JPH1095982A - Production of carbonic microsphere - Google Patents

Production of carbonic microsphere

Info

Publication number
JPH1095982A
JPH1095982A JP8254086A JP25408696A JPH1095982A JP H1095982 A JPH1095982 A JP H1095982A JP 8254086 A JP8254086 A JP 8254086A JP 25408696 A JP25408696 A JP 25408696A JP H1095982 A JPH1095982 A JP H1095982A
Authority
JP
Japan
Prior art keywords
pitch
carbonaceous
spheres
optically anisotropic
optically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8254086A
Other languages
Japanese (ja)
Inventor
Isao Mochida
勲 持田
Hisaji Matsui
久次 松井
Chiharu Yamaguchi
千春 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8254086A priority Critical patent/JPH1095982A/en
Publication of JPH1095982A publication Critical patent/JPH1095982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing a carbonic microsphere having optically anisotropic structure. SOLUTION: This method for producing a carbonic microsphere comprises a step for mixing an optically isotropic pitch with an optically anisotropic pitch in a weight ratio of (1:0.1) to (1:1.5), a step for stirring the mixture, if necessary by adding carbon black, at 250-400 deg.C and a step for forming and separating a carbonic microsphere consisting essentially of the optically anisotropic structure to provide the carbonic microsphere (having 0.01-500μm particle diameter). The carbonrc microsphere is, if necessary, treated in an oxidative atmosphere for thermal stabilization and thereafter fired and/or grafitized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素質小球体の製
造方法に関する。本発明で得られる炭素質小球体は黒鉛
類似の構造、即ち、光学的異方性組織を有し、電気的、
磁気的及び化学的活性に富んでおり、高密度等方性炭素
材料、高表面積活性炭、摺動材、潤滑剤及びクロマトグ
ラフ充填剤等として幅広く利用することができる。
[0001] The present invention relates to a method for producing carbonaceous spherules. The carbonaceous spheres obtained in the present invention have a structure similar to graphite, that is, having an optically anisotropic structure,
It is rich in magnetic and chemical activity and can be widely used as a high density isotropic carbon material, high surface area activated carbon, sliding material, lubricant, chromatographic filler and the like.

【0002】[0002]

【従来の技術】特公昭63−1241号公報、特公平1
−27968号公報及び特開平1−242691号公報
には、石炭系重質油、石油系重質油又はこれら重質油か
らのピッチを300〜500℃の温度で加熱処理した
後、生成した光学的異方性の炭素質小球体を分離する製
造方法が記載されている。特公平6−35581号公報
には、バルクメソフェーズを50〜1000重量倍のシ
リコンオイル中で、バルクメソフェーズの粘度が200
ポイズを示す温度よりも60℃ないし160℃高い温度
範囲で加熱処理することにより、光学的異方性の炭素質
小球体を製造する方法が記載されている。
2. Description of the Related Art Japanese Patent Publication No. Sho 63-1241, Japanese Patent Publication No.
JP-A-27968 and JP-A-1-242691 disclose that a coal-based heavy oil, a petroleum-based heavy oil, or a pitch from these heavy oils is subjected to a heat treatment at a temperature of 300 to 500 ° C., and then an optical fiber formed. A production method for separating highly anisotropic carbonaceous spheres is described. Japanese Patent Publication No. 6-35581 discloses that a bulk mesophase has a viscosity of 200 to 200 times by weight in silicone oil and has a viscosity of 200.
A method for producing optically anisotropic carbonaceous spheres by performing a heat treatment at a temperature higher by 60 ° C. to 160 ° C. than the temperature at which poise is exhibited.

【0003】しかし、特公昭63−1241号公報、特
公平1−27968号公報及び特開平1−242691
号公報に記載の方法で20μm以下の小球体を効率よく
得ようとすると、原料に重質油を用いる場合には小球体
の収率が原料油当り僅か5重量%以下であり、また、原
料にピッチを用いる場合にも10重量%以下である。こ
れらの方法で炭素質小球体を高収率で製造するために
は、熱処理温度を高くするか、反応器内での滞留時間を
長くする必要がある。この場合、小球体の合体、成長が
進行して生成する小球体の粒径が非常に大きくなるた
め、20μm以下の炭素質小球体を効率よく得ることは
困難である。そのため、従来の方法には、生産効率が低
く、得られる小球体の粒径が不均一で、表面の平滑性に
欠けるという問題が存在していた。
[0003] However, Japanese Patent Publication No. 63-1241, Japanese Patent Publication No. 27968/1988 and Japanese Patent Application Laid-Open No. 1-242991 are disclosed.
In the case of using a heavy oil as a raw material, the yield of the small spheres is only 5% by weight or less based on the raw material oil. Also when the pitch is used, the content is 10% by weight or less. In order to produce carbonaceous spheres in high yields by these methods, it is necessary to increase the heat treatment temperature or lengthen the residence time in the reactor. In this case, it is difficult to efficiently obtain carbonaceous small spheres having a size of 20 μm or less because the size of the small spheres formed by the progress of coalescence and growth of the small spheres becomes very large. Therefore, the conventional method has a problem that the production efficiency is low, the particle size of the obtained small spheres is uneven, and the surface lacks smoothness.

【0004】特公平6−35581号公報に記載の方法
では、固体状のバルクメソフェーズを用いる場合は、予
めバルクメソフェーズを所定の粒径に粉砕しておく必要
があり作業上複雑である。また、加熱処理に粉末のバル
クメソフェーズ量当り50〜1000重量%ものシリコ
ンオイルを必要とし、設備の大型化や、熱容量が大きい
ため経済性の点で問題がある。
In the method disclosed in Japanese Patent Publication No. 6-35581, when a solid bulk mesophase is used, the bulk mesophase needs to be ground to a predetermined particle size in advance, which is complicated in operation. Further, the heat treatment requires as much as 50 to 1000% by weight of silicon oil per the bulk mesophase of the powder, and there is a problem in terms of economical efficiency because the equipment is large and the heat capacity is large.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
従来技術の実情に鑑みて、光学的異方性組織を有する炭
素質小球体を効率よく製造する方法を提案するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances of the prior art, and proposes a method for efficiently producing carbonaceous spheres having an optically anisotropic structure.

【0006】[0006]

【課題を解決するための手段】本発明は、光学的等方性
ピッチと光学的異方性ピッチとを重量比で1:0.1〜
1.5の割合となるよう混合し(必要に応じて、得られ
た混合物100重量部に対して0.1〜30重量部、好
ましくは0.1〜10重量部のカーボンブラックを添加
し)、250〜400℃の温度で攪拌し、光学的異方性
組織を主体とする炭素質小球体を生成させた後、該小球
体を分離することを特徴とする炭素質小球体(特に粒径
が0.01〜500μmである炭素質小球体)の製造方
法にある。本発明は、当該方法により得られた炭素質小
球体を(必要に応じて酸化性雰囲気下で熱安定化処理し
た後)焼成及び/又は黒鉛化することを特徴とする炭素
質小球体の製造方法にある。
According to the present invention, an optically isotropic pitch and an optically anisotropic pitch are used in a weight ratio of 1: 0.1 to 1: 0.1.
1.5 parts by weight (if necessary, 0.1 to 30 parts by weight, preferably 0.1 to 10 parts by weight of carbon black is added to 100 parts by weight of the obtained mixture) Stirring at a temperature of 250 to 400 ° C. to form carbonaceous spheres mainly composed of an optically anisotropic structure, and then separating the spheres. Is 0.01 to 500 μm). The present invention is characterized in that the carbonaceous spheres obtained by the method are calcined and / or graphitized (after, if necessary, heat-stabilized in an oxidizing atmosphere) to produce carbonaceous spheres. In the way.

【0007】[0007]

【発明の実施の形態】炭素質小球体の生成・分離 光学的等方性ピッチ及び光学的異方性ピッチとしては、
ナフタレン、メチルナフタレン等の芳香族化合物を酸触
媒等により処理して調製した合成ピッチ、石炭系ピッチ
及び石油系ピッチのいずれも使用できる。好ましい実施
の形態では、構造的類似性、溶解性及び粘性の点から光
学的等方性の合成ピッチと光学的異方性の合成ピッチと
を用いる。光学的等方性ピッチと光学的異方性ピッチと
は、固体−固体、液状−固体及び液状−液状のいずれの
系でも混合することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The generation and separation of carbonaceous microspheres The optically isotropic pitch and the optically anisotropic pitch are as follows:
Any of synthetic pitch, coal pitch and petroleum pitch prepared by treating an aromatic compound such as naphthalene or methylnaphthalene with an acid catalyst or the like can be used. In a preferred embodiment, an optically isotropic synthetic pitch and an optically anisotropic synthetic pitch are used in terms of structural similarity, solubility and viscosity. The optically isotropic pitch and the optically anisotropic pitch can be mixed in any of solid-solid, liquid-solid and liquid-liquid systems.

【0008】光学的等方性ピッチは、光学的等方性組織
を主体とするピッチであり、偏光顕微鏡観察により等方
性組織を示すピッチである。光学的異方性ピッチは、光
学的異方性組織を主体とするピッチであり、偏光顕微鏡
観察により異方性組織を示すピッチである。
The optically isotropic pitch is a pitch mainly composed of an optically isotropic structure, and is a pitch showing an isotropic structure by observation with a polarizing microscope. The optically anisotropic pitch is a pitch mainly composed of an optically anisotropic structure, and is a pitch showing an anisotropic structure by observation with a polarizing microscope.

【0009】混合ピッチを加熱処理することにより、効
率よく炭素質小球体を生成させることができる。混合物
ピッチを加熱処理することにより、光学的異方性ピッチ
の組織の一部は配列の変化を起こし光学的等方性ピッチ
となり、再配列の起こらなかった光学的異方性組織の部
分は溶剤等に溶解することのない炭素質小球体として光
学的等方性ピッチ内に分散し、炭素質小球体となる。
By heating the mixed pitch, carbonaceous small spheres can be efficiently produced. By heat-treating the mixture pitch, a part of the structure of the optically anisotropic pitch undergoes a change in the arrangement to become an optically isotropic pitch, and the part of the optically anisotropic structure in which no rearrangement occurs occurs in a solvent. It disperses in the optically isotropic pitch as carbonaceous small spheres that do not dissolve in the like, and becomes carbonaceous small spheres.

【0010】光学的等方性ピッチと光学的異方性ピッチ
とを混合して得られた混合物(混合ピッチ)を加熱し、
250〜400℃の温度で攪拌することにより、容易に
光学的異方性組織を主体とする炭素質小球体が生成す
る。混合ピッチは、空気等の活性なガスの雰囲気下で加
熱することもできるが、窒素やアルゴン等の不活性なガ
スの雰囲気下で加熱する方がより安全である。混合ピッ
チは、常圧下、加圧下のいずれで加熱しても炭素質小球
体を生成させることができる。
A mixture (mixed pitch) obtained by mixing an optically isotropic pitch and an optically anisotropic pitch is heated,
By stirring at a temperature of 250 to 400 ° C., carbonaceous spheres mainly composed of an optically anisotropic structure are easily formed. The mixing pitch can be heated in an atmosphere of an active gas such as air, but it is safer to heat the mixture pitch in an atmosphere of an inert gas such as nitrogen or argon. Regarding the mixing pitch, carbonaceous spheres can be generated by heating under normal pressure or under pressure.

【0011】混合ピッチを加熱して溶融させるとともに
攪拌することにより、光学的異方性ピッチと光学的等方
性ピッチとをよく分散させることができる。混合ピッチ
は、攪拌羽根による方法、ホモジナイザーを用いる方法
及び液循環ジェット流法等のいずれの方法でも攪拌する
ことができる。混合ピッチを加熱しながら5〜120分
間程度攪拌することにより、効率よく炭素質小球体を生
成させることができる。混合ピッチの加熱・攪拌をあま
り長時間行うと等方性ピッチの再配列により異方性への
組織化が進むため、生成する炭素質小球体の粒径が大き
くなる。
By heating, melting and stirring the mixed pitch, the optically anisotropic pitch and the optically isotropic pitch can be well dispersed. The mixing pitch can be agitated by any method such as a method using a stirring blade, a method using a homogenizer, and a liquid circulation jet flow method. By stirring for about 5 to 120 minutes while heating the mixing pitch, carbonaceous small spheres can be efficiently generated. If heating and stirring of the mixed pitch are performed for an excessively long period of time, the anisotropic pitch rearrangement causes the anisotropic organization to proceed, so that the particle size of the generated carbonaceous small spheres increases.

【0012】好ましい実施の形態では、粒径が0.01
〜500μm、必要に応じて0.01〜20μm程度の
炭素質小球体を製造する。光学的等方性ピッチと光学的
異方性ピッチの混合割合、加熱処理の条件、攪拌条件を
調節すること及び/又は混合ピッチにカーボンプラック
を0.1〜30重量%添加することにより、生成する炭
素質小球体の粒径を容易にコントロールすることができ
る。
In a preferred embodiment, the particle size is 0.01
A carbonaceous spheroid having a size of about 500 μm and, if necessary, about 0.01 to 20 μm is produced. By adjusting the mixing ratio of the optically isotropic pitch and the optically anisotropic pitch, the conditions of the heat treatment and the stirring conditions, and / or adding 0.1 to 30% by weight of carbon plaque to the mixed pitch. The particle size of the resulting carbonaceous spheres can be easily controlled.

【0013】生成した炭素質小球体は、従来から用いら
れている高温度遠心分離法、アンチソルベント法、臨界
抽出法、一般的なキノリンやトルエン等の溶剤を用いる
抽出法又は濾過処理等による方法により、等方性ピッチ
から分離することができる。炭素質小球体を分離した後
に残存する等方性ピッチは、原料に用いる等方性ピッチ
として再使用することができるので、経済的に有利であ
る。
The formed carbonaceous spheres can be obtained by a conventional high-temperature centrifugation method, an anti-solvent method, a critical extraction method, an extraction method using a general solvent such as quinoline or toluene, or a filtration method. By this, it is possible to separate from the isotropic pitch. The isotropic pitch remaining after separating the carbonaceous spheres can be reused as the isotropic pitch used for the raw material, and is economically advantageous.

【0014】炭素質小球体の焼成・黒鉛化 分離した炭素質小球体を焼成及び/又は黒鉛化すること
により、炭化又は黒鉛化した炭素質小球体を製造するこ
とができる。炭素質小球体を、非酸化性雰囲気下、例え
ば、窒素ガス雰囲気中、アルゴンガス雰囲気中において
600〜2000℃程度の温度で焼成することにより、
炭化した炭素質小球体を製造することができる。炭素質
小球体又は炭化した炭素質小球体を、非酸化性雰囲気
下、例えば、窒素ガス雰囲気中、アルゴンガス雰囲気中
において2000〜3500℃程度の温度で焼成するこ
とにより、黒鉛化した炭素質小球体を製造することがで
きる。
Firing and graphitizing the carbonaceous spheres By firing and / or graphitizing the separated carbonaceous spheres, carbonized or graphitized carbonaceous spheres can be produced. By baking the carbonaceous spheres at a temperature of about 600 to 2000 ° C. in a non-oxidizing atmosphere, for example, in a nitrogen gas atmosphere, in an argon gas atmosphere,
Carbonized carbonaceous spherules can be produced. By sintering the carbonaceous spheres or carbonized carbonaceous spheres in a non-oxidizing atmosphere, for example, in a nitrogen gas atmosphere or an argon gas atmosphere at a temperature of about 2000 to 3500 ° C., the graphitized carbonaceous Spheres can be manufactured.

【0015】焼成又は黒鉛化する前の炭素質小球体を酸
化性雰囲気下で熱安定化処理することにより、焼成時又
は黒鉛化時に炭素質小球体が融着することを防止でき
る。炭素質小球体を酸化性雰囲気下、例えば、大気中、
酸素−窒素混合ガス雰囲気中等において50〜400℃
程度の温度で加熱することにより熱安定化処理すること
ができる。熱安定化処理により、炭素質小球体の表面に
酸化被膜を形成させることができ、焼成時又は黒鉛化時
に炭素質小球体が溶融して相互に接着することを防止す
ることができる。
By subjecting the carbonaceous spheres before firing or graphitization to a thermal stabilization treatment in an oxidizing atmosphere, it is possible to prevent the carbonaceous spheres from fusing during firing or graphitization. Under an oxidizing atmosphere, for example, in the atmosphere,
50 to 400 ° C in an oxygen-nitrogen mixed gas atmosphere or the like
Heat stabilization can be performed by heating at a temperature of about the same. By the heat stabilization treatment, an oxide film can be formed on the surface of the carbonaceous spheres, and the carbonaceous spheres can be prevented from melting and adhering to each other during firing or graphitization.

【0016】[0016]

【発明の効果】本発明によれば、粒径が揃い、表面が平
滑な炭素質小球体を効率よく製造できる。本発明によれ
ば、原料ピッチの選択により炭素質小球体中のフリーカ
ーボン量、ヘテロ化合物量(酸素、硫黄、窒素等)及び
金属成分量をコントロールすることができる。本発明に
よれば、光学的等方性ピッチと光学的異方性ピッチとを
混合し、加熱攪拌し、生成した小球体を分離することに
より、炭素質小球体を効率よく製造することができる。
従って、本発明は、従来の方法と比較して経済的効果も
大きい。
According to the present invention, carbonaceous spheres having a uniform particle size and a smooth surface can be efficiently produced. According to the present invention, the amount of free carbon, the amount of hetero compounds (oxygen, sulfur, nitrogen, etc.) and the amount of metal components in the carbonaceous spheres can be controlled by selecting the raw material pitch. According to the present invention, a carbonaceous small sphere can be efficiently produced by mixing an optically isotropic pitch and an optically anisotropic pitch, stirring with heating, and separating the generated small sphere. .
Therefore, the present invention has a great economic effect as compared with the conventional method.

【0017】[0017]

【実施例】実施例1 表1に示す光学的等方性ピッチA(300g)と光学的
異方性ピッチC(200g)とを1リットルのオートク
レーブに仕込み、窒素雰囲気常圧下において昇温速度2
℃/分で加熱しピッチの温度を360℃とした。この
時、ピッチが溶融した時点より錨型攪拌翼を用いて徐々
に攪拌を開始した。
EXAMPLE 1 Table optically isotropic shown in one pitch A and (300 g) and optically anisotropic pitch C (200 g) were charged to a 1 liter autoclave, heating rate in a nitrogen atmosphere under normal pressure 2
The pitch was heated at 360 ° C./min. At this time, stirring was gradually started using an anchor-type stirring blade from the time when the pitch was melted.

【0018】ピッチの温度が360℃になった時点か
ら、更に攪拌速度を1200rpmとして、攪拌しなが
ら30分間の処理を行いピッチを冷却後取り出した。こ
のピッチをピリジンで抽出した結果、用いた全ピッチ量
に対し16重量%の割合で、光学的異方性組織を有する
炭素質小球体を取得した。この炭素質小球体の平均粒径
は18μmであった。
When the pitch temperature reached 360 ° C., the stirring speed was further increased to 1200 rpm, and a treatment was carried out for 30 minutes while stirring, and the pitch was cooled and taken out. As a result of extracting this pitch with pyridine, carbonaceous spheres having an optically anisotropic structure were obtained at a ratio of 16% by weight based on the total pitch amount used. The average particle size of the carbonaceous spheres was 18 μm.

【0019】実施例2(原料の混合割合の影響) 表1に示す光学的等方性ピッチA(200g)と光学的
異方性ピッチC(300g)とを1リットルのオートク
レーブに仕込み、窒素雰囲気常圧下において昇温速度2
℃/分で加熱しピッチの温度を360℃とした。この
時、ピッチが溶融した時点より錨型攪拌翼を用いて徐々
に攪拌を開始した。
Example 2 (Effect of mixing ratio of raw materials) An optically isotropic pitch A (200 g) and an optically anisotropic pitch C (300 g) shown in Table 1 were charged into a 1-liter autoclave, and nitrogen atmosphere was used. Heating rate 2 under normal pressure
The pitch was heated at 360 ° C./min. At this time, stirring was gradually started using an anchor-type stirring blade from the time when the pitch was melted.

【0020】ピッチの温度が360℃になった時点か
ら、更に攪拌速度を1200rpmとして、攪拌しなが
ら30分間の処理を行いピッチを冷却後取り出した。こ
のピッチをピリジンで抽出した結果、用いた全ピッチ量
に対し27重量%の割合で、光学的異方性組織を有する
炭素質小球体を取得した。この炭素小球体の平均粒径は
27μmであった。
After the pitch temperature reached 360 ° C., the stirring speed was further increased to 1200 rpm, a treatment was carried out for 30 minutes while stirring, and the pitch was cooled and taken out. As a result of extracting the pitch with pyridine, carbonaceous spheres having an optically anisotropic structure were obtained at a ratio of 27% by weight based on the total pitch amount used. The average particle size of these carbon globules is
It was 27 μm.

【0021】比較例1(原料混合割合の影響) 表1に示す光学的等方性ピッチA(150g(1重量
部))と光学的異方性ピッチC(350g(約2.3重
量部))とを1リットルのオートクレーブに仕込み、実
施例2と同様の実験を行った。その結果、光学的異方性
組織ではなく光学的等方性組織を有する炭素質小球体の
生成が確認できた。
Comparative Example 1 (Effect of Mixing Ratio of Raw Materials) Optically isotropic pitch A (150 g (1 part by weight)) and optically anisotropic pitch C (350 g (about 2.3 parts by weight)) shown in Table 1 ) Was charged into a 1-liter autoclave, and the same experiment as in Example 2 was performed. As a result, it was confirmed that carbonaceous spheres having an optically isotropic structure but not an optically anisotropic structure were generated.

【0022】実施例3(攪拌の回転速度の影響) 表1に示す光学的等方性ピッチA(300g)と光学的
異方性ピッチC(200g)とを1リットルのオートク
レーブに仕込み、窒素雰囲気常圧下において昇温速度2
℃/分で加熱しピッチの温度を360℃とした。この
時、ピッチが溶融した時点より錨型攪拌翼を用いて徐々
に攪拌を開始した。
Example 3 (Effect of Stirring Rotation Speed) An optically isotropic pitch A (300 g) and an optically anisotropic pitch C (200 g) shown in Table 1 were charged into a 1-liter autoclave, and a nitrogen atmosphere was used. Heating rate 2 under normal pressure
The pitch was heated at 360 ° C./min. At this time, stirring was gradually started using an anchor-type stirring blade from the time when the pitch was melted.

【0023】ピッチの温度が360℃になった時点か
ら、更に攪拌速度を4000rpmとして、攪拌しなが
ら30分間の処理を行いピッチを冷却後取り出した。こ
のピッチをピリジンで抽出した結果、用いた全ピッチ量
に対し17重量%の割合で、光学的異方性組織を有する
炭素質小球体を取得した。この炭素質小球体の平均粒径
は13μmであった。
When the pitch temperature reached 360 ° C., the stirring speed was further increased to 4000 rpm, and a treatment was carried out for 30 minutes while stirring, and the pitch was cooled and taken out. As a result of extracting this pitch with pyridine, carbonaceous spheres having an optically anisotropic structure were obtained at a ratio of 17% by weight based on the total pitch amount used. The average particle size of the carbonaceous spherules was 13 μm.

【0024】実施例4(原料種の影響) 表1に示す光学的等方性ピッチB(300g)と光学的
異方性ピッチD(200g)とを1リットルのオートク
レーブに仕込み、窒素雰囲気常圧下において昇温速度2
℃/分で加熱しピッチの温度を340℃とした。以下、
実施例1と同様の操作で炭素質小球体を取得した。得ら
れた炭素質小球体の平均粒径は16μmであり、用いた
ピッチ当りの収率は16重量%であった。
Example 4 (Effect of Raw Material Type) An optically isotropic pitch B (300 g) and an optically anisotropic pitch D (200 g) shown in Table 1 were charged into a 1-liter autoclave, and the mixture was placed in a nitrogen atmosphere at normal pressure. At a heating rate of 2
The pitch was heated at 340 ° C. by heating at a rate of ° C./min. Less than,
By the same operation as in Example 1, carbonaceous small spheres were obtained. The average particle size of the obtained carbonaceous spheres was 16 μm, and the yield per pitch used was 16% by weight.

【0025】実施例5(カーボンブラックの添加効果) 表1に示す光学的等方性ピッチB(300g)と光学的
異方性ピッチC(200g)とを1リットルのオートク
レーブに仕込み、更にカーボンブラック(5g)を加え
窒素雰囲気常圧下において昇温速度2℃/分で加熱しピ
ッチの温度を380℃とした。以下、実施例1と同様の
操作で炭素質小球体を取得した。得られたピッチ小球体
の平均粒径は12μmであり、用いたピッチ当たりの収
率は21重量%であった。
Example 5 (Effect of Addition of Carbon Black) An optically isotropic pitch B (300 g) and an optically anisotropic pitch C (200 g) shown in Table 1 were charged into a 1-liter autoclave, and further, carbon black was added. (5 g) was added thereto, and the mixture was heated at a heating rate of 2 ° C./min under a normal pressure in a nitrogen atmosphere to adjust the pitch temperature to 380 ° C. Thereafter, carbonaceous small spheres were obtained by the same operation as in Example 1. The average pitch particle size of the obtained pitch spheres was 12 μm, and the yield per pitch used was 21% by weight.

【0026】比較例2 表1に示す光学的等方性ピッチA(500g)を1リッ
トルのオートクレーブに仕込み、窒素雰囲気下において
380℃で2時間熱処理し、小球体を生成させた。以
下、実施例1と同様の操作で炭素質小球体を分離した。
得られた炭素質小球体の平均粒径は22μmであり、用
いたピッチ当りの収率は1重量%であった。また、小球
体は粒度分布が不均一であり、いびつな形状のものも含
まれていた。
Comparative Example 2 An optically isotropic pitch A (500 g) shown in Table 1 was charged into a 1 liter autoclave and heat-treated at 380 ° C. for 2 hours in a nitrogen atmosphere to produce small spheres. Thereafter, carbonaceous spheres were separated by the same operation as in Example 1.
The average particle size of the obtained carbonaceous microspheres was 22 μm, and the yield per pitch used was 1% by weight. In addition, the small spheres had a non-uniform particle size distribution and included irregular shapes.

【0027】比較例3 表1に示す光学的等方性ピッチA(500g)を1リッ
トルのオートクレーブに仕込み、窒素雰囲気下において
380℃で6時間熱処理し、小球体を生成させた。以
下、実施例1と同様の操作で炭素質小球体を分離した。
得られた炭素質小球体の平均粒径は35μmであり、用
いたピッチ当りの収率は5重量%であった。また、小球
体は粒度分布が不均一であり、いびつな形状のものも含
まれていた。
Comparative Example 3 An optically isotropic pitch A (500 g) shown in Table 1 was charged into a 1-liter autoclave and heat-treated at 380 ° C. for 6 hours in a nitrogen atmosphere to produce small spheres. Thereafter, carbonaceous spheres were separated by the same operation as in Example 1.
The average particle size of the obtained carbonaceous microspheres was 35 μm, and the yield per pitch used was 5% by weight. In addition, the small spheres had a non-uniform particle size distribution and included irregular shapes.

【0028】[0028]

【表1】 軟化点(℃) BS BI−PS PI H/C 光学的等方性ピッチA 165 70 27 3 0.69光学的等方性ピッチB 170 69 27 4 0.70 光学的異方性ピッチC 237 46 21 33 0.65光学的異方性ピッチD 227 41 27 32 0.65 Table 1 Softening point (° C) BS BI-PS PI H / C Optically isotropic pitch A 165 70 273 3 0.69 Optically isotropic pitch B 170 69 274 4 0.70 Optical anisotropy Pitch C 237 46 21 33 0.65 Optically anisotropic pitch D 227 41 27 32 0.65

【0029】備考)等方性ピッチA及びB並びに異方性
ピッチCはナフタリンを原料とするピッチであり、異方
性ピッチDはメチルナフタレンを原料とするピッチであ
る。BSは、ベンゼン可溶な成分量(重量%)を示す。
BI−PSは、ピリジンに溶解し、ベンゼンに不溶な成
分量(重量%)を示す。PIは、ピリジンに不溶な成分
量(重量%)を示す。
Remarks) The isotropic pitches A and B and the anisotropic pitch C are pitches using naphthalene as a raw material, and the anisotropic pitch D is a pitch using methylnaphthalene as a raw material. BS indicates the amount of benzene-soluble components (% by weight).
BI-PS shows the amount (% by weight) of a component dissolved in pyridine and insoluble in benzene. PI indicates the amount (% by weight) of a component insoluble in pyridine.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光学的等方性ピッチと光学的異方性ピッ
チとを重量比で1:0.1〜1.5の割合となるよう混
合し、250〜400℃の温度で攪拌し、光学的異方性
組織を主体とする炭素質小球体を生成させた後、該小球
体を分離することを特徴とする炭素質小球体の製造方
法。
1. An optically isotropic pitch and an optically anisotropic pitch are mixed at a weight ratio of 1: 0.1 to 1.5, and stirred at a temperature of 250 to 400 ° C. A method for producing carbonaceous small spheres, comprising generating carbonaceous small spheres mainly composed of an optically anisotropic structure, and separating the small spheres.
【請求項2】 光学的等方性ピッチと光学的異方性ピッ
チとを重量比で1:0.1〜1.5の割合となるよう混
合し、得られた混合物100重量部に対して0.1〜3
0重量部のカーボンブラックを添加し、250〜400
℃の温度で攪拌することにより、光学的異方性組織を主
体とする炭素質小球体を生成させた後、該小球体を分離
することを特徴とする炭素質小球体の製造方法。
2. An optically isotropic pitch and an optically anisotropic pitch are mixed at a weight ratio of 1: 0.1 to 1.5, based on 100 parts by weight of the obtained mixture. 0.1-3
0 parts by weight of carbon black, 250 to 400
A method for producing carbonaceous spheres, comprising: producing carbonaceous spheres mainly composed of an optically anisotropic structure by stirring at a temperature of ° C .; and separating the spheres.
【請求項3】 炭素質小球体の粒径が0.01〜500
μmである請求項1又は2に記載の炭素質小球体の製造
方法。
3. The carbonaceous small spheres have a particle size of 0.01 to 500.
The method for producing carbonaceous spherules according to claim 1 or 2, which has a size of µm.
【請求項4】 請求項1〜3のいずれかに記載の方法に
より得られた炭素質小球体を焼成及び/又は黒鉛化する
ことを特徴とする炭素質小球体の製造方法。
4. A method for producing carbonaceous spheres, comprising firing and / or graphitizing the carbonaceous spheres obtained by the method according to claim 1.
【請求項5】 請求項1〜3のいずれかに記載の方法に
より得られた炭素質小球体を酸化性雰囲気下で熱安定化
処理した後、焼成及び/又は黒鉛化することを特徴とす
る炭素質小球体の製造方法。
5. A carbonaceous spheroid obtained by the method according to claim 1, which is heat-stabilized in an oxidizing atmosphere, and then calcined and / or graphitized. A method for producing carbonaceous spheres.
JP8254086A 1996-09-26 1996-09-26 Production of carbonic microsphere Pending JPH1095982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8254086A JPH1095982A (en) 1996-09-26 1996-09-26 Production of carbonic microsphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8254086A JPH1095982A (en) 1996-09-26 1996-09-26 Production of carbonic microsphere

Publications (1)

Publication Number Publication Date
JPH1095982A true JPH1095982A (en) 1998-04-14

Family

ID=17260038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8254086A Pending JPH1095982A (en) 1996-09-26 1996-09-26 Production of carbonic microsphere

Country Status (1)

Country Link
JP (1) JPH1095982A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2012144618A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite/carbon mixed material, carbon material for battery electrodes, and battery
WO2012144617A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
KR101432598B1 (en) * 2006-12-26 2014-08-22 주식회사 포스코 A method of pre-heat treatment of carbon material and a carbon material for electrode of capacitor prepared by using the same
CN108940134A (en) * 2018-06-20 2018-12-07 东南大学 Coal pitch spheres aoxidize infusible continuous reaction apparatus and method
JP2023008989A (en) * 2021-07-01 2023-01-19 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Method for producing heterophase binder pitch and heterophase binder pitch produced therefrom

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432598B1 (en) * 2006-12-26 2014-08-22 주식회사 포스코 A method of pre-heat treatment of carbon material and a carbon material for electrode of capacitor prepared by using the same
US8372373B2 (en) 2009-10-22 2013-02-12 Showa Denko K.K. Graphite material, carbonaceous material for battery electrodes, and batteries
JP4738553B2 (en) * 2009-10-22 2011-08-03 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
CN102196994A (en) * 2009-10-22 2011-09-21 昭和电工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
EP2418172A4 (en) * 2009-10-22 2015-07-29 Showa Denko Kk Graphite material, carbonaceous material for battery electrodes, and batteries
WO2011049199A1 (en) * 2009-10-22 2011-04-28 昭和電工株式会社 Graphite material, carbonaceous material for battery electrodes, and batteries
WO2012144617A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
CN102844918A (en) * 2011-04-21 2012-12-26 昭和电工株式会社 Graphite material, carbon material for battery electrode, and battery
KR101211489B1 (en) 2011-04-21 2012-12-13 쇼와 덴코 가부시키가이샤 Graphite/carbon composite materials, carbonaceous material for battery electrodes, and batteries
JP5140781B2 (en) * 2011-04-21 2013-02-13 昭和電工株式会社 Graphite / carbon mixed material, carbon material for battery electrode, and battery
JP5081335B1 (en) * 2011-04-21 2012-11-28 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
WO2012144618A1 (en) * 2011-04-21 2012-10-26 昭和電工株式会社 Graphite/carbon mixed material, carbon material for battery electrodes, and battery
US9099742B2 (en) 2011-04-21 2015-08-04 Show A Denko K.K. Graphite material, carbon material for battery electrodes, and batteries
US9099745B2 (en) 2011-04-21 2015-08-04 Showa Denko K.K. Graphite carbon composite material, carbon material for battery electrodes, and batteries
CN108940134A (en) * 2018-06-20 2018-12-07 东南大学 Coal pitch spheres aoxidize infusible continuous reaction apparatus and method
JP2023008989A (en) * 2021-07-01 2023-01-19 コリア リサーチ インスティチュート オブ ケミカル テクノロジー Method for producing heterophase binder pitch and heterophase binder pitch produced therefrom

Similar Documents

Publication Publication Date Title
CA1158582A (en) Process for producing mesocarbon microbeads of uniform particle-size distribution
US4908200A (en) Method for producing elastic graphite structures
JPH0233679B2 (en)
JPH1095982A (en) Production of carbonic microsphere
JPH0150354B2 (en)
EP0283211A2 (en) Binderless carbon materials
US5057297A (en) Method for producing elastic graphite structures
KR100501830B1 (en) Process for preparing spherical activated carbon
EP0153419A1 (en) Process for treating coal tar or coal tar pitch
JPS58156023A (en) Production of carbon fiber
JPH0532494B2 (en)
KR100490673B1 (en) Process for preparing mesophase carbon microbeads
JPH0776342B2 (en) Method for producing carbonaceous microspheres
JPH058238B2 (en)
JP3599062B2 (en) Method for producing carbon material having fine optically anisotropic structure
JPH0635581B2 (en) Method for producing mesocarbon microbeads from bulk mesophases
JPS63139011A (en) Production of fine powdery graphite
JPH023496A (en) Production of raw material for high-performance carbon fiber
JP2000230178A (en) Production of mesophase microbeads
JPH0550468B2 (en)
KR100489678B1 (en) A method for manufacturing carbonaceous spherical anodic materials
JPS6018573A (en) Preparation of precursor pitch for carbon fiber
JPH0635579B2 (en) Method for producing pitch containing microsphere-shaped mesophase
JPH0158124B2 (en)
JPH0418126A (en) Production of carbon fiber and graphite fiber