JPH0353195A - Energy generator - Google Patents

Energy generator

Info

Publication number
JPH0353195A
JPH0353195A JP1187531A JP18753189A JPH0353195A JP H0353195 A JPH0353195 A JP H0353195A JP 1187531 A JP1187531 A JP 1187531A JP 18753189 A JP18753189 A JP 18753189A JP H0353195 A JPH0353195 A JP H0353195A
Authority
JP
Japan
Prior art keywords
electrode
palladium
power source
porous structure
palladium electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1187531A
Other languages
Japanese (ja)
Inventor
Masao Kasahara
笠原 征夫
Hidehiko Negishi
根岸 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1187531A priority Critical patent/JPH0353195A/en
Publication of JPH0353195A publication Critical patent/JPH0353195A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To generate a large quantity of heat energy with simple constitution by using a platinum electrode as anode and a palladium electrode as cathode, forming the palladium electrode into a porous structure and oscillating this palladium electrode. CONSTITUTION:A soln. 2 is put into a vessel 1 and the platinum electrode 3 and the palladium electrodes 4 having the surface of the porous structure are disposed therein. Electric power is supplied to these electrodes by a power source 5. The electrode 4 is integrated with a piezoelectric oscillator 6. The oscillator 6 is electrically connected to a power source 7 for the piezoelectric oscillator. The soln. 2 of deuterium starts electrolysis and the deuterium gathers on the surface of the electrode 4 when the switch of the power source 5 is turned on. Current flows and the oscillator 6 starts oscillating when the switch of the power source 7 is turned on at this time. The electrode 4 integral with the oscillator 6 simultaneously oscillates ultrasonically when the oscillator 6 generates ultrasonic waves. Powerful cavitation arises on the surface of the electrode 4 and a large pressure and high-temp. state are attained on the surface of the electrode 4 by this cavitation. The aggregation reaction of the deuterium is rapidly progressed and the large quantity of the heat energy is generated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は簡単な構成によるエネルギー発生装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an energy generating device with a simple configuration.

(従来の技術) 従来、エネルギー発生装置としての重水素反応装置は,
高温、高圧下において、重水素一重水素を融合反応させ
ることにより行わせていた。
(Prior art) Conventionally, a deuterium reactor used as an energy generating device was
It was carried out by fusion reaction of monodeuterium at high temperature and pressure.

(発明が解決しようとするHM) しかしながら、上記従来の重水素反応装置は、極めて高
価な設備を必要とし,しかも極めて効率が悪い等の欠点
があった。
(HM to be Solved by the Invention) However, the conventional deuterium reactor described above requires extremely expensive equipment and has drawbacks such as extremely low efficiency.

本発明は上記の欠点をなくし、極めて簡単な方法により
,安価に反応を行わしめることによる、エネルギー発生
装置を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and to provide an energy generating device that can carry out reactions at low cost using an extremely simple method.

(課題を解決するための手段) 本発明は上記目的を達或するために,重水及びアルカリ
ハライドから成る溶液と,白金電極,パラジウム電極,
電源とから構威した装置を用い、白金電極を陽極、パラ
ジウム電極を凸凹の大きい多孔質構造の陰電極として電
気エネルギーを供給することにより、パラジウム電極表
面に大量のエネルギーを発生させるもので,このとき,
バラジウム電極表面を超音波振動させることにより、ま
た,パラジウム電極表面を多孔質構造に形成せしめるこ
とによって、極めて高効率のエネルギー発生を行わせる
ことができることを発見したことに基づいている。
(Means for Solving the Problems) In order to achieve the above object, the present invention uses a solution consisting of heavy water and an alkali halide, a platinum electrode, a palladium electrode,
This method generates a large amount of energy on the surface of the palladium electrode by supplying electrical energy to the platinum electrode as an anode and the palladium electrode as a cathode with a highly uneven porous structure using a device constructed from a power source. When,
This method is based on the discovery that energy can be generated with extremely high efficiency by subjecting the palladium electrode surface to ultrasonic vibration and by forming the palladium electrode surface into a porous structure.

(作 用) したがって本発明によれば、重水と、白金電極、パラジ
ウム電極、電源とから構成した装置を用い、白金電極を
陽極,パラジウム電極を陰極として電気エネルギーを供
給することにより,パラジウム電極表面に大量のエネル
ギーを発生させるもので、このとき,パラジウム電極表
面を超音波振動させることにより,パラジウム電極表面
にキャビテーションを生じさせ、これにより該電極表面
に高圧高温状態を生じさせ,重水素の凝集反応を効果的
に高め,それと同時に,パラジウム電極表面を多孔質構
造に形成せしめ,電極表面積を実効的に大きくシ,かつ
,反応を最も効果的にする粒径0.l〜100ミクロン
の大きさに設定することによって,極めて高効率のエネ
ルギー発生を行わせることができる. (実施例) 第1図は本発明のー.実施例におけるエネルギー発生装
置の概略を示している.第1図において、1は高温に耐
える磁器等から成る容器,2は重水及び塩化リチウム等
のアルカリハライド等から成る溶液,3は電源の陽極に
接続された白金電極、4は電源の陰極に接続されたパラ
ジウム電極,5は電源、6は圧電振動子、7は出力電圧
10数ボルトの圧電振動子用電源である。
(Function) Therefore, according to the present invention, by using a device composed of heavy water, a platinum electrode, a palladium electrode, and a power source, and supplying electrical energy with the platinum electrode as an anode and the palladium electrode as a cathode, the surface of the palladium electrode is At this time, the palladium electrode surface is vibrated ultrasonically to generate cavitation on the palladium electrode surface, which creates a high-pressure and high-temperature state on the electrode surface, which causes the aggregation of deuterium. At the same time, the palladium electrode surface is formed into a porous structure to effectively increase the electrode surface area, and the particle size is 0.00 to make the reaction most effective. By setting the size to 1 to 100 microns, it is possible to generate energy with extremely high efficiency. (Example) Figure 1 shows the embodiment of the present invention. This figure shows an outline of the energy generation device in the example. In Figure 1, 1 is a container made of porcelain that can withstand high temperatures, 2 is a solution made of heavy water and an alkali halide such as lithium chloride, 3 is a platinum electrode connected to the anode of the power source, and 4 is connected to the cathode of the power source. 5 is a power source, 6 is a piezoelectric vibrator, and 7 is a power source for the piezoelectric vibrator with an output voltage of 10-odd volts.

容器1に溶液2を入れ,白金電極3及びパラジウム電極
4を配し電源5のよって電力を供給する.パラジウム電
極4は圧電振動子6と一体になっており、圧電振動子6
は圧電振動子用電源7に電気的に接続されている.電源
5のスイッチを入れると同時に,重水の溶液2は電気分
解を開始し,重水素はパラジウム電極4の表面に集まる
。この時パラジウム電極4の表面に多量の熱量が発生す
る.実験によると、ve.gとして10数ボルト、20
数時間後に印加熱量の約50%増の熱量が発生した。こ
こで、圧電振動子用電源7のスイッチを入れると、30
数ミリアンペアの電流が流れ圧電振動子6は20数キロ
ヘルツで振動を開始する.圧電振動子6が、強力な超音
波を発生すると、圧電振動子6と一体となったパラジウ
ム電極4も,同時は超音波振動し、該パラジウム電極4
の表面では、強力なキャビテーションが起こる。この強
力なキャビテーションにより,該パラジウム電極4の表
面では、非常に大きな圧力と、高温度の状態となる.そ
のため,該パラジウム電極4の表面での重水素の凝集反
応が急激に進む.この結果,該パラジウム電極4の表面
での発生熱量は、キャビテーションのない場合に比べ,
約60%の上昇となった。
A solution 2 is placed in a container 1, a platinum electrode 3 and a palladium electrode 4 are arranged, and power is supplied from a power source 5. The palladium electrode 4 is integrated with the piezoelectric vibrator 6, and the piezoelectric vibrator 6
is electrically connected to the piezoelectric vibrator power supply 7. As soon as the power source 5 is turned on, the heavy water solution 2 starts electrolyzing, and deuterium collects on the surface of the palladium electrode 4. At this time, a large amount of heat is generated on the surface of the palladium electrode 4. According to experiments, ve. g as 10-odd volts, 20
After several hours, an amount of heat approximately 50% higher than the amount of applied heat was generated. Here, when the piezoelectric vibrator power supply 7 is turned on, 30
A current of several milliamps flows, and the piezoelectric vibrator 6 begins to vibrate at a frequency of 20-odd kilohertz. When the piezoelectric vibrator 6 generates strong ultrasonic waves, the palladium electrode 4 integrated with the piezoelectric vibrator 6 simultaneously vibrates ultrasonically, and the palladium electrode 4
Strong cavitation occurs on the surface of This strong cavitation creates extremely high pressure and high temperature on the surface of the palladium electrode 4. Therefore, the aggregation reaction of deuterium on the surface of the palladium electrode 4 rapidly progresses. As a result, the amount of heat generated on the surface of the palladium electrode 4 is lower than that in the case without cavitation.
This was an increase of about 60%.

第2図は本発明の第l図のパラジウム電極4の断面を示
したものである。第2図において、4はパラジウム電極
、11は凸凹をつけた多孔貿構造表面である. 次に上記実施例の動作について説明する。上記実施例に
おいて,通電時のパラジウム電極4の表面では,重水素
Dによる凝集反応が起こっており,そのため多量の熱量
が発生していると考えられる.この時,パラジウム電極
4の表面を多孔質にすると,この反応は益々起こり易く
なると考えられる.そこで,この多孔質構造パラジウム
電極を形或するのに,パラジウム粉末を窒素雰囲気中、
1300〜1600℃で焼結形或することによりI2造
したところ、極めて高効率の反応が進行することが確認
できた。
FIG. 2 shows a cross section of the palladium electrode 4 of FIG. 1 of the present invention. In Fig. 2, 4 is a palladium electrode, and 11 is a porous textured surface with irregularities. Next, the operation of the above embodiment will be explained. In the above example, it is thought that a coagulation reaction due to deuterium D occurs on the surface of the palladium electrode 4 when electricity is applied, and therefore a large amount of heat is generated. At this time, it is thought that if the surface of the palladium electrode 4 is made porous, this reaction will occur more easily. Therefore, in order to form this porous structure palladium electrode, palladium powder was mixed in a nitrogen atmosphere.
When I2 was manufactured by sintering at 1300 to 1600°C, it was confirmed that the reaction proceeded with extremely high efficiency.

またこの時得られた電極のパラジウム粒径は,0.1〜
100ミクロンの大きさの時、最も効率がよかった.ま
た孔径は、平均lOミクロン(0.1〜500ミクロン
)程度であった。実験によると、この多孔質構造パラジ
ウム電極を用いると、多孔貿でない場合に比べ,発生熱
量は、5〜10%増の値が得られた.このような構成の
多孔質構造パラジウム電極では,電極表面積が実効的に
大きく、重水素の凝集反応が高効率で進むことによるも
のと思われる。
Moreover, the palladium particle size of the electrode obtained at this time was 0.1~
The efficiency was highest when the size was 100 microns. Moreover, the average pore diameter was about 10 microns (0.1 to 500 microns). According to experiments, when this porous structure palladium electrode was used, the amount of heat generated was 5 to 10% higher than that without the porous structure. This is thought to be due to the fact that in the porous structure palladium electrode having such a configuration, the electrode surface area is effectively large, and the aggregation reaction of deuterium proceeds with high efficiency.

第3図は,本発明の他の実施例におけるエネルギー発生
装置の概略を示す図である。第3図における数字は第1
図のそれぞれと一致させてある。
FIG. 3 is a diagram schematically showing an energy generating device in another embodiment of the present invention. The numbers in Figure 3 are number 1.
They are matched with each of the figures.

第3図において、容器1内に重水及び塩化リチウム等の
アルカリハライド等からなる溶液2を入れ,白金電極3
及びパラジウム電極4を配し、電源5の陽極及び陰極に
接続し電力を供給する。圧電振動子6は容器1の外壁に
接着して取りつけられており,圧電振動子6は圧電振動
子用電源7に電気的に接続されている。ここで、圧電振
動子用電源7のスイッチを入れると,圧電振動子6は振
動を開始する。圧電振動子6が.強力な超音波を発生す
ると、この超音波の焦点の位置に取り付けられているパ
ラジウム電極4も、同時に超音波振動し、該パラジウム
電極4の表面では、強力なキャビテーションが起こる。
In FIG. 3, a solution 2 consisting of heavy water and an alkali halide such as lithium chloride is placed in a container 1, and a platinum electrode 3 is placed in a container 1.
and palladium electrodes 4 are arranged and connected to the anode and cathode of a power source 5 to supply power. The piezoelectric vibrator 6 is adhesively attached to the outer wall of the container 1, and the piezoelectric vibrator 6 is electrically connected to a piezoelectric vibrator power source 7. Here, when the piezoelectric vibrator power source 7 is turned on, the piezoelectric vibrator 6 starts vibrating. The piezoelectric vibrator 6. When a strong ultrasonic wave is generated, the palladium electrode 4 attached to the focal point of the ultrasonic wave also vibrates ultrasonically at the same time, and strong cavitation occurs on the surface of the palladium electrode 4.

この強力なキャビテーションにより,該パラジウム電極
4の表面では、非常に大きな圧力と、高温度の状態とな
る。そのため,該パラジウム電極4の表面での重水素の
凝集反応が急激に進む。ここで、電源5のスイッチを入
れると同時に,重水の溶液2は電気分解を開始し、重水
素は、パラジウム?tt極4の表面に集まる。その時パ
ラジウム電極4の表面に、多量の熱量が発生する.この
機構は上記の通りである。
Due to this strong cavitation, the surface of the palladium electrode 4 is under extremely high pressure and high temperature. Therefore, the aggregation reaction of deuterium on the surface of the palladium electrode 4 rapidly progresses. Here, as soon as the power supply 5 is turned on, the heavy water solution 2 starts electrolyzing, and the deuterium becomes palladium? It gathers on the surface of the tt pole 4. At this time, a large amount of heat is generated on the surface of the palladium electrode 4. This mechanism is as described above.

なお、上記パラジウム電極を振動させるために用いた振
動子は,圧電振動子に限定されず、磁歪型振動子でもよ
く、また、該振動子の取り付け位置も,上記実施例に限
定されず、容器の底部分でもよい。また,該多孔質構造
パラジウム電極の粒径及び孔の形状は特に限定されない
Note that the vibrator used to vibrate the palladium electrode is not limited to a piezoelectric vibrator, and may be a magnetostrictive vibrator, and the mounting position of the vibrator is not limited to the above example, but may be attached to a container. The bottom part of the Furthermore, the particle size and pore shape of the porous palladium electrode are not particularly limited.

(発明の効果) 本発明は,上記実施例から明らかなように、このように
構成したエネルギー発生装置は簡単な構成でかつ多量の
エネルギーを発生し得るものを提供できるため、産業上
極めて大きな効果を有する.
(Effects of the Invention) As is clear from the above-mentioned embodiments, the present invention has an extremely large industrial effect because the energy generating device configured in this way has a simple configuration and can generate a large amount of energy. has.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるエネルギー発生装置
の概略図、第2図は本発明の実施例における多孔質構造
パラジウム電極の断面図,第3図は本発明の他の実施例
におけるエネルギー発生装置の概略図である. 工 ・・・容器, 2 ・・・重水及びアルカリハライ
ド等から成る溶液、 3 ・・・白金電極,4 ・・・
パラジウム電極、 5 ・・・電源、6・・・圧電振動
子、 7・・・圧電振動子用電源、l1・・・多孔質構
造表面。
FIG. 1 is a schematic diagram of an energy generating device according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a porous structure palladium electrode according to an embodiment of the present invention, and FIG. 3 is an energy generating device according to another embodiment of the present invention. It is a schematic diagram of the generator. ... Container, 2 ... Solution consisting of heavy water and alkali halide, etc., 3 ... Platinum electrode, 4 ...
Palladium electrode, 5... Power source, 6... Piezoelectric vibrator, 7... Power source for piezoelectric vibrator, l1... Porous structure surface.

Claims (6)

【特許請求の範囲】[Claims] (1)重水と、白金電極、パラジウム電極、電源とを有
し、前記白金電極を陽極、前記パラジウム電極を陰極と
したエネルギー発生装置において、前記パラジウム電極
として多孔質構造のものを用い、前記パラジウム電極を
振動させて成ることを特徴とするエネルギー発生装置。
(1) An energy generating device comprising heavy water, a platinum electrode, a palladium electrode, and a power source, with the platinum electrode as an anode and the palladium electrode as a cathode, in which the palladium electrode has a porous structure, and the palladium An energy generating device characterized by vibrating electrodes.
(2)重水と、白金電極、パラジウム電極、電源とを有
し、前記白金電極を陽極、前記パラジウム電極を陰極と
したエネルギー発生装置において、前記パラジウム電極
として多孔質構造のものを用い、前記パラジウム電極を
超音波振動させて成ることを特徴とするエネルギー発生
装置。
(2) An energy generating device comprising heavy water, a platinum electrode, a palladium electrode, and a power source, with the platinum electrode as an anode and the palladium electrode as a cathode, in which the palladium electrode has a porous structure, and the palladium An energy generating device characterized by ultrasonic vibration of an electrode.
(3)重水と、白金電極、パラジウム電極、電源とを有
し、前記白金電極を陽極、前記パラジウム電極を陰極と
したエネルギー発生装置において、前記パラジウム電極
として多結晶焼結体で構成された多孔質構造を用い、前
記多孔質構造パラジウム電極を超音波によりキャビテー
ションを発生させる構造として成ることを特徴とするエ
ネルギー発生装置。
(3) An energy generation device comprising heavy water, a platinum electrode, a palladium electrode, and a power source, with the platinum electrode as an anode and the palladium electrode as a cathode, wherein the palladium electrode is a porous structure made of a polycrystalline sintered body. An energy generating device characterized in that the porous palladium electrode is configured to generate cavitation using ultrasonic waves.
(4)多孔質構造パラジウム電極は、パラジウム粉末を
窒素雰囲気中、1300〜1600℃で焼結形成したも
のであることを特徴とする請求項(1)、(2)または
(3)記載のエネルギー発生装置。
(4) The porous structure palladium electrode is formed by sintering palladium powder at 1300 to 1600°C in a nitrogen atmosphere. Generator.
(5)多孔質構造パラジウム電極のパラジウム平均粒径
は、0.1〜100ミクロンの範囲にあることを特徴と
する請求項(1)、(2)または(3)記載のエネルギ
ー発生装置。
(5) The energy generating device according to claim 1, (2) or (3), wherein the porous structure palladium electrode has an average palladium particle diameter in the range of 0.1 to 100 microns.
(6)多孔質構造パラジウム電極は、平均孔径0.1〜
500ミクロンの範囲にあることを特徴とする請求項(
1)、(2)または(3)記載のエネルギー発生装置。
(6) The porous structure palladium electrode has an average pore diameter of 0.1 to
Claims characterized in that it is in the range of 500 microns (
1), (2) or (3).
JP1187531A 1989-07-21 1989-07-21 Energy generator Pending JPH0353195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1187531A JPH0353195A (en) 1989-07-21 1989-07-21 Energy generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1187531A JPH0353195A (en) 1989-07-21 1989-07-21 Energy generator

Publications (1)

Publication Number Publication Date
JPH0353195A true JPH0353195A (en) 1991-03-07

Family

ID=16207716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1187531A Pending JPH0353195A (en) 1989-07-21 1989-07-21 Energy generator

Country Status (1)

Country Link
JP (1) JPH0353195A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993014503A1 (en) * 1992-01-10 1993-07-22 Chlorine Engineers Corp., Ltd. Energy generating method based on gravitational collapse
WO1995016995A1 (en) * 1993-12-03 1995-06-22 E-Quest Sciences Method for producing heat
WO1995023413A1 (en) * 1994-02-23 1995-08-31 The Regents Of The University Of California Converting acoustic energy into useful other energy forms
WO1996041361A3 (en) * 1995-06-06 1997-02-06 Andre Jouanneau Method and apparatus for producing and using plasma
WO2001039199A2 (en) * 1999-11-24 2001-05-31 Impulse Devices, Inc. Enhancing electrolytic cavitation reactions
WO2001039206A3 (en) * 1999-11-24 2002-04-25 Impulse Devices Inc Cavitation nuclear reactor
WO2001039201A3 (en) * 1999-11-24 2002-07-04 Impulse Devices Inc Cavitation nuclear reactor
WO2001039198A3 (en) * 1999-11-24 2002-09-26 Impulse Devices Inc Cavitation nuclear reactor system
WO2001039200A3 (en) * 1999-11-24 2002-09-26 Impulse Devices Inc Cavitation nuclear reactor
WO2001039197A3 (en) * 1999-11-24 2003-02-20 Impulse Devices Inc Cavitation nuclear reactor
WO2001039203A3 (en) * 1999-11-24 2003-02-20 Impulse Devices Inc Cavitation nuclear reactor
KR20030033421A (en) * 2001-10-22 2003-05-01 주식회사 미래소재 Electrodeposition Apparatus and Method Using the Ultrasonic Wave
EP1376611A2 (en) * 1995-06-06 2004-01-02 André Jouanneau Method and apparatus for producing and using plasma
WO2009072063A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
ITRM20080448A1 (en) * 2008-08-08 2010-02-09 Enea Ente Nuove Tec MATERIAL TO BE USED FOR THE PRODUCTION OF EXCESS POWER, WITH HIGH LOADING OF HYDROGEN ISOTOPES, AND RELATIVE PRODUCTION PROCEDURE.
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993014503A1 (en) * 1992-01-10 1993-07-22 Chlorine Engineers Corp., Ltd. Energy generating method based on gravitational collapse
WO1995016995A1 (en) * 1993-12-03 1995-06-22 E-Quest Sciences Method for producing heat
AU688475B2 (en) * 1993-12-03 1998-03-12 E-Quest Sciences Method for producing heat
WO1995023413A1 (en) * 1994-02-23 1995-08-31 The Regents Of The University Of California Converting acoustic energy into useful other energy forms
US5659173A (en) * 1994-02-23 1997-08-19 The Regents Of The University Of California Converting acoustic energy into useful other energy forms
EP1376611A2 (en) * 1995-06-06 2004-01-02 André Jouanneau Method and apparatus for producing and using plasma
WO1996041361A3 (en) * 1995-06-06 1997-02-06 Andre Jouanneau Method and apparatus for producing and using plasma
EP1376611A3 (en) * 1995-06-06 2007-09-12 André Jouanneau Method and apparatus for producing and using plasma
WO2001039199A2 (en) * 1999-11-24 2001-05-31 Impulse Devices, Inc. Enhancing electrolytic cavitation reactions
WO2001039203A3 (en) * 1999-11-24 2003-02-20 Impulse Devices Inc Cavitation nuclear reactor
WO2001039198A3 (en) * 1999-11-24 2002-09-26 Impulse Devices Inc Cavitation nuclear reactor system
WO2001039200A3 (en) * 1999-11-24 2002-09-26 Impulse Devices Inc Cavitation nuclear reactor
WO2001039205A3 (en) * 1999-11-24 2002-11-21 Impulse Devices Inc Cavitation nuclear reactor
WO2001039204A3 (en) * 1999-11-24 2002-11-28 Impulse Devices Inc Shaped core cavitation nuclear reactor
WO2001039197A3 (en) * 1999-11-24 2003-02-20 Impulse Devices Inc Cavitation nuclear reactor
WO2001039199A3 (en) * 1999-11-24 2002-07-18 Impulse Devices Inc Enhancing electrolytic cavitation reactions
WO2001039206A3 (en) * 1999-11-24 2002-04-25 Impulse Devices Inc Cavitation nuclear reactor
WO2001039201A3 (en) * 1999-11-24 2002-07-04 Impulse Devices Inc Cavitation nuclear reactor
KR20030033421A (en) * 2001-10-22 2003-05-01 주식회사 미래소재 Electrodeposition Apparatus and Method Using the Ultrasonic Wave
US9283188B2 (en) 2006-09-08 2016-03-15 Kimberly-Clark Worldwide, Inc. Delivery systems for delivering functional compounds to substrates and processes of using the same
WO2009072063A1 (en) * 2007-12-05 2009-06-11 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for initiating thermonuclear fusion
US8858892B2 (en) 2007-12-21 2014-10-14 Kimberly-Clark Worldwide, Inc. Liquid treatment system
US9421504B2 (en) 2007-12-28 2016-08-23 Kimberly-Clark Worldwide, Inc. Ultrasonic treatment chamber for preparing emulsions
ITRM20080448A1 (en) * 2008-08-08 2010-02-09 Enea Ente Nuove Tec MATERIAL TO BE USED FOR THE PRODUCTION OF EXCESS POWER, WITH HIGH LOADING OF HYDROGEN ISOTOPES, AND RELATIVE PRODUCTION PROCEDURE.

Similar Documents

Publication Publication Date Title
JPH0353195A (en) Energy generator
JP4076953B2 (en) Hydrogen-oxygen gas generator
TW573066B (en) Hydrogen-oxygen gas generation device and method for generating hydroden-oxygen gas using such device
US20030028287A1 (en) Apparatus, circuitry and methods for cleaning and/or processing with sound waves
US8360341B2 (en) Atomization apparatus
US20060086604A1 (en) Organism inactivation method and system
US20080047575A1 (en) Apparatus, circuitry, signals and methods for cleaning and processing with sound
JP4599387B2 (en) Hydrogen-oxygen gas generator and hydrogen-oxygen gas generation method using the same
JPH03226694A (en) Method of electro-chemical low temperature nuclear fusion
JP2003285008A (en) Ultrasonic wave generation method and apparatus therefor
US4025698A (en) Accumulator battery apparatus and method
JPH07140277A (en) Cold nuclear fusion device
WO2001039206A2 (en) Cavitation nuclear reactor
TW201002867A (en) A hydrogen-oxygen generating apparatus
ATE508463T1 (en) PULSED LOW ENERGY NUCLEAR REACTION POWER GENERATORS
JP3637039B2 (en) Hydrogen gas generation method and hydrogen gas generator
JPH09117455A (en) Energy converter
JPS58500107A (en) Acoustic vibration generation method and acoustic vibration source to achieve this
KR100285662B1 (en) Apparatus for driving a magnetostriction oscillator using a PWM circuit
JP2011110453A (en) Atomizer for forming film
RU210381U1 (en) Device for obtaining nanodispersed powders from conductive materials
CN210493907U (en) Sound wave face cleaning instrument
Panda et al. Anodic polarization study of step pulse waveform for machining accuracy in electrochemical micromachining
US20200340128A1 (en) A method of hydrogen and oxygen production by electrolysis method, in particular electrolysis of water
JP2000117256A (en) Device for production of electrolytic water