JPH05279713A - Pure iron powder for powder metallurgy produced by atomization method using water and its production - Google Patents

Pure iron powder for powder metallurgy produced by atomization method using water and its production

Info

Publication number
JPH05279713A
JPH05279713A JP25019992A JP25019992A JPH05279713A JP H05279713 A JPH05279713 A JP H05279713A JP 25019992 A JP25019992 A JP 25019992A JP 25019992 A JP25019992 A JP 25019992A JP H05279713 A JPH05279713 A JP H05279713A
Authority
JP
Japan
Prior art keywords
powder
content
weight
iron powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25019992A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ishikawa
博之 石川
Kuniaki Ogura
邦明 小倉
Takeo Omura
武雄 大村
Yoshiaki Maeda
義昭 前田
Minoru Nitta
稔 新田
Yutaka Yoshii
裕 吉井
Hiroshi Otsubo
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to EP93919676A priority Critical patent/EP0618027B1/en
Priority to JP50797294A priority patent/JP3273789B2/en
Priority to DE69323865T priority patent/DE69323865T2/en
Priority to US08/232,121 priority patent/US5458670A/en
Priority to CA002123881A priority patent/CA2123881C/en
Priority to PCT/JP1993/001334 priority patent/WO1994006588A1/en
Publication of JPH05279713A publication Critical patent/JPH05279713A/en
Priority to US08/456,913 priority patent/US5507853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the iron powder for iron metallurgy which decreases the width of fluctuations in dimensional change at the time of sintering by pulverizing molten iron of a low Si content and low Mn content by a water atomization method, then drying the powder in an oxygen-contg. gaseous nitrogen atmosphere and, in succession, reducing the powder in a reducing gaseous atmosphere. CONSTITUTION:The molten iron of the compsn. contg., by weight % 0.008 to 0.025% Si, 0.01 to 0.30% Mn and <0.25% O2 and consisting of the balance Fe is pulverized by the water atomization method to produce the iron powder as the raw material for iron metallurgy. This powder is dried in the atmosphere having 2.5 to 7.5vol.% oxygen concn. and consisting the balance the gaseous nitrogen to decrease the width in the fluctuations in the ratio of the Si content constituting the oxide in the Si contained in the iron powder to <=50%. The powder is then subjected to the reduction under heating in the reducing gaseous atmosphere of hydrogen, etc., by which the iron powder for the iron metallurgy having the decreased width in the fluctuations of the dimensional changes of the sintering member at the time of sintering is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水を用いた噴霧法によ
り製造される純鉄系粉末冶金用鉄粉およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron powder for pure iron powder metallurgy manufactured by a spray method using water and a method for manufacturing the same.

【0002】[0002]

【従来の技術】粉末冶金用に使用されている鉄粉として
は、純鉄粉系と合金鋼粉系の2種類に大別される。純鉄
粉系の組成は若干のMn(通常0.1〜0.5重量%)
とSi、Cなどを含み残部は鉄である。一方、合金鋼粉
系はNi、Cr、Moなどをそれぞれ必要量含有したも
のである。本発明は前者の純鉄粉系に関するものであ
る。
2. Description of the Related Art Iron powder used for powder metallurgy is roughly classified into two types, pure iron powder type and alloy steel powder type. Pure iron powder composition is a little Mn (usually 0.1 to 0.5% by weight)
And Si, C, etc., and the balance is iron. On the other hand, the alloy steel powder system contains necessary amounts of Ni, Cr, Mo, etc., respectively. The present invention relates to the former pure iron powder system.

【0003】本発明の純鉄粉系の粉末の用途は、純鉄粉
にCu粉、黒鉛粉などを添加混合し、金型中で圧粉成形
し焼結後、必要に応じて寸法矯正のためのサイジングを
行い、通常5.0〜7.2g/cm3の密度を有する焼
結部品を製造することにある。
The pure iron powder-based powder of the present invention can be used by adding and mixing pure iron powder with Cu powder, graphite powder, etc., compacting in a mold, sintering and then correcting the dimensions as necessary. Sizing is performed to produce a sintered part having a density of usually 5.0 to 7.2 g / cm 3 .

【0004】[0004]

【発明が解決しようとする課題】しかし、純鉄粉にCu
粉、黒鉛粉などを添加して製造された焼結体はその強度
が高く、寸法矯正のためサイジングを行っても焼結体の
スプリングバックのため充分に寸法矯正が行えないとい
う欠点がある。このため、これまで寸法変化精度をサイ
ジングによらずに確保するために、特公昭56─123
04号公報に開示されているような、粉末粒度分布から
寸法精度を高める技術や、特開平3─142342号公
報に開示されているような粉末の形状から焼結時の寸法
変化を予測制御する技術等が提案されている。しかし、
粉末冶金用鉄粉は粉末製造から成形までの過程で、潤滑
剤や合金成分粉末の添加や特性の均一化のための混合操
作や、容器を入れ換える為の移送操作により粒度分布や
形状等の性状は変化しやすく、焼結時の寸法変化は変動
し易い傾向があった。
[Problems to be Solved by the Invention] However, pure iron powder contains Cu.
A sintered body produced by adding powder, graphite powder or the like has a high strength, and even if sizing is performed for dimensional correction, the sintered body cannot be sufficiently sized because of spring back. Therefore, in order to secure the accuracy of dimensional change without relying on sizing, the Japanese Patent Publication No.
A technique for improving dimensional accuracy from a powder particle size distribution as disclosed in Japanese Patent Publication No. 04-04, and a dimensional change during sintering based on the shape of powder as disclosed in Japanese Patent Application Laid-Open No. 3-142342. Technology etc. are proposed. But,
Iron powder for powder metallurgy has properties such as particle size distribution and shape in the process from powder production to molding by adding lubricants and alloy component powders, mixing operation for homogenizing properties, and transfer operation for replacing containers. Tended to change, and dimensional changes during sintering tended to change.

【0005】本発明は、このような従来技術の欠点に鑑
み、圧縮性を損なわない範囲で、焼結時の寸法変化の安
定した粉末冶金用純鉄粉およびその製造方法を提供する
ことを目的とするものである。寸法変化のバラツキ幅の
目標は0.06%以内である。
In view of the above drawbacks of the prior art, it is an object of the present invention to provide a pure iron powder for powder metallurgy with a stable dimensional change during sintering and a method for producing the same, within a range that does not impair the compressibility. It is what The target of variation width of dimensional change is within 0.06%.

【0006】[0006]

【課題を解決するための手段】本発明は、第1発明が、
Si含有量が0.008〜0.025重量%、Mn含有
量が0.01〜0.30重量%、酸素含有量が0.25
重量%以下で、残部がFeと不可避的不純物であり、か
つ含有Siのうち酸化物となっているSi量の割合のバ
ラツキ幅が50%以下であることを特徴とした水を用い
た噴霧法により製造された粉末冶金用純鉄粉であり、ま
た第2発明は、Si含有量が0.008〜0.025重
量%、Mn含有量が0.01〜0.30重量%で残部が
Feと不可避的不純物である水噴霧生鉄粉を酸素濃度が
2.5〜7.5体積%の窒素雰囲気中で乾燥して含有S
iのうち酸化物となっているSi量の割合のバラツキ幅
を50%以下としたのち、還元性ガス雰囲気中で還元す
ることを特徴とした粉末冶金用純鉄粉の製造方法であ
る。
According to the present invention, the first invention is
Si content is 0.008 to 0.025% by weight, Mn content is 0.01 to 0.30% by weight, and oxygen content is 0.25.
A spraying method using water, characterized in that the balance is less than 50% by weight, the balance is Fe and unavoidable impurities, and the variation width of the ratio of the amount of Si in the contained Si is 50% or less. According to the second invention, the Si content is 0.008 to 0.025% by weight, the Mn content is 0.01 to 0.30% by weight, and the balance is Fe. And water spray raw iron powder, which is an unavoidable impurity, are dried in a nitrogen atmosphere with an oxygen concentration of 2.5 to 7.5% by volume and contain S
In the method for producing pure iron powder for powder metallurgy, the variation width of the ratio of Si, which is an oxide of i, is set to 50% or less and then reduction is performed in a reducing gas atmosphere.

【0007】[0007]

【作用】本発明において、鉄粉の組成を限定した理由を
次に述べる。本発明者らは、サイジングによらなくとも
十分な寸法精度が得られるよう、焼結時の寸法変化のバ
ラツキを低減させることを目的に、純鉄粉中の微量元素
と焼結時の寸法変化のバラツキとの関係を鋭意研究した
結果、表1に示す以下のような知見を得たのである。
The reason why the composition of the iron powder is limited in the present invention will be described below. The inventors of the present invention obtained a trace element in pure iron powder and a dimensional change during sintering for the purpose of reducing variation in dimensional change during sintering so that sufficient dimensional accuracy can be obtained without depending on sizing. As a result of diligent research on the relationship with the variation, the following findings shown in Table 1 were obtained.

【0008】[0008]

【表1】 [Table 1]

【0009】表1にSi含有量と、(a)含有されてい
るSiのうち酸化されている比率のバラツキ幅、(b)
焼結時の寸法変化のバラツキ幅ならびに(c)圧粉密度
との関係を示す。表1の結果から、焼結時の寸法変化の
安定性の点からはSi含有量が0.008重量%以上、
圧縮性の点からはSi含有量が0.025重量%以下が
望ましいことが導き出される。
Table 1 shows the Si content and (a) the variation width of the ratio of oxidized Si to the contained Si, (b)
The relationship between the variation width of the dimensional change during sintering and (c) the green compact density is shown. From the results in Table 1, from the viewpoint of stability of dimensional change during sintering, the Si content is 0.008% by weight or more,
From the viewpoint of compressibility, it is derived that the Si content is preferably 0.025% by weight or less.

【0010】なお、焼結寸法変化の試験に用いた材料
は、いずれもSi含有量を種々変化させ、かつ水噴霧鉄
粉の還元雰囲気の露点を通常用いられる10〜60℃と
した純鉄粉に、Cu粉を2重量%、グラファイト粉を
0.8重量%、潤滑剤であるステアリン酸亜鉛を1重量
%添加混合し、密度が6.9g/cm3 となるように圧
粉成形したものである。焼結はCO2 含有量0.3%の
RXガス中で1130℃×20分行った。寸法変化のバ
ラツキは、外径60mm、内径25mm、高さ10mm
のリング状試験片100個を用いて、その外径の圧粉体
基準の焼結時の寸法変化のバラツキ幅を測定した結果で
ある。また、圧粉密度は同一の純鉄粉に、潤滑剤である
ステアリン酸亜鉛を1重量%添加混合し、成形圧力5t
/cm2 で成形したものである。
The materials used for the sintering dimensional change test were all pure iron powders having various Si contents and the dew point of the reducing atmosphere of water atomized iron powders being 10 to 60 ° C. which is usually used. 2% by weight of Cu powder, 0.8% by weight of graphite powder and 1% by weight of zinc stearate as a lubricant, and mixed, and compacted to a density of 6.9 g / cm 3. Is. Sintering was performed at 1130 ° C. for 20 minutes in RX gas having a CO 2 content of 0.3%. Variations in dimensional changes are 60 mm outer diameter, 25 mm inner diameter, and 10 mm height.
It is the result of measuring the variation width of the dimensional change at the time of sintering based on the green compact of the outer diameter of 100 ring-shaped test pieces. Further, 1% by weight of zinc stearate, which is a lubricant, was added to and mixed with pure iron powder having the same green compact density, and the molding pressure was 5 t.
/ Cm 2 and is molded.

【0011】ところで表1からは、Si含有量が0.0
04%のとき、含有Siのうち酸化されている比率は5
%から100%までバラツイており、そのバラツキ幅は
100−5=95%であるが、Si含有量が0.016
%のときは、バラツキ幅は45─35=10%である。
このときの焼結前後の寸法変化のバラツキ幅は前者が
0.60%であるのに対して、後者は0.06%と大幅
に減少していることがわかる。
By the way, from Table 1, the Si content is 0.0
When it is 04%, the ratio of oxidized Si contained is 5
% To 100%, and the variation width is 100-5 = 95%, but the Si content is 0.016.
When%, the variation width is 45-35 = 10%.
At this time, the variation width of the dimensional change before and after sintering is 0.60% in the former, while it is significantly reduced to 0.06% in the latter.

【0012】このように、鉄粉中の含有Siのうち、酸
化物となっているSi量の割合のバラツキ幅に対応して
焼結時の寸法変化のバラツキ幅が変化することがわかっ
た。含有Siのうち酸化物となっているSi量の割合の
バラツキ幅を50%以下に限定した理由は、50%を超
えると焼結時の寸法変化のバラツキ幅が0.06%以下
に低減されないからである。
As described above, it was found that the variation width of the dimensional change at the time of sintering varies corresponding to the variation width of the ratio of the amount of Si which is an oxide in the Si contained in the iron powder. The reason why the variation width of the ratio of the amount of Si that is an oxide in the contained Si is limited to 50% or less is that when it exceeds 50%, the variation width of the dimensional change during sintering is not reduced to 0.06% or less. Because.

【0013】Si含有量を0.008重量%以上0.0
25重量%以下に限定した理由は、Si含有量を0.0
08重量%未満では、焼結時の寸法変化のバラツキ幅低
減効果が得られず、また0.025重量%を越えると、
圧縮性が急激に低下するためである。Mn含有量を0.
01重量%以上に限定した理由は、鉄粉の通常の工業的
製造工程においてMnは不純物元素として入りうる元素
であり、その含有量を0.01重量%未満に低減するこ
とは、比較的困難でその達成は鉄粉製造コストの相当な
上昇を伴うため実用的でないからである。Mn含有量を
0.30重量%以下に限定した理由は、Mnは強度を向
上させる元素ではあるが、0.30重量%を超えて添加
された場合、Si含有量のうち、酸化物となっているS
i量の割合のバラツキ幅が50%以下でも焼結寸法変化
のバラツキ幅が0.06%以下に低減されないからであ
る。
Si content 0.008% by weight or more 0.0
The reason for limiting the content to 25% by weight or less is that the Si content is 0.0
If it is less than 08% by weight, the effect of reducing the variation width of the dimensional change during sintering cannot be obtained, and if it exceeds 0.025% by weight,
This is because the compressibility drops sharply. If the Mn content is 0.
The reason for limiting the content to 01 wt% or more is that Mn is an element that can enter as an impurity element in the usual industrial manufacturing process of iron powder, and it is relatively difficult to reduce the content thereof to less than 0.01 wt%. This is because the achievement is not practical because it involves a considerable increase in iron powder manufacturing cost. The reason for limiting the Mn content to 0.30% by weight or less is that Mn is an element that improves the strength, but when it is added in excess of 0.30% by weight, it becomes an oxide in the Si content. S
This is because the variation width of the sintering dimension change is not reduced to 0.06% or less even if the variation width of the ratio of i is 50% or less.

【0014】酸素含有量を0.25重量%以下に限定し
た理由は、0.25重量%を超えると、Si含有量のう
ち、酸化物となっているSi量の割合のバラツキ幅が5
0%以下でも、焼結寸法変化のバラツキ幅が0.06%
以下に低減されないからである。第2の発明において、
乾燥雰囲気中の酸素濃度を2.5体積%以上、7.5体
積%以下に限定した理由は、表4の比較例4に示すよう
に、2.5体積%未満ではSi含有量のうち、酸化物と
なっているSi量の割合の下限値が低下し、その結果バ
ラツキ幅が50%以下にならず、焼結寸法変化のバラツ
キ幅が0.06%以下に低減されないからであり、表4
の比較例3に示すように、7.5体積%を越えるとSi
含有量のうち、酸化物となっているSi量の割合のバラ
ツキ幅が50%以下でも焼結寸法変化のバラツキ幅が
0.06%以下に低減されないからである。
The reason why the oxygen content is limited to 0.25% by weight or less is that, when the oxygen content exceeds 0.25% by weight, the variation range of the Si content as an oxide in the Si content is 5%.
Even if it is 0% or less, the variation width of the sintering dimension change is 0.06%
This is because it is not reduced below. In the second invention,
The reason for limiting the oxygen concentration in the dry atmosphere to 2.5% by volume or more and 7.5% by volume or less is that, as shown in Comparative Example 4 in Table 4, when the content of Si is less than 2.5% by volume, This is because the lower limit of the ratio of the amount of Si, which is an oxide, decreases, and as a result, the variation width does not become 50% or less, and the variation width of the sintering dimensional change is not reduced to 0.06% or less. Four
As shown in Comparative Example 3 of No. 3, when the content exceeds 7.5% by volume, Si
This is because even if the variation width of the ratio of the amount of Si that is an oxide in the content is 50% or less, the variation width of the sintering dimension change is not reduced to 0.06% or less.

【0015】乾燥雰囲気を窒素雰囲気としたのは、雰囲
気中の酸素濃度の制御が容易で、かつ低温でも水素など
のように爆発の危険性がなく、さらにArに比べ経済的
であるからである。乾燥温度、時間は100℃以上20
0℃以下30分以上120分以下であれば充分である。
The nitrogen atmosphere is used as the dry atmosphere because it is easy to control the oxygen concentration in the atmosphere, there is no danger of explosion such as hydrogen even at low temperature, and more economical than Ar. .. Drying temperature, time is 100 ℃ or more 20
It is sufficient if the temperature is 0 ° C. or lower for 30 minutes or more and 120 minutes or less.

【0016】還元条件は通常の純鉄粉の還元条件で充分
である。以下、本発明の実施例を説明する。
As the reducing condition, the ordinary reducing condition of pure iron powder is sufficient. Examples of the present invention will be described below.

【0017】[0017]

【実施例】 実施例1 本発明のSi含有量を0.008〜0.025重量%と
した純鉄粉と、比較例のSi含有量が0.008重量%
未満および0.025重量%を越える純鉄粉の焼結時の
寸法変化のバラツキを比較した。
Example 1 Pure iron powder having a Si content of the present invention of 0.008 to 0.025 wt% and a Si content of a comparative example of 0.008 wt%
The variation in dimensional change during sintering of less than and more than 0.025% by weight of pure iron powder was compared.

【0018】焼結時の寸法変化のバラツキは、純鉄粉
に、Cu粉を1.5重量%、グラファイト粉を0.5重
量%、潤滑剤であるステアリン酸亜鉛を1重量%添加混
合し、外径60mm、内径25mm、高さ10mmのリ
ング状試験片で、圧粉密度が6.9g/cm3 となるよ
うに圧粉成形した100個の試験片について、その外形
の圧粉体基準の焼結寸法変化を測定して求め比較した。
焼結はCO2 含有量0.3%のRXガス中で1130℃
×20分行った。
The variation in the dimensional change during sintering was obtained by adding 1.5% by weight of Cu powder, 0.5% by weight of graphite powder, and 1% by weight of zinc stearate as a lubricant to pure iron powder. , A ring-shaped test piece having an outer diameter of 60 mm, an inner diameter of 25 mm, and a height of 10 mm, and 100 pieces of the test piece compacted so that the compact density was 6.9 g / cm 3 , the compact standard of the contour The change in the sintered dimension was measured and compared.
Sintered at 1130 ° C in RX gas with CO 2 content of 0.3%
X 20 minutes.

【0019】表2は圧粉体基準の焼結寸法変化のバラツ
キを測定した結果である。これからわかるように、実施
例では安定した焼結寸法変化ガ得られたが、比較例では
Si含有量の不適切により、焼結時の寸法変化のバラツ
キが大きくなった。
Table 2 shows the results of measuring the variation in the sintering dimension change based on the green compact. As can be seen from this, although stable sizing dimensional changes were obtained in the examples, the dimensional changes during sintering became large in the comparative examples due to the inappropriate Si content.

【0020】[0020]

【表2】 [Table 2]

【0021】実施例2 本発明のSi含有量を0.008〜0.025重量%と
した純鉄粉と、比較例のSi含有量が0.008重量%
未満および0.025重量%を越える純鉄粉の焼結時の
寸法変化のバラツキを比較した。焼結時の寸法変化のバ
ラツキは、純鉄粉に、Cu粉を2.0重量%、グラファ
イト粉を0.8重量%、潤滑剤であるステアリン酸亜鉛
を1重量%添加混合し、外径60mm、内径25mm、
高さ10mmのリング状試験片で、圧粉密度が6.9g
/cm3 となるように圧粉成形した100個の試験片に
ついて、その外形の圧粉体基準の焼結寸法変化を測定し
て求め比較した。焼結はAXガス中で1250℃×20
分行った。
Example 2 Pure iron powder having a Si content of 0.008 to 0.025% by weight of the present invention and a Si content of Comparative Example of 0.008% by weight.
The variation in dimensional change during sintering of less than and more than 0.025% by weight of pure iron powder was compared. The variation in dimensional change during sintering was as follows: pure iron powder, Cu powder 2.0% by weight, graphite powder 0.8% by weight, and zinc stearate 1% by weight as a lubricant were mixed. 60 mm, inner diameter 25 mm,
A ring-shaped test piece with a height of 10 mm and a green density of 6.9 g
For 100 test pieces that were compacted to give a powder / cm 3 , the change in the sintering dimension of the outer shape of the compact was measured and compared. Sintering is 1250 ° C x 20 in AX gas
I went for a minute.

【0022】表3は圧粉体基準の焼結寸法変化のバラツ
キを測定した結果である。これからわかるように、実施
例では安定した焼結寸法変化ガ得られたが、比較例では
Si含有量の不適切により、焼結時の寸法変化のバラツ
キが大きくなった。
Table 3 shows the results of measuring the variation in the sintering dimension change based on the green compact. As can be seen from this, although stable sizing dimensional changes were obtained in the examples, the dimensional changes during sintering became large in the comparative examples due to the inappropriate Si content.

【0023】[0023]

【表3】 [Table 3]

【0024】実施例3 表4に実施例および比較例に用いた純鉄粉の化学組成を
示す。いずれの鉄粉もP、S含有量は0.01重量%、
Alは0.01重量%未満である。これらの鉄粉は、溶
鋼を水噴霧した生粉を種々の窒素雰囲気中で140℃で
60分乾燥した後、純水素雰囲気中930℃で20分還
元したのち、粉砕分級して製造された。
Example 3 Table 4 shows the chemical composition of pure iron powder used in Examples and Comparative Examples. The content of P and S in each iron powder is 0.01% by weight,
Al is less than 0.01% by weight. These iron powders were produced by drying raw steel powder sprayed with molten steel in various nitrogen atmospheres at 140 ° C. for 60 minutes, reducing it in a pure hydrogen atmosphere at 930 ° C. for 20 minutes, and then pulverizing and classifying.

【0025】[0025]

【表4】 [Table 4]

【0026】焼結寸法変化のバラツキ幅は、鉄粉に銅粉
を1.5重量%、黒鉛粉を0.5重量%、潤滑剤である
ステアリン酸亜鉛を1重量%添加混合した後、この混合
粉末を用い、密度が6.9g/cm3、外径60mm、内
径25mm、高さ10mmのリング状試験片を各々10
0個成型し、CO2 含有量が0.3%のプロパン変成ガ
ス中で1130℃×20min焼結して、その外径の圧
粉体基準の焼結寸法変化のバラツキ巾を測定して求め
た。
The variation of the sintering dimensional change was obtained by adding 1.5% by weight of copper powder, 0.5% by weight of graphite powder, and 1% by weight of zinc stearate as a lubricant to the iron powder, Using the mixed powder, 10 ring-shaped test pieces each having a density of 6.9 g / cm 3 , an outer diameter of 60 mm, an inner diameter of 25 mm, and a height of 10 mm were used.
Obtained by molding 0 pieces, sintering at 1130 ° C. for 20 min in propane metamorphic gas with a CO 2 content of 0.3%, and measuring the variation width of the sintering dimension change of the outer diameter based on the green compact. It was

【0027】圧粉密度はこれらの純鉄粉に潤滑であるス
テアリン酸亜鉛を1重量%添加混合し、5t/cm3
圧力で成形して求めた。Si含有量のうち、酸化物とな
っているSi量の割合のバラツキ幅は、縮分した鉄粉中
の総Si量とSiO2 量を10回分析し、おのおのの割
合の変動幅から求めた。
The green compact density was obtained by adding and mixing 1% by weight of zinc stearate, which is a lubricant, to these pure iron powders and molding them at a pressure of 5 t / cm 3 . The variation width of the proportion of Si that is an oxide in the Si content was calculated from the fluctuation width of each proportion by analyzing the total Si content and the SiO 2 content in the reduced iron powder 10 times. ..

【0028】本発明による実施例1〜7はSi含有量の
うち、酸化物となっているSi量の割合のバラツキ幅が
50%以下で、従来のサイジングによる寸法変化矯正後
の寸法精度の代表的な下限値の0.06%以下の優れた
値の焼結寸法変化バラツキ幅が、高い圧縮性とともに得
られた。しかし、比較例では、酸化物となっているSi
量の割合もしくはSi、Mn、0、もしくは乾燥雰囲気
が不充分なため、0.5%以上の劣った焼結寸法変化の
バラツキ幅もしくは低い圧縮性しか得られなかった。
In Examples 1 to 7 according to the present invention, the variation width of the proportion of Si which is an oxide in the Si content is 50% or less, and represents the dimensional accuracy after the dimensional change correction by the conventional sizing. An excellent range of variation in sintering dimensional change of 0.06% or less of the lower limit was obtained together with high compressibility. However, in the comparative example, Si which is an oxide
Since the amount ratio or Si, Mn, 0, or the dry atmosphere was insufficient, only 0.5% or more of the inferior sintering dimensional change variation or low compressibility was obtained.

【0029】[0029]

【発明の効果】本発明の粉末冶金用純鉄粉は、従来の粉
末冶金用純鉄粉にくらべ、Cu、黒鉛添加で焼結した際
に、焼結後の寸法変化のバラツキが小さく、従来のサイ
ジング工程後と同等以上の優れた寸法精度が得られるた
め、サイジング工程を加えることなく寸法精度の高い焼
結体の製造が可能となる。
EFFECTS OF THE INVENTION The pure iron powder for powder metallurgy of the present invention has less variation in dimensional change after sintering when sintered with addition of Cu and graphite, as compared with the conventional pure iron powder for powder metallurgy. Since excellent dimensional accuracy equal to or higher than that after the sizing step can be obtained, it becomes possible to manufacture a sintered body with high dimensional accuracy without adding the sizing step.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大村 武雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 前田 義昭 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 新田 稔 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 吉井 裕 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 大坪 宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Takeo Omura Inventor 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Inside the Chiba Works, Kawasaki Steel Co., Ltd. (72) Yoshiaki Maeda 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Steel Works Co., Ltd. Chiba Works (72) Minor Nitta Minoru Nitta 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (72) Yutaka Yoshii 1 Kawasaki-cho, Chuo-ku, Chiba Address Kawasaki Iron & Steel Co., Ltd. Technical Research Headquarters (72) Inventor Hiroshi Otsubo 1 Kawasaki-cho, Chuo-ku, Chiba City Chiba Prefecture Kawasaki Steel & Co. Technical Research Headquarters

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Si含有量が0.008〜0.025重
量%、Mn含有量が0.01〜0.30重量%、酸素含
有量が0.25重量%以下で、残部がFeと不可避的不
純物であり、かつ含有Siのうち酸化物となっているS
i量の割合のバラツキ幅が50%以下であることを特徴
とした水を用いた噴霧法により製造された粉末冶金用純
鉄粉。
1. A Si content of 0.008 to 0.025% by weight, a Mn content of 0.01 to 0.30% by weight, an oxygen content of 0.25% by weight or less, and a balance of Fe and unavoidable. Which is a static impurity and is an oxide of the contained Si
Pure iron powder for powder metallurgy produced by a spraying method using water, characterized in that the variation width of the amount of i is 50% or less.
【請求項2】 Si含有量が0.008〜0.025
%、Mn含有量が0.01〜0.30重量%で残部がF
eと不可避的不純物である水噴霧生鉄粉を酸素濃度が
2.5〜7.5体積%の窒素雰囲気中で乾燥して含有S
iのうち酸化物となっているSi量の割合のバラツキ幅
を50%以下としたのち、還元性ガス雰囲気中で還元す
ることを特徴とした粉末冶金用純鉄粉の製造方法。
2. The Si content is 0.008 to 0.025.
%, Mn content is 0.01 to 0.30% by weight, and the balance is F
e and water spray raw iron powder which is an unavoidable impurity are dried in a nitrogen atmosphere having an oxygen concentration of 2.5 to 7.5% by volume to contain S.
A method for producing a pure iron powder for powder metallurgy, which comprises setting the variation width of the amount of Si, which is an oxide of i, to 50% or less, and then reducing in a reducing gas atmosphere.
JP25019992A 1992-02-05 1992-09-18 Pure iron powder for powder metallurgy produced by atomization method using water and its production Pending JPH05279713A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP93919676A EP0618027B1 (en) 1992-09-18 1993-09-17 Iron powder and mixed powder for powder metallurgy and production of iron powder
JP50797294A JP3273789B2 (en) 1992-09-18 1993-09-17 Iron powder and mixed powder for powder metallurgy and method for producing iron powder
DE69323865T DE69323865T2 (en) 1992-09-18 1993-09-17 IRON POWDER AND MIXED POWDER FOR POWDER METALURGY AND FOR THE PRODUCTION OF IRON POWDER
US08/232,121 US5458670A (en) 1992-09-18 1993-09-17 Iron powder and mixed powder for powder metallurgy as well as method of producing iron powder
CA002123881A CA2123881C (en) 1992-09-18 1993-09-17 Mixed iron powder for powder metallurgy and method of producing same
PCT/JP1993/001334 WO1994006588A1 (en) 1992-09-18 1993-09-17 Iron powder and mixed powder for powder metallurgy and production of iron powder
US08/456,913 US5507853A (en) 1992-09-18 1995-06-01 Iron powder and mixed powder for powder metallurgy as well as method of producing iron powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4-19604 1992-02-05
JP1960492 1992-02-05

Publications (1)

Publication Number Publication Date
JPH05279713A true JPH05279713A (en) 1993-10-26

Family

ID=12003809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25019992A Pending JPH05279713A (en) 1992-02-05 1992-09-18 Pure iron powder for powder metallurgy produced by atomization method using water and its production

Country Status (1)

Country Link
JP (1) JPH05279713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107790734A (en) * 2017-09-29 2018-03-13 武汉钢铁有限公司 A kind of process for preparing powder of stainless steel
CN108655388A (en) * 2017-03-29 2018-10-16 鞍钢股份有限公司 A kind of high silicon content iron powder and preparation method thereof
CN112267003A (en) * 2020-09-24 2021-01-26 山东鲁银新材料科技有限公司 Preparation method of water atomized pure iron powder with ultrahigh cleanliness, low oxygen and high performance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108655388A (en) * 2017-03-29 2018-10-16 鞍钢股份有限公司 A kind of high silicon content iron powder and preparation method thereof
CN107790734A (en) * 2017-09-29 2018-03-13 武汉钢铁有限公司 A kind of process for preparing powder of stainless steel
CN112267003A (en) * 2020-09-24 2021-01-26 山东鲁银新材料科技有限公司 Preparation method of water atomized pure iron powder with ultrahigh cleanliness, low oxygen and high performance
CN112267003B (en) * 2020-09-24 2022-05-03 山东鲁银新材料科技有限公司 Preparation method of water atomized pure iron powder with ultrahigh cleanliness, low oxygen and high performance

Similar Documents

Publication Publication Date Title
CA2104605A1 (en) Powder Metal Alloy Process
CN107838414A (en) A kind of high convergency non-magnetic rustproof powdered steel and its manufacture method
JP3273789B2 (en) Iron powder and mixed powder for powder metallurgy and method for producing iron powder
GB1257640A (en)
US4190441A (en) Powder intended for powder metallurgical manufacturing of soft magnetic components
JPH05279713A (en) Pure iron powder for powder metallurgy produced by atomization method using water and its production
US5505760A (en) Powder-metallurgical composition having good soft magnetic properties
KR102325463B1 (en) Partially diffusion-alloyed steel powder
JPH07157803A (en) Water atomized iron powder for powder metallurgy and production thereof
US3451809A (en) Method of sintering maraging steel with boron additions
US3497347A (en) Phosphorus containing iron powder
JPH06100902A (en) Pure iron powder for powder metallurgy produced by water atomization and its production
JP2579171B2 (en) Manufacturing method of sintered material
JPS61295302A (en) Low-alloy iron powder for sintering
US2903354A (en) Process for improving parts formed by powder metallurgy by addition of spiegeleisen to metal powders
JPS591761B2 (en) stainless steel powder for powder metallurgy
KR100222162B1 (en) Iron-based powder composition having good dimensional stability and method for production thereof
JPH0726122B2 (en) Stainless steel powder for powder metallurgy
JP2003027101A (en) Metal powder with excellent sinterability
JPH0641609A (en) Production of ferrous sintered member
JPH079004B2 (en) Sintering method for iron-based powder compacts
US3418105A (en) Iron powder for forming sintered articles of improved strength
JPH09256004A (en) Metal powder and its production
JPH01290704A (en) Kneaded matter of magnetic powder for sintering
JPH0959741A (en) Premixed powder for sintered stainless steel compact, reduced in dimensional shrinkage factor at sintering, and production of sintered stainless steel compact