JPH05279923A - Method for infusibilizing thermoplastic fiber - Google Patents

Method for infusibilizing thermoplastic fiber

Info

Publication number
JPH05279923A
JPH05279923A JP4074317A JP7431792A JPH05279923A JP H05279923 A JPH05279923 A JP H05279923A JP 4074317 A JP4074317 A JP 4074317A JP 7431792 A JP7431792 A JP 7431792A JP H05279923 A JPH05279923 A JP H05279923A
Authority
JP
Japan
Prior art keywords
fiber
pitch
fibers
thermoplastic
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4074317A
Other languages
Japanese (ja)
Inventor
Masayuki Sumi
誠之 角
Fumihiro Miyoshi
史洋 三好
Seiji Hanatani
誠二 花谷
Yukihiro Osugi
幸広 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
JFE Steel Corp
Original Assignee
CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO, Kawasaki Steel Corp filed Critical CHIKYU KANKYO SANGYO GIJUTSU KENKYU KIKO
Priority to JP4074317A priority Critical patent/JPH05279923A/en
Publication of JPH05279923A publication Critical patent/JPH05279923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To rapidly and uniformly infusibilize thermoplastic fiber by oxidation treatment. CONSTITUTION:Thermoplastic fiber, preferably staple fiber, obtained from a pitch having a high softening point and having >=30mum fiber diameter and 30-500mum weight-average fiber length is brought into contact with an oxidizing gas such as air, oxygen or nitrogen dioxide while applying vibration at >=25Hz frequency and >=1mm amplitude through a vibrator attached to a fluidized bed body to the thermoplastic fiber under fluidized conditions or while indirectly applying the vibration to the thermoplastic fiber by applying the pulsation to the oxidizing gas fed to the fluidized bed. Since the staple fiber having a high packing density, a wide surface area and a fine fiber diameter is brought into direct contact with the oxidizing gas, the infusibilization is rapidly and uniformly carried out. Since the staple fiber has the higher packing density than that of tow-shaped fiber, the production efficiency is remarkably improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ピッチ等の熱可塑性材
料の繊維を原料とする球状活性炭の製造方法、特にピッ
チまたはその他の原料から得られた熱可塑性繊維を酸化
処理により迅速かつ均一に不融化する方法に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a method for producing spherical activated carbon using fibers of a thermoplastic material such as pitch as a raw material, and in particular, a thermoplastic fiber obtained from pitch or other raw materials can be rapidly and uniformly treated by an oxidation treatment. It relates to a method of infusibilizing.

【0002】[0002]

【従来の技術】近年、地球にやさしい産業技術の創造、
アメニティー空間の創造等の社会的盛り上がりを背景
に、活性炭の機能性の向上および形状の改良が求められ
ている。そして、従来の活性炭、すなわち粉状活性炭、
粒状活性炭および活性炭素繊維の欠点を解消するため
に、球状活性炭素繊維すなわち活性炭素繊維塊状物が提
案され、その製造方法として、特開平3−146721号公報
に開示されているように、非熱溶融性の短繊維、すなわ
ち不融化処理したピッチ繊維を球状化処理して球状繊維
を得、さらにこれを賦活する方法等が知られている。
2. Description of the Related Art In recent years, the creation of earth-friendly industrial technology,
Against the background of social excitement such as creation of amenity space, it is required to improve the functionality and shape of activated carbon. And conventional activated carbon, that is, powdered activated carbon,
In order to eliminate the disadvantages of granular activated carbon and activated carbon fibers, spherical activated carbon fibers, that is, activated carbon fiber lumps, have been proposed, and as a method for producing them, as disclosed in JP-A-3-146721, non-thermal There is known a method in which fusible short fibers, that is, pitch fibers that have been infusibilized are spheroidized to obtain spherical fibers, which are further activated.

【0003】一般に、ピッチを原料とする球状活性炭の
製造においては、賦活工程に先立ち、熱可塑性のピッチ
繊維を酸化処理し、加熱しても溶融しない不融化繊維に
する、いわゆる、不融化工程が必要である。
Generally, in the production of spherical activated carbon using pitch as a raw material, a so-called infusibilizing step is carried out, in which prior to the activation step, thermoplastic pitch fibers are oxidized to make infusible fibers that do not melt even when heated. is necessary.

【0004】一般に、不融化工程は、酸素または酸化性
物質をピッチ繊維に付加して分子間架橋を形成させるこ
とによってなされ、酸化性物質としては空気等のガスま
たは液状の物質が用いられる。この反応は、ピッチの軟
化点以下の低温で行なわれ、発熱反応であるため厳密な
温度管理、即ちピッチの溶融を防止するための除熱が必
要であり、操作の迅速化が工業的に検討されてきた。
In general, the infusibilizing step is carried out by adding oxygen or an oxidizing substance to pitch fibers to form intermolecular crosslinks, and a gas or liquid substance such as air is used as the oxidizing substance. This reaction is carried out at a temperature lower than the softening point of the pitch, and since it is an exothermic reaction, strict temperature control, that is, heat removal to prevent melting of the pitch, is required. It has been.

【0005】また、不融化の進行度が生成する活性炭の
品質に大きく影響することから均一な不融化が望まれ
る。このような不融化反応は、ピッチ繊維の表面から進
行するので、ピッチ繊維径が小さく、ピッチの外表面積
が大きい程、迅速かつ均一な不融化が期待される。
Further, since the degree of progress of infusibilization greatly affects the quality of the activated carbon produced, uniform infusibilization is desired. Since such an infusibilization reaction proceeds from the surface of the pitch fiber, the smaller the pitch fiber diameter and the larger the outer surface area of the pitch, the faster and more uniform infusibilization is expected.

【0006】熱溶融性ピッチの均一な不融化方法として
一般的に試みられてきた方法では、高軟化点の原料ピッ
チを、活性炭製造における賦活工程の前工程として、実
質的に均一な不融化が行われる程度の粒子径にまで微細
に粉砕し、微細粒子の固気反応にキルン炉又は流動層装
置を用いて酸化性気体と反応させる。この方法では、ピ
ッチ粒子相互の溶融による融着を防止するのが困難であ
り、均一な不融化を迅速に行なうことができず、工業化
には至っていない。また、従来の炭素繊維の不融化工程
の生産効率は、トウ状繊維を対象とする懸垂炉、および
チョップドストランドを対象とするバスケット型炉では
低く、ピッチ短繊維を対象とする回転式焼成炉でも不十
分である。
In the method which has been generally tried as a method for making the heat-fusible pitch uniform infusible, a material pitch having a high softening point is used as a pre-step of the activation step in the production of activated carbon to make a substantially uniform infusibilization. The particles are finely pulverized to a particle size to the extent that they are carried out, and the solid-gas reaction of the fine particles is reacted with an oxidizing gas using a kiln furnace or a fluidized bed apparatus. With this method, it is difficult to prevent fusion due to melting of the pitch particles with each other, uniform infusibilization cannot be rapidly performed, and industrialization has not been achieved. Further, the production efficiency of the conventional infusibilizing step of carbon fiber is low in the suspending furnace for tow-shaped fibers and the basket type furnace for chopped strands, and even in the rotary firing furnace for short pitch fibers. Is insufficient.

【0007】熱溶融性ピッチの迅速かつ均一な不融化方
法としては、特開昭56−69214 号公報および特開昭56−
69215 号公報に記載されているように、高軟化点のピッ
チにナフタレン等の2から3環の芳香族化合物を添加剤
として加え、球状化し、有機溶剤で添加剤を抽出してピ
ッチ球状物に添加剤の抜け穴を形成し、多孔性ピッチと
して表面積を高め、これにより酸化性ガスが内部まで流
入し易くして架橋反応を行なわせる方法が知られてい
る。
As a method for rapidly and uniformly infusibilizing a heat-meltable pitch, Japanese Patent Laid-Open Nos. 56-69214 and 56-
As described in Japanese Patent No. 69215, a pitch having a high softening point is added with an aromatic compound having 2 to 3 rings such as naphthalene as an additive, spheroidized, and the additive is extracted with an organic solvent to obtain a pitch sphere. A method is known in which a through hole for an additive is formed to increase the surface area as a porous pitch, thereby facilitating the inflow of an oxidizing gas into the interior and carrying out a crosslinking reaction.

【0008】上述のような、高軟化点の原料ピッチを多
孔性ピッチとしてから酸化性ガスで不融化する従来方法
では、ピッチ球状物に形成された添加剤の抜け穴の径が
小さいため空気によりピッチの溶融を防止して不融化す
るには長時間を要するという欠点があった。また、製造
工程が、添加剤を用いた溶解ペレット化工程、球状化工
程、添加剤抽出工程、乾燥工程、および不融化工程とい
うように工程数が多くて複雑であり、添加剤および有機
溶剤を使用する必要があることから、経済性を確保する
ことが困難であり、またピッチ球状化物の粒径を大きく
すると均一な抽出および不融化が困難になることから、
得られる活性炭の粒径が小さくなり、従って活性炭の使
用に当たって圧力損失が高くなり、用途が特定の使用形
態の用途、例えば流動層といった用途に限定され、ま
た、賦活が主として粒子表面で進行するため、得られる
活性炭の単位容積当たりの吸着量が小さくなる等の問題
があった。
In the conventional method in which the raw material pitch having a high softening point is made into a porous pitch and then made infusible with an oxidizing gas as described above, since the diameter of the through hole of the additive formed in the pitch sphere is small, the pitch is formed by air. However, it has a drawback that it takes a long time to prevent the melting and to make it infusible. In addition, the manufacturing process is complicated by a large number of steps such as a dissolution pelletizing step using an additive, a spheroidizing step, an additive extracting step, a drying step, and an infusibilizing step, and the additive and the organic solvent are added. Since it is necessary to use, it is difficult to ensure economic efficiency, and since it becomes difficult to uniformly extract and infusibilize when the particle size of the pitch spheroidized product is increased,
The particle size of the resulting activated carbon is small, and therefore the pressure loss is high in using the activated carbon, the use is limited to the use of a specific use form, for example, the use such as a fluidized bed, and the activation mainly proceeds on the particle surface. However, there is a problem that the amount of activated carbon obtained per unit volume is small.

【0009】また、本発明の対象とするピッチ繊維およ
び不融化繊維は脆弱で、取り扱いが難しい。このことは
重要であり、繊維が過度に脆弱であれば経済性を確保す
るのが困難でる。
Further, the pitch fiber and the infusibilized fiber which are the objects of the present invention are brittle and difficult to handle. This is important and it is difficult to ensure economics if the fibers are too brittle.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、活性
炭素繊維塊状物等の製造に用いられる熱可塑性繊維を酸
化処理により不融化するに当って、上述の従来技術の問
題点を解決し、生産性良く、繊維相互の溶融による融着
を防止し、繊維の迅速かつ均一な不融化を可能にし、か
つ繊維の破損防止を可能にする不融化方法を提供するこ
とにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned problems of the prior art in making thermoplastic fibers used for the production of activated carbon fiber lumps infusibilized by oxidation treatment. Another object of the present invention is to provide an infusibilizing method which can prevent fusion of fibers due to melting of each other with high productivity, enable rapid and uniform infusibilization of fibers, and prevent breakage of fibers.

【0011】[0011]

【課題を解決するための手段】本発明は、熱可塑性繊維
を酸化処理により迅速かつ均一に不融化するに当り、重
量平均繊維長30〜500 μm の熱可塑性短繊維に流動条件
下に振動を付加しながら、前記短繊維を酸化性ガスと接
触させて酸化処理を行うことを特徴とする熱可塑性繊維
の不融化方法により、上述の目的を達成する。
Means for Solving the Problems In the present invention, when thermoplastic fibers are rapidly and uniformly infusibilized by an oxidation treatment, thermoplastic short fibers having a weight average fiber length of 30 to 500 μm are subjected to vibration under flowing conditions. The above object is achieved by a method for infusibilizing a thermoplastic fiber, which is characterized in that the short fiber is brought into contact with an oxidizing gas to be oxidized while being added.

【0012】本発明で用いられる熱可塑性繊維として
は、石炭系ピッチ、石油系ピッチ、ポリアクリロニトリ
ル、フェノール樹脂等を原料とする活性炭素繊維の製造
に用られる熱可塑性繊維が挙げられる。熱可塑性繊維の
原料としては高軟化点のピッチが好ましく、高軟化点の
ピッチは、粗原料であるコールタールピッチ、あるいは
石油タールピッチに蒸留、濾過、精製、熱処理、溶剤分
別、水素化などの工程を、単独または組み合わせて行な
うことにより製造することができ、ピッチ中の低沸点揮
発成分、不溶性固形分などの紡糸を阻害する成分が除去
された熱溶融性ピッチであって、微細孔の発現に適した
光学的に等方性または異方性の紡糸用ピッチが好ましい
が、特にこれに限定されるものではない。基本的には、
紡糸条件で固体および気体などを含まない、均一な流動
特性を有する紡糸用熱可塑性の材料であればよい。
Examples of the thermoplastic fibers used in the present invention include thermoplastic fibers used in the production of activated carbon fibers made from coal-based pitch, petroleum-based pitch, polyacrylonitrile, phenol resin and the like. As a raw material of the thermoplastic fiber, a pitch having a high softening point is preferable, and a pitch having a high softening point includes coal tar pitch which is a raw material, or petroleum tar pitch, which is distilled, filtered, refined, heat treated, solvent fractionated, hydrogenated, etc. It is a heat-meltable pitch that can be produced by carrying out the steps singly or in combination, and the components that inhibit spinning such as low boiling point volatile components and insoluble solids in the pitch are removed, and the micropores are expressed. An optically isotropic or anisotropic spinning pitch suitable for is preferable, but is not particularly limited thereto. Basically,
Any thermoplastic material for spinning may be used as long as it does not contain solids or gas under spinning conditions and has uniform flow characteristics.

【0013】本発明では、熱可塑性材料、好ましくは高
軟化点の原料ピッチを短繊維に加工する。以下に、本発
明をピッチ繊維について説明するが、本発明はこれに限
定されるものではない。ピッチ短繊維への加工は、通
常、押出紡糸または遠心紡糸法でピッチを繊維化してピ
ッチ繊維とし、これを解砕し、短繊維化することにより
得られる。ピッチ繊維の繊維径は、30μm 以下程度が好
ましい。30μm より太い場合には、均質な架橋構造が得
られず、繊維断面方向において均質な活性炭が得られな
い。
In the present invention, a thermoplastic material, preferably a raw material pitch having a high softening point, is processed into short fibers. Hereinafter, the present invention will be described with respect to pitch fibers, but the present invention is not limited thereto. The processing into pitch short fibers is usually obtained by fiberizing pitch by extrusion spinning or centrifugal spinning method to obtain pitch fibers, crushing this, and shortening it. The fiber diameter of the pitch fiber is preferably about 30 μm or less. When it is thicker than 30 μm, a homogeneous crosslinked structure cannot be obtained, and a homogeneous activated carbon cannot be obtained in the fiber cross-section direction.

【0014】ピッチ短繊維の重量平均繊維長は30μm か
ら500 μm が好ましい。30μm より短い場合には、ピッ
チ短繊維が粒子間の付着力により相互に結合して大きな
塊になるためガスのチャンネリングが起こり、ピッチ繊
維に振動を付加してもピッチ繊維を酸化性ガスと十分に
接触させることができず、このため酸化性ガスによる除
熱が不十分となり、ピッチの溶融を防止することができ
ない。500 μm より長い場合には、短繊維が相互に絡み
合いを起こしやすいため流動性が著しく悪くなり、短繊
維に振動を付加してもガスと均一に接触させることが難
しく、酸化性ガスによる除熱が不十分となり、ピッチの
溶融を防止することができない。
The weight average fiber length of the pitch short fibers is preferably 30 μm to 500 μm. If the length is shorter than 30 μm, the short pitch fibers are bonded to each other due to the adhesive force between the particles to form a large lump, and gas channeling occurs. It is not possible to sufficiently bring them into contact with each other, so that the heat removal by the oxidizing gas becomes insufficient and it is impossible to prevent the melting of the pitch. If it is longer than 500 μm, the short fibers are liable to be entangled with each other and the fluidity is significantly deteriorated.It is difficult to make uniform contact with the gas even if vibration is applied to the short fibers, and heat removal by oxidizing gas is performed. Is insufficient, and melting of the pitch cannot be prevented.

【0015】本発明においては、ピッチ短繊維への振動
の付加およびピッチ短繊維と酸化性ガスとの接触は、流
動層装置を用いて行なうことができ、流動層本体に振動
子を取付けたいわゆる振動流動層装置で行なうことがで
きる。この場合の好ましい振動数は25Hz以上、振幅は1
mm以上である。また、ガスの分散板を通して、ピッチ短
繊維の層に流入させる酸化性ガスに脈動を加えることに
より、間接的にピッチ短繊維に振動を加える方法でも良
い。これについては、目的とする活性炭の最終形態にと
って適切なものを選択することができる。本発明で用い
る酸化性ガスとしては、例えば, 空気、酸素、二酸化窒
素など、またはこれらを少なくとも一種類以上含む混合
ガス雰囲気があるが、これらに限定されるものではな
い。
In the present invention, the addition of vibration to the pitch short fibers and the contact between the pitch short fibers and the oxidizing gas can be carried out by using a fluidized bed apparatus, and a so-called vibrator having a vibrator attached to the fluidized bed body is used. It can be performed in a vibrating fluidized bed apparatus. In this case, the preferable frequency is 25Hz or more, and the amplitude is 1
mm or more. Alternatively, a method may be used in which the short pitch fibers are indirectly vibrated by pulsating the oxidizing gas flowing into the short pitch fiber layer through a gas dispersion plate. About this, a thing suitable for the final form of the target activated carbon can be selected. Examples of the oxidizing gas used in the present invention include, but are not limited to, air, oxygen, nitrogen dioxide and the like, or a mixed gas atmosphere containing at least one or more of them.

【0016】本発明方法によって得られた不融化短繊維
から球状活性炭を製造するには、転動造粒等に用いられ
る造粒機で不融化短繊維を任意の粒径に球状化し、次い
で炭化賦活工程に進め、ここで、炭素含有量を増加させ
ると同時に、活性化され球状活性炭を得る。
To produce spherical activated carbon from the infusible short fibers obtained by the method of the present invention, the infusibilized short fibers are spheroidized into an arbitrary particle size by a granulator used for rolling granulation and the like, and then carbonized. Proceeding to the activation step, where the carbon content is increased and at the same time activated to obtain spherical activated carbon.

【0017】炭化賦活工程では、一般に、賦活剤として
水蒸気または二酸化炭素、酸素含有ガス等のガスを400
℃〜1100℃の加熱下で用いる。中でも、水蒸気が最も一
般的である。この炭化賦活工程では、主にこの点を活性
点として賦活剤と炭素との反応によって、炭素が一部ガ
ス化し、均一な微細孔の開孔および生成が起こり、生成
する球状活性炭は吸着剤として優れた機能を発現する。
In the carbonization activating step, generally, a gas such as water vapor or carbon dioxide, an oxygen-containing gas is used as an activating agent in an amount of 400
Used under heating at ℃ to 1100 ℃. Of these, steam is the most common. In this carbonization activation step, carbon is partially gasified by the reaction between the activator and carbon, mainly using this point as an active point, uniform pore opening and generation occur, and the resulting spherical activated carbon is used as an adsorbent. Express excellent function.

【0018】また、炭化賦活工程では、不融化繊維中の
揮発分およびピッチ分子中で構造が熱的に不安定な部分
は、分解揮発して六員環構造が発達し、炭素分の多い構
造となり、強度を有する活性炭を生成する。この工程で
は加熱に、種々の発熱体を用いた電気炉または加熱炉を
用いることができる。いずれの炉を用いた場合でも炉は
高温であり、水蒸気を賦活剤とする場合には特に大きい
吸熱反応であるため、多量のエネルギが消費されるの
で、効率よく賦活を実施することが必要である。
Further, in the carbonization activation step, the volatile content in the infusibilized fiber and the thermally unstable portion in the pitch molecule are decomposed and volatilized to develop a six-membered ring structure, and a structure having a large carbon content is formed. And produces activated carbon having strength. In this step, an electric furnace or a heating furnace using various heating elements can be used for heating. Even if any furnace is used, the furnace is at a high temperature, and when steam is used as an activator, a particularly large endothermic reaction consumes a large amount of energy, so it is necessary to carry out the activation efficiently. is there.

【0019】[0019]

【作用】上述のように、本発明では、原料である熱可塑
性繊維は短繊維に加工されて表面積が広がり、この短繊
維が酸化性ガスと直接接触するため、不融化に長時間を
必要とせず、しかも繊維径が細いため均一な不融化が行
われる。また、短繊維はトウ状繊維より充填密度が大き
いので、流動層装置を使用する不融化の生産効率は短繊
維を用いる本発明方法ではトウ状繊維を用いる従来方法
におけるより1桁以上高くなる。また流動層では、従来
の回転炉よりも温度分布が均一になるため、製品が均一
になる。なお、短繊維は安息角が大きいために流動化が
困難であるが、本発明では、短繊維に振動を付加しなが
ら流動させることにより、短繊維を容易に流動させるこ
とができる。
As described above, in the present invention, the thermoplastic fiber as the raw material is processed into short fibers to expand the surface area, and since the short fibers are in direct contact with the oxidizing gas, infusibilization requires a long time. Moreover, since the fiber diameter is small, uniform infusibilization is performed. Moreover, since the short fibers have a higher packing density than the tow-shaped fibers, the production efficiency of the infusibilization using the fluidized bed apparatus is one digit or more higher in the method of the present invention using the short fibers than in the conventional method using the tow-shaped fibers. Further, in the fluidized bed, since the temperature distribution is more uniform than in the conventional rotary furnace, the product is more uniform. It is difficult to fluidize short fibers because they have a large angle of repose, but in the present invention, the short fibers can be easily fluidized by causing the short fibers to flow while applying vibration.

【0020】[0020]

【実施例】次に、本発明を実施例および比較例について
説明する。実施例では、熱溶融性ピッチとして全面光学
的等方性ピッチを使用したが、本発明はこれに限定され
るものではない。また、ピッチの軟化点(℃)は温度傾
斜法で測定した。不融化処理は、振動架台、流動層本
体、ガス分散板、フィルター、ヒーター等を備えた回分
式振動流動層装置に、空気を流通させて行った。
EXAMPLES Next, the present invention will be described with reference to Examples and Comparative Examples. In the examples, the all-optical isotropic pitch was used as the heat-meltable pitch, but the present invention is not limited to this. The softening point (° C) of the pitch was measured by the temperature gradient method. The infusibilizing treatment was carried out by circulating air through a batch type vibrating fluidized bed apparatus equipped with a vibrating frame, a fluidized bed body, a gas dispersion plate, a filter, a heater and the like.

【0021】また、これらの例において、重量平均繊維
長は、画像解析により繊維長分布を求め、次式から算出
した:
Further, in these examples, the weight average fiber length was calculated from the following formula by obtaining a fiber length distribution by image analysis:

【数1】 生産効率は振動流動層単位容積および時間当りの不融化
繊維の生産量で示した。
[Equation 1] The production efficiency was indicated by the unit volume of the vibrating fluidized bed and the amount of infusible fiber produced per hour.

【0022】実施例1 16重量%のベンゼン不溶分、痕跡量のキノリン不溶分を
含む石炭系ピッチを、窒素ガス雰囲気中で真空度5mmHg
の条件下に400 ℃の温度で熱処理し、56重量%のベンゼ
ン不溶分を含む軟化点215 ℃の全面光学的等方性ピッチ
を得た。得られたピッチを0.3mm の紡糸口径の押出紡糸
機にて、200m/分の巻取速度で溶融紡糸した。得られた
繊維径13μm のピッチ繊維を、重量平均繊維長200 μm
に切断してピッチ短繊維を得た。
Example 1 A coal pitch containing 16% by weight of benzene insoluble matter and a trace amount of quinoline insoluble matter was vacuumed in a nitrogen gas atmosphere at a vacuum degree of 5 mmHg.
Under the above conditions, heat treatment was performed at a temperature of 400 ° C. to obtain a fully optically isotropic pitch having a softening point of 215 ° C. containing 56% by weight of benzene insoluble matter. The obtained pitch was melt-spun at a winding speed of 200 m / min with an extrusion spinning machine having a spinning diameter of 0.3 mm. Pitch fibers with a fiber diameter of 13 μm obtained were weight average fiber length 200 μm
Cut into short pitch fibers.

【0023】ピッチ短繊維を回分式振動流動層装置に充
てんし、空気を10cm/秒の空塔速度で流通させ、振幅2
mm、振動数30ヘルツ、昇温速度1℃/分の条件下に、30
0 ℃まで昇温して不融化処理した。生産効率は10kg/m3h
であった。得られた不融化短繊維の酸素含有量は9.1 重
量%で、半径方向の酸素濃度分布を電子プローブX線マ
イクロアナライザー(EPMA)で測定した結果、酸素
は繊維内に均一に分布しており、不融化処理での繊維相
互の溶融による融着は認められなかった。また、不融化
処理後の重量平均繊維長は170 μm であり、繊維の破損
防止が達成されたことが分った。
Short pitch fibers were filled in a batch type vibrating fluidized bed apparatus, and air was circulated at a superficial velocity of 10 cm / sec, and an amplitude of 2 was applied.
mm, frequency 30 Hz, heating rate 1 ° C / min, 30
The temperature was raised to 0 ° C. for infusibilization treatment. Production efficiency is 10 kg / m 3 h
Met. The oxygen content of the obtained infusibilized short fiber was 9.1% by weight, and the oxygen concentration distribution in the radial direction was measured by an electron probe X-ray microanalyzer (EPMA). As a result, oxygen was uniformly distributed in the fiber. No fusion due to mutual fusion of fibers was observed in the infusibilizing treatment. Further, the weight average fiber length after the infusibilization treatment was 170 μm, which shows that the prevention of fiber breakage was achieved.

【0024】得られた不融化短繊維を、皿式転動造粒機
で、痕跡量のキノリン不溶分を含む軟化点110 ℃の石炭
系ピッチ10重量%と混合して造粒し、平均粒径6mmの球
状不融化粒子を得た。得られた球状不融化粒子を、連続
式キルン炉を用いて、水蒸気を流通させながら、950 ℃
で6時間滞留させて賦活した。得られた球状活性炭の収
率は、ピッチ短繊維重量に対して25重量%であり、平均
粒径は4.3mm 、BET法による比表面積は1610m2/gであ
った。
The infusibilized short fibers obtained were mixed in a plate-type rolling granulator with 10% by weight of coal-based pitch having a softening point of 110 ° C. containing a trace amount of quinoline-insoluble matter and granulated to obtain an average particle size. Spherical infusible particles having a diameter of 6 mm were obtained. The obtained spherical infusible particles were heated at 950 ° C using a continuous kiln furnace while flowing steam.
It was retained for 6 hours for activation. The yield of the obtained spherical activated carbon was 25% by weight based on the weight of short pitch fibers, the average particle size was 4.3 mm, and the specific surface area by the BET method was 1610 m 2 / g.

【0025】かかる球状活性炭を吸着カラムに充填し、
ブタンの吸着、空気による脱着を繰り返した後に測定し
たブタン有効吸着量は、100cc の球状活性炭に対して10
g のブタンであった。
The spherical activated carbon was packed in an adsorption column,
The butane effective adsorption amount measured after repeating butane adsorption and desorption with air was 10 for 100cc of spherical activated carbon.
It was g of butane.

【0026】実施例2 実施例1と同様にして得たピッチ短繊維を回分式流動層
装置で、ロータリーバルブによって空気に10ヘルツの脈
動を賦与しながら、実施例1と同様に不融化処理した。
不融化処理後の繊維相互の溶融による融着は認められな
かった。
Example 2 Short pitch fibers obtained in the same manner as in Example 1 were infusibilized in the same manner as in Example 1 while imparting 10 Hz pulsation to air by a rotary valve in a batch type fluidized bed apparatus. ..
After the infusibilization treatment, no fusion due to melting of the fibers was observed.

【0027】比較例1 実施例1と同様にして得たピッチ繊維を、重量平均繊維
長20μm および700 μm に切断し、それぞれ平均繊維径
20μm のピッチ短繊維Aおよびピッチ短繊維Bを得た。
これを、実施例1と同じ条件下に不融化処理した。ピッ
チ短繊維Aでは、流動層での繊維相互の溶融による融着
により、不融化短繊維は得られなかった。ピッチ短繊維
Bでは、流動層温度190 ℃近辺で温度の暴走が起こり、
また流動層での繊維相互の溶融による融着により、不融
化短繊維は得られなかった。
Comparative Example 1 Pitch fibers obtained in the same manner as in Example 1 were cut into weight-average fiber lengths of 20 μm and 700 μm, and the average fiber diameters were respectively cut.
20 μm pitch short fibers A and pitch short fibers B were obtained.
This was infusibilized under the same conditions as in Example 1. With the pitch short fiber A, the infusibilized short fiber could not be obtained due to fusion of the fibers in the fluidized bed due to melting. In pitch short fiber B, temperature runaway occurs near the fluidized bed temperature of 190 ℃,
Further, due to the fusion of the fibers in the fluidized bed due to melting, the infusibilized short fibers could not be obtained.

【0028】比較例2 実施例1と同様にして得た全面光学的等方性ピッチを、
粉砕し、ふるい分け、平均粒径1.2mm のピッチCを得
た。回分式流動層装置にピッチCを充てんし、空気を18
cm/秒の空塔速度で流通させて、昇温速度1℃/分の条
件下に、300 ℃まで昇温して不融化処理した。得られた
不融化粒子の酸素含有量は5.1 重量%で、半径方向の酸
素濃度分布をEPMAで測定した結果、粒子表面近傍の
酸素濃度が高く、酸素は粒子内に不均一に分布してい
た。不融化処理での粒子相互の溶融による融着は認めら
れなかった。
Comparative Example 2 The entire surface optical isotropic pitch obtained in the same manner as in Example 1 was
It was crushed and sieved to obtain pitch C having an average particle size of 1.2 mm. The batch type fluidized bed apparatus was filled with pitch C and air was supplied to 18
The mixture was circulated at a superficial velocity of cm / sec, and heated to 300 ° C. under the condition of a heating rate of 1 ° C./min to infusibilize. The oxygen content of the obtained infusible particles was 5.1% by weight, and the oxygen concentration distribution in the radial direction was measured by EPMA. As a result, the oxygen concentration near the particle surface was high, and oxygen was unevenly distributed in the particles. .. No fusion due to mutual melting of particles was observed in the infusibilizing treatment.

【0029】得られた不融化粒子を、連続式キルン炉を
用いて、水蒸気を流通させながら、950 ℃で15時間滞留
させて賦活した。得られた粒子には、発泡、粒子相互の
融着が認められ、均一な賦活は達成されなかった。
The infusible particles thus obtained were activated by being retained for 15 hours at 950 ° C. in a continuous kiln while flowing steam. In the obtained particles, foaming and fusion of particles were observed, and uniform activation was not achieved.

【0030】比較例3 実施例1と同様にして得た全面光学的等方性ピッチを、
粉砕し、ふるい分け、平均粒径20μm のピッチDを得
た。これを、実施例1と同様にして不融化処理した。流
動層でのピッチD相互の溶融による融着により、流動層
温度210 ℃近辺で温度の暴走が起こり、流動層での粒子
相互の溶融による融着により、ピッチDはおこし状にな
っていた。
Comparative Example 3 The entire surface optical isotropic pitch obtained in the same manner as in Example 1 was
It was crushed and sieved to obtain a pitch D having an average particle size of 20 μm. This was infusibilized in the same manner as in Example 1. Due to the fusion of the pitches D in the fluidized bed due to melting, a temperature runaway occurred around the fluidized bed temperature of 210 ° C., and the fusion of the particles in the fluidized bed due to the fusion of the particles caused the pitch D to be a votive shape.

【0031】比較例4 実施例1と同様にして全面光学的等方性ピッチを得た。
得られたピッチを、紡糸口径0.3mm の押出紡糸機にて溶
融紡糸し、得られた繊維径32μm のピッチ繊維を重量平
均繊維長200 μm に切断し、ピッチ短繊維Eを得た。こ
れを、実施例1と同様にして不融化処理した。得られた
不融化短繊維の酸素含有量は7.2 重量%で、半径方向の
酸素濃度分布をEPMAで測定した結果、繊維表面近傍
の酸素濃度が高く、酸素は繊維内に不均一に分布してい
た。流動層での繊維相互の溶融による融着は、繊維の一
部に認められた。
Comparative Example 4 An optically isotropic pitch over the entire surface was obtained in the same manner as in Example 1.
The obtained pitch was melt-spun with an extrusion spinning machine having a spinneret diameter of 0.3 mm, and the obtained pitch fiber having a fiber diameter of 32 μm was cut into a weight average fiber length of 200 μm to obtain a pitch short fiber E. This was infusibilized in the same manner as in Example 1. The oxygen content of the obtained infusibilized short fiber was 7.2% by weight, and the oxygen concentration distribution in the radial direction was measured by EPMA. As a result, the oxygen concentration in the vicinity of the fiber surface was high, and oxygen was unevenly distributed in the fiber. It was The fusion due to the mutual fusion of the fibers in the fluidized bed was observed in a part of the fibers.

【0032】得られた不融化短繊維を、皿式転動造粒機
で、痕跡量のキノリン不溶分を含む軟化点110 ℃の石炭
系ピッチ10重量%と混合して造粒し、平均粒径6mmの球
状不融化粒子を得た。得られた球状不融化粒子を、連続
式キルン炉を用いて、水蒸気を流通させながら、950 ℃
で6時間滞留させて賦活した。得られた球状活性炭の収
率は、ピッチ短繊維重量に対して32重量%であり、平均
粒径は4.0mm 、BET法による比表面積は1310m2/gであ
った。
The infusibilized short fibers thus obtained were mixed in a plate-type rolling granulator with 10% by weight of coal-based pitch having a softening point of 110 ° C. and containing a trace amount of quinoline-insoluble matter, and granulated. Spherical infusible particles having a diameter of 6 mm were obtained. The obtained spherical infusible particles were heated at 950 ° C using a continuous kiln furnace while flowing steam.
It was retained for 6 hours for activation. The yield of the obtained spherical activated carbon was 32% by weight based on the weight of short pitch fibers, the average particle diameter was 4.0 mm, and the specific surface area by the BET method was 1310 m 2 / g.

【0033】かかる球状活性炭を吸着カラムに充填し、
ブタンの吸着、空気による脱着を繰り返した後に測定し
たブタン有効吸着容量は、100cc の球状活性炭に対して
4.8gのブタンであった。
The spherical activated carbon was packed in an adsorption column,
The butane effective adsorption capacity measured after repeating butane adsorption and desorption with air was 100cc of spherical activated carbon.
It was 4.8 g of butane.

【0034】[0034]

【発明の効果】本発明では、充填密度が大きく、表面積
が広く、繊維径が適度に細い短繊維が、流動層におい
て、良好な流動条件下に、酸化性ガスと直接接触するの
で、不融化の際の反応熱は酸化性ガスによって効率よく
除去され、繊維の融着および破損を防止することがで
き、均一な不融化を簡略化された製造工程で迅速に生産
効率よく行うことができる。また、本発明によって得ら
れた不融化短繊維を、従来技術で造粒・賦活することに
より、球状活性炭の粒径を容易に任意に大きくすること
ができ、従って活性炭の使用に当たって圧力損失を小さ
くすることができ、特定の使用形態および用途に限られ
ることがなくなる。このようにして得られる活性炭は、
単位容積当たりの吸着容量を大きくすることが工業的に
可能になる。
According to the present invention, short fibers having a large packing density, a large surface area, and an appropriately thin fiber diameter are directly contacted with an oxidizing gas in a fluidized bed under good fluidizing conditions, so that they are infusibilized. The reaction heat at this time is efficiently removed by the oxidizing gas, fusion and breakage of the fibers can be prevented, and uniform infusibilization can be performed quickly and efficiently in a simplified production process. Further, by granulating and activating the infusibilized short fibers obtained by the present invention by a conventional technique, the particle size of the spherical activated carbon can be easily increased arbitrarily, and therefore the pressure loss in using the activated carbon is reduced. And is no longer limited to a particular form of use and application. The activated carbon thus obtained is
It is industrially possible to increase the adsorption capacity per unit volume.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三好 史洋 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 花谷 誠二 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (72)発明者 大杉 幸広 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumihiro Miyoshi 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Seiji Hanatani 1 Kawasaki-cho, Chiba-shi Kawasaki Steel Co., Ltd. Research Headquarters (72) Inventor Yukihiro Osugi 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Headquarters

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性繊維を酸化処理により迅速かつ
均一に不融化するに当り、 重量平均繊維長30〜500 μm の熱可塑性短繊維に流動条
件下に振動を付加しながら、前記短繊維を酸化性ガスと
接触させて酸化処理を行うことを特徴とする熱可塑性繊
維の不融化方法。
1. To rapidly and uniformly infusibilize a thermoplastic fiber by an oxidation treatment, the thermoplastic short fiber having a weight-average fiber length of 30 to 500 μm is vibrated under flowing conditions to form the short fiber. A method for infusibilizing a thermoplastic fiber, which comprises contacting with an oxidizing gas to perform an oxidation treatment.
JP4074317A 1992-03-30 1992-03-30 Method for infusibilizing thermoplastic fiber Pending JPH05279923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4074317A JPH05279923A (en) 1992-03-30 1992-03-30 Method for infusibilizing thermoplastic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4074317A JPH05279923A (en) 1992-03-30 1992-03-30 Method for infusibilizing thermoplastic fiber

Publications (1)

Publication Number Publication Date
JPH05279923A true JPH05279923A (en) 1993-10-26

Family

ID=13543627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4074317A Pending JPH05279923A (en) 1992-03-30 1992-03-30 Method for infusibilizing thermoplastic fiber

Country Status (1)

Country Link
JP (1) JPH05279923A (en)

Similar Documents

Publication Publication Date Title
US4946663A (en) Production of high surface area carbon fibres
US3843559A (en) Process for making activated carbon from agglomerative coal with water injection temperature control in a fluidized oxidation stage
JPH05279923A (en) Method for infusibilizing thermoplastic fiber
JP3310348B2 (en) Method for producing molecular sieve carbon
KR100501830B1 (en) Process for preparing spherical activated carbon
JPH08217435A (en) Non-fusion treatment of thermoplastic fine powder, and production of activated carbon with the same
JPH05155673A (en) Porous carbon material and its production
JP2989201B2 (en) Spherical porous carbon particles and method for producing the same
JP3253708B2 (en) Method for producing molecular sieve carbon of spherical fiber mass
KR100328093B1 (en) Manufacturing method of composite activated carbon fiber
JPH1095982A (en) Production of carbonic microsphere
JPH05186210A (en) Production of spherically fibrous lumpy activated carbon
JP3197020B2 (en) Method for producing molecular sieve carbon
JP3280094B2 (en) Method for producing molecular sieve carbon
JPH04146219A (en) Production of spherically granular fibrous activated carbon
US1783110A (en) Manufacture of activated carbon
JPH0280315A (en) Granulated active carbon
JP2524442B2 (en) Method for producing porous carbon material
JP2635784B2 (en) Bunched fiber mass activated carbon and method for producing the same
JPH09255320A (en) Production of porous carbon material having fine pore
JP4151304B2 (en) Method for producing hollow carbon fiber
JPH07299357A (en) Production of spherical fiber lump molecular sieve carbon
JPH03206126A (en) Production of massive-sphere fiber active carbon
JPH05147914A (en) Production of activated carbon made of spherical fiber lump
JPH04126828A (en) Production of short carbon fiber and active carbon fiber