RU95119726A - METHOD FOR PRODUCING HIGH-TEMPERATURE PLASMA AND IMPLEMENTING THERMONUCLEAR REACTIONS - Google Patents

METHOD FOR PRODUCING HIGH-TEMPERATURE PLASMA AND IMPLEMENTING THERMONUCLEAR REACTIONS

Info

Publication number
RU95119726A
RU95119726A RU95119726/25A RU95119726A RU95119726A RU 95119726 A RU95119726 A RU 95119726A RU 95119726/25 A RU95119726/25 A RU 95119726/25A RU 95119726 A RU95119726 A RU 95119726A RU 95119726 A RU95119726 A RU 95119726A
Authority
RU
Russia
Prior art keywords
working volume
deuterium
mixture
bubble
tritium
Prior art date
Application number
RU95119726/25A
Other languages
Russian (ru)
Other versions
RU2096934C1 (en
Inventor
М.А. Маргулис
Original Assignee
М.А. Маргулис
Filing date
Publication date
Application filed by М.А. Маргулис filed Critical М.А. Маргулис
Priority to RU95119726A priority Critical patent/RU2096934C1/en
Priority claimed from RU95119726A external-priority patent/RU2096934C1/en
Publication of RU95119726A publication Critical patent/RU95119726A/en
Application granted granted Critical
Publication of RU2096934C1 publication Critical patent/RU2096934C1/en

Links

Claims (6)

1. Способ получения высокотемпературной плазмы и осуществления термоядерных реакций, заключающийся в воздействии на помещенную в рабочий объем смесь дейтерия с тритием колебаниями, тип и частота которых вызывают локализацию в центральной части рабочего объема электрического поля, отличающийся тем, что рабочий объем заполняют жидкостью, насыщенной дейтериево-тритиевой смесью с добавкой инертного газа, возбуждают ультразвуковые колебания до получения устойчивого одиночного кавитационного пузырька при фокусировании энергии ультразвукового поля в области генерации пузырька с плотностью мощности не менее 1014 Вт.см-3, а затем после удаления пузырька в рабочий объем вводят микропузырьки, содержащие смесь указанного состава.1. A method of producing a high-temperature plasma and carrying out thermonuclear reactions, which consists in exposing the mixture of deuterium to tritium into the working volume to vibrations, the type and frequency of which localize in the central part of the working volume of the electric field, characterized in that the working volume is filled with a liquid saturated with deuterium -tritium mixture with the addition of an inert gas, ultrasonic vibrations are excited until a stable single cavitation bubble is obtained when the energy is focused by ultrasound field in the field of generation of a bubble with a power density of at least 10 14 W cm –3 , and then, after removing the bubble, microbubbles containing a mixture of the specified composition are introduced into the working volume. 2. Способ по п.1, отличающийся тем, что для получения ультразвуковых колебаний используют систему цилиндрических фокусирующих ячеек. 2. The method according to claim 1, characterized in that to obtain ultrasonic vibrations using a system of cylindrical focusing cells. 3. Способ по п.1, отличающийся тем, что для получения ультразвуковых колебаний используют систему сферических ячеек. 3. The method according to claim 1, characterized in that to obtain ultrasonic vibrations using a system of spherical cells. 4. Способ по п.1, отличающийся тем, что жидкость, вводимую в рабочий объем, подвергают дегазации, насыщению дейтериевой или дейтериево-тритиевой смесью с добавкой инертного газа, периодической фильтрации и принудительной циркуляции. 4. The method according to claim 1, characterized in that the liquid introduced into the working volume is subjected to degassing, saturation with a deuterium or deuterium-tritium mixture with the addition of an inert gas, periodic filtration and forced circulation. 5. Способ по п.1, отличающийся тем, что процесс проводят в постоянном электрическом поле. 5. The method according to claim 1, characterized in that the process is carried out in a constant electric field. 6. Способ по п.1, отличающийся тем, что рабочий объем подвергают статическому давлению. 6. The method according to claim 1, characterized in that the working volume is subjected to static pressure.
RU95119726A 1995-11-29 1995-11-29 Method for generation of high-temperature plasma and running thermonuclear reactions RU2096934C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU95119726A RU2096934C1 (en) 1995-11-29 1995-11-29 Method for generation of high-temperature plasma and running thermonuclear reactions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU95119726A RU2096934C1 (en) 1995-11-29 1995-11-29 Method for generation of high-temperature plasma and running thermonuclear reactions

Publications (2)

Publication Number Publication Date
RU95119726A true RU95119726A (en) 1997-10-27
RU2096934C1 RU2096934C1 (en) 1997-11-20

Family

ID=20174036

Family Applications (1)

Application Number Title Priority Date Filing Date
RU95119726A RU2096934C1 (en) 1995-11-29 1995-11-29 Method for generation of high-temperature plasma and running thermonuclear reactions

Country Status (1)

Country Link
RU (1) RU2096934C1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2229748C2 (en) * 2000-01-21 2004-05-27 Апуховский Александр Иванович Method for producing nuclear and thermonuclear explosions
RU2258268C2 (en) * 2002-08-12 2005-08-10 Стрельцов Александр Яковлевич Method for intensifying sonoluminescence process on geometric symmetry centers of cylindrical or spherical radiation surface
RU2273968C1 (en) * 2004-11-30 2006-04-10 Закрытое акционерное общество "Рустермосинтез" Method for forming stable states of dense high temperature plasma
RU2454840C2 (en) * 2008-08-12 2012-06-27 Альбина Александровна Корнилова Method of generating x-ray radiation device for realising said method
WO2010019068A1 (en) * 2008-08-12 2010-02-18 Kornilova Albina Aleksandrovna Method for producing x-ray radiation and a device for carrying out said method
CN104200849B (en) * 2014-08-22 2017-05-31 清华大学 The method that high-temperature plasma is constrained using vacuole collapse
CN104900289A (en) * 2015-04-07 2015-09-09 清华大学 Method, device and system for preparing tritium

Similar Documents

Publication Publication Date Title
US4333796A (en) Method of generating energy by acoustically induced cavitation fusion and reactor therefor
Reisse et al. Sonoelectrochemistry in aqueous electrolyte: a new type of sonoelectroreactor
Young Sonoluminescence
Henglein Sonochemistry: historical developments and modern aspects
Sette et al. Nucleation by cosmic rays in ultrasonic cavitation
US20100206742A1 (en) Ultrasonic treatment chamber for treating hydrogen isotopes
RU95119726A (en) METHOD FOR PRODUCING HIGH-TEMPERATURE PLASMA AND IMPLEMENTING THERMONUCLEAR REACTIONS
Ciaravino et al. Pulsed enhancement of acoustic cavitation: a postulated model
Craxton et al. Progress in laser fusion
WO2002097823A1 (en) Methods and apparatus to induce d-d and d-t reactions
US20120281797A1 (en) High velocity droplet impacts
US20070002996A1 (en) Tabletop nuclear fusion generator
HK1056353A1 (en) Method and device for continuous electrolytic disposal of waste water.
RU2096934C1 (en) Method for generation of high-temperature plasma and running thermonuclear reactions
Chen et al. Single bubble sonoluminescence driven by non-simple-harmonic ultrasounds
EP0392325A3 (en) Electrochemical nuclear fusion method
RU2258268C2 (en) Method for intensifying sonoluminescence process on geometric symmetry centers of cylindrical or spherical radiation surface
JPH05281379A (en) Fusion device
Kubo et al. Visualization of acoustically induced cavitation bubbles and microjets with the aid of a high-speed camera
RU2125303C1 (en) Method for conducting inertial thermonuclear fusion and conversion of energy obtained
JP7563810B1 (en) Hydrogen gas production method and production device
CN215855581U (en) Ultrasonic-assisted micro-electrolysis device
Wang et al. The cavitation valley phenomenon of rectangular wave modulation ultrasound
SU1507192A1 (en) Method of conducting plasma-chemical reactions
Sokollu Irreversible Effects of High Frequency Ultrasound on Animal Tissue and the Related Threshold Intensities