 2001-10-11 Isao Sakamoto Apparatus for nuclear fusion using thetapinch of hydrogen-occluding metal
WO2003034441A1 (en) * 2001-10-18 2003-04-24 Ian Robert Symons Fusion reactor and method for generating energy by fusion
JP2008261868A (en) * 2008-05-09 2008-10-30 Yoshiaki Arata Method of generating a lot of heat and helium by nuclear fusion using superhigh-density deuterated nanoparticle and its device

Similar Documents

Publication Publication Date Title
US20120097550A1 (en) Methods for enhancing water electrolysis
RU96117261A (en) METHOD AND GENERATOR FOR ENERGY PRODUCTION BY MEANS OF ANHARMONIC FORCED NUCLEAR SYNTHESIS
WO2001039200A2 (en) Cavitation nuclear reactor
JPH0353195A (en) Energy generator
JPH0367196A (en) Experimenting device for nuclear fusion
JPH05281379A (en) Fusion device
WO2016136656A1 (en) Method for generating mechanical and electrochemical cavitation, method for changing geometric shape and electrochemical properties of substance surface, method for peeling off rare metal, mechanical and electrochemical cavitation generator, and method for generating nuclear fusion reaction of deuterium
JP2004003973A (en) Energy/matter conversion method and structure
JPH08194079A (en) Heat generating apparatus utilizing reaction phenomenon of alloy containing deuterium in dynamic ultrasonic field
JPH0618683A (en) Cylinder plating type vibrating electrode apparatus for normal temperature nuclear fusion
JP2008261868A (en) Method of generating a lot of heat and helium by nuclear fusion using superhigh-density deuterated nanoparticle and its device
JPWO2008001489A1 (en) Hydrogen generator and hydrogen generation method
RU2004131361A (en) HYDROGEN STORAGE TANK AND HYDROGEN ACCUMULATION METHOD
JPH0368791A (en) Method and device for occluding hydrogen in hydrogen storage body
JPH0527062A (en) Generation of abnormal heat
JPH06222173A (en) Cold nuclear fusion apparatus
RU2162259C1 (en) Energy source
RU95119726A (en) METHOD FOR PRODUCING HIGH-TEMPERATURE PLASMA AND IMPLEMENTING THERMONUCLEAR REACTIONS
JP2000162399A (en) Neutron-generating device utilizing proton
RU2125303C1 (en) Method for conducting inertial thermonuclear fusion and conversion of energy obtained
CN107084104A (en) A kind of solar power system
RU2110137C1 (en) Ionized-turbulent plasma accumulator
JPH07104081A (en) Exothermic device
JPH02275397A (en) Nuclear fusion apparatus
JPH10330980A (en) Method for using gas generator using water electrolytic cell