JPH05279025A - Oxide superconducting thin film - Google Patents

Oxide superconducting thin film

Info

Publication number
JPH05279025A
JPH05279025A JP3094817A JP9481791A JPH05279025A JP H05279025 A JPH05279025 A JP H05279025A JP 3094817 A JP3094817 A JP 3094817A JP 9481791 A JP9481791 A JP 9481791A JP H05279025 A JPH05279025 A JP H05279025A
Authority
JP
Japan
Prior art keywords
thin film
magnetic field
oxide superconducting
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3094817A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP62218535A priority Critical patent/JP2564562B2/en
Priority to CN88106462A priority patent/CN1016387B/en
Priority to DE3855391T priority patent/DE3855391T2/en
Priority to KR1019880011107A priority patent/KR920007799B1/en
Priority to EP88308047A priority patent/EP0306286B1/en
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP3094817A priority patent/JPH05279025A/en
Publication of JPH05279025A publication Critical patent/JPH05279025A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the critical current density by arranging a thin film consisting of an oxide superconducting material shown by a specified formula in a fixed direction so that the ab face of a crystal is parallel to a substrate. CONSTITUTION:The raw powders of a Y compd. such as Y2O3, a Ba compd. such as BaCO3 and a Cu compd. such as CuO are mixed in a specified molar ratio, the mixture is formed, and the formed body is heated and oxidized at 300-1000 deg.C in an oxidizing atmosphere, then crushed and calcined. A film is formed on a substrate by sputtering, etc., with the calcined material as a target. While the film is formed, a magnetic field of 0.3T is applied in parallel or in almost parallel to the ab face perpendicular to the c axis of the thin film to provide an oxide superconducting thin film having a high critical current density and shown by the formula (x=0 to 1, y=2.0 to 4.0, z=1.0 to 4.0, w=4.0 to 10.0, A is Y, Gd, Yb, Eu, Tb, Dy, Ho, Er, Tm, Lu, Sc and other lanthanides, and B is Ra, Ba, Sr, Ca, Mg and Be).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導材料の結
晶異方性を用いたデバイス等に用いる薄膜に関する。
尚、本明細書において、結晶のab面が基板に対して概
略平行になる(一般的にはc軸配向と呼ばれる)とは、
X線回折のパターンにおいて、c軸配向に起因するピー
クの相対強度が、ab軸配向に起因するそれよりも10倍
以上大きいことを意味することとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film used for a device or the like using the crystal anisotropy of an oxide superconducting material.
In this specification, the ab plane of a crystal being substantially parallel to the substrate (generally referred to as c-axis orientation) means
In the X-ray diffraction pattern, the relative intensity of the peak due to the c-axis orientation is 10 times or more higher than that due to the ab-axis orientation.

【0002】[0002]

【従来の技術】従来、超電子材料は、水銀、鉛等の元
素、NbN,Nb3Ge,Nb3Ga 等の合金またはNb3(Al0.8Ge0.2)
等の三元素化合物よりなる金属材料が用いられている。
しかしこれらのTc( 超電導臨界温度) オンセットは25K
までであった。
2. Description of the Related Art Conventionally, superelectronic materials have been elements such as mercury and lead, alloys such as NbN, Nb 3 Ge and Nb 3 Ga, or Nb 3 (Al 0.8 Ge 0.2 ).
A metal material made of a three-element compound such as is used.
However, these Tc (superconducting critical temperature) onset is 25K
It was up to.

【0003】他方、近年、セラミック系の超電導材料が
注目されている。この材料は最初IBM のチュ−リッヒ研
究所よりBa-La-Cu-O( バラクオ) 系酸化物高温超電導体
として報告され、さらにLSCO( 第二銅酸−ランタン−ス
トロンチウム)として知られてきた。これらは(A1-x B
x)yCuOzにおけるそれぞれの酸化物を混合し焼成するの
みであるため、Tcオンセットが30K しか得られなった。
On the other hand, in recent years, attention has been paid to ceramic-based superconducting materials. This material was first reported by the Zurich Research Laboratories of IBM as Ba-La-Cu-O (oxide) high-temperature oxide superconductor, and was further known as LSCO (cuprate-lanthanum-strontium). These are (A 1-x B
Since the oxides in (x) yCuOz were only mixed and fired, the Tc onset was only 30K.

【0004】[0004]

【発明が解決しようとする課題】これら酸化物セラミッ
クスの超電導の可能性は1層ペロブスカイト型の構造を
利用しており、その構造物の中には多数の結晶があり、
その結晶方向もバラバラであった。そして結晶粒界での
接触面積も小さいため、臨界電流密度も小さかった。こ
のため、酸化物超電導材料のTco(抵抗が零となる温度)
をさらに高くし、望むべくは液体窒素温度(77K )または
それ以上の温度で動作せしめるとともに、臨界電流密度
を向上させることが強く求められていた。
The possibility of superconductivity of these oxide ceramics utilizes a single-layer perovskite type structure, and there are many crystals in the structure.
The crystal directions were also different. Since the contact area at the grain boundary was also small, the critical current density was also small. Therefore, Tco of oxide superconducting material (temperature at which resistance becomes zero)
It has been strongly demanded that the critical current density be improved while operating the liquid nitrogen at a temperature higher than the liquid nitrogen temperature (77K) or higher if desired.

【0005】かかる目的のために、本発明人による『超
電導材料の作製方法』(昭和62年3月27日 特願昭62−
75205)がある。
For this purpose, the inventors of the present invention have proposed a "method for producing a superconducting material" (March 27, 1987, Japanese Patent Application No. 62-
75205).

【0006】本発明はかかる発明をさらに発展させ酸化
物超電導材料の薄膜に対して適用したものである。
The present invention is a further development of the invention and is applied to a thin film of an oxide superconducting material.

【0007】[0007]

【課題を解決するための手段】本発明は、室温により近
い高温で超電導を呈するべくせしめるとともに、高い臨
界電流密度を得るため、加熱工程をへて酸化物超電導材
料の薄膜を作製するに際し、変形ペロブスカイト構造を
有する結晶のC軸を有すべき方向に平行または概略平行
に磁界方向を合わせて加え、結晶の生成面を一定方向に
配設するものである。その結果、薄膜の形成中または形
成後0.3T以上の磁界を同時に印加することにより、好ま
しくは同時に300 〜1000℃に加熱して再配列しやすくす
ることによって、c面( ab軸に平行の面) での臨界電流
密度を1×104A/cm2以上にまで向上させ得ることが明ら
かになった。
The present invention is designed to exhibit superconductivity at a high temperature close to room temperature, and in order to obtain a high critical current density, it is deformed when a thin film of an oxide superconducting material is produced by a heating step. The magnetic field direction is added in parallel or substantially parallel to the direction in which the C axis of the crystal having the perovskite structure should have, and the crystal generation surface is arranged in a fixed direction. As a result, by applying a magnetic field of 0.3 T or more at the same time during or after the formation of the thin film, preferably by simultaneously heating to 300 to 1000 ° C. to facilitate rearrangement, the c-plane (plane parallel to the ab axis) ), The critical current density can be increased to 1 × 10 4 A / cm 2 or more.

【0008】本発明に用いる代表的な超電導材料は元素
周期表3a族および2a族の元素および銅を用いた酸化
物である。
A typical superconducting material used in the present invention is an oxide using an element of Group 3a and 2a of the periodic table of elements and copper.

【0009】本発明の超電導性材料は(A1-x Bx)yCuzOw
x=0.1 〜1,y=2.0 〜4.0 好ましくは2.5 〜3.5,z=
1.0 〜4.0 好ましくは1.5 〜3.5,w=4.0 〜10.0好まし
くは6〜8で一般的に示し得るものである。Aはイット
リウム族より選ばれた元素およびその他のランタノイド
より選ばれた元素のうちの1種類または複数種類を用い
ている。イットリウム族とは、理化学辞典( 岩波書店
1963年4月1日発行)によればY(イットリウム),Gd( ガ
ドリニウム),Yb( イッテルビウム),Eu( ユ−ロピウム),
Tb( テルビウム),Dy( ジスプロシウム),Ho ( ホルミウ
ム),Er( エルビウム),Tm( ツリウム),Lu( ルテチウム),
Sc( スカンジウム) およびその他のランタノイドを用い
る。
The superconducting material of the present invention is (A 1-x Bx) yCuzOw
x = 0.1 to 1, y = 2.0 to 4.0, preferably 2.5 to 3.5, z =
1.0 to 4.0, preferably 1.5 to 3.5, w = 4.0 to 10.0, preferably 6 to 8, can generally be shown. A uses one kind or a plurality of kinds of elements selected from the yttrium group and other lanthanoids. The yttrium group is a physics and chemistry dictionary (Iwanami Shoten
1st April 1963) Y (yttrium), Gd (gadolinium), Yb (ytterbium), Eu (europium),
Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium),
Uses Sc (scandium) and other lanthanoids.

【0010】またBはRa( ラジウム),Ba( バリウム),Sr
( ストロンチウム),Ca( カルシウム),Mg( マグネシウ
ム),Be( ベリリウム)より選ばれた元素のうち1種類ま
たは複数種類を用いている。
B is Ra (radium), Ba (barium), Sr
One or more of the elements selected from (strontium), Ca (calcium), Mg (magnesium), and Be (beryllium) are used.

【0011】本発明に示される酸化物超電導材料は、図
1にその結晶構造が示されているが、変形ペロブスカイ
ト構造を有する。そして銅(2) とその他の銅(3) とその
周辺に位置する酸素(6),酸素ベイカンシ(7) とを有す
る。元素周期表3a族の元素(1) 例えばY,元素周期表2
a族の元素例えばBa(4) とを有する。尚、本明細書にお
ける元素周期表は理化学辞典(岩波書店 1963年4月1
日発行)によるものである。そして超電導を発生するメ
カニズムとして、層構造を有する酸素(5) とその中心に
ある銅(2) との相互作用により、対をなす電子( 電子
対) がその面(ab 軸で作られる面即ちc軸)を移動する
とされている。さらにその対をなす電子が生成される理
由として、これまではBCS 理論に基づきフォノンとされ
ていた。しかし本発明人はかかる理由として、スクリュ
−磁性体である希土類(1) またはこれと酸素ベイカンシ
(7) との相互作用によるマグノンという準粒子を仲立ち
として、スピンが反対の一対の電子を形成することがで
きることをモデルとしている。かかるマグノンが影武者
的働きをして層構造を有する面での電子対の移動をさせ
るものと考えることができる。
The oxide superconducting material according to the present invention has a modified perovskite structure, whose crystal structure is shown in FIG. And, it has copper (2), other copper (3), and oxygen (6) and oxygen vacancy (7) located around them. Periodic Table of Elements 3a Group elements (1) For example Y, Periodic Table of Elements 2
It has a group a element such as Ba (4). In addition, the periodic table of elements in this specification is a dictionary of physics and chemistry (Iwanami Shoten, April 1963 1
Issued daily). Then, as a mechanism for generating superconductivity, a pair of electrons (electron pair) is generated by the interaction between oxygen (5) having a layered structure and copper (2) at the center of the plane (that is, the plane formed by the ab axis, that is, It is said to move the c-axis). Furthermore, as a reason for producing the paired electron, it has been considered to be a phonon based on the BCS theory until now. However, the inventors of the present invention have explained that the reason for this is that the rare earth element (1), which is a screw-magnetic material, or an oxygen bacanic acid
The model is that a pair of electrons with opposite spins can be formed by using a quasi-particle called magnon as an intermediary by interaction with (7). It can be considered that the magnon acts like a shadow warrior to move the electron pair on the surface having the layer structure.

【0012】このため、外部より磁界を成膜中または成
膜後に加え、磁性体またはマグノンと相互作用せしめ特
に好ましくは加熱しつつ加えることにより多結晶のそれ
ぞれの結晶軸を互いに一致または概略一致せしめること
ができ、ひいては単結晶をより容易に作製することがで
きる。
For this reason, an external magnetic field is applied during or after film formation to interact with the magnetic substance or magnon, and it is particularly preferable to add it while heating to make the crystal axes of the polycrystals coincide with each other or substantially coincide with each other. Therefore, a single crystal can be manufactured more easily.

【0013】すると本発明の酸化物超電導材料の単結晶
をより低い温度で作り得る。図1のC面(ab 軸と平行の
面)に対し、電流がそれと垂直方向(c軸方向) に比べて
2桁以上も流れやすい。このため、結晶方位がバラバラ
な多結晶をー方向に軸を配設することが多結晶であって
も高い臨界電流密度を得るためにきわめて重要である。
Then, a single crystal of the oxide superconducting material of the present invention can be produced at a lower temperature. It is easy for a current to flow in the C plane (parallel to the ab axis) of FIG. For this reason, it is extremely important to dispose a polycrystal having different crystal orientations in the negative direction in order to obtain a high critical current density even if the polycrystal is a polycrystal.

【0014】本発明は、かかる元素を用いた酸化物材料
を仮焼成した酸化物セラミックスまたはその出発材料を
スパッタ法、電子ビ−ム蒸着法、イオンプレイティング
法、化学気相法等の減圧下で成膜を行う方法、スプレ−
法、スクリ−ン印刷法等の大気圧下で成膜する薄膜形成
方法に対して有効である。 本発明は成膜中または成膜
後の熱アニ−ル中に磁界好ましくは0.3 テスラ(T) 以上
の磁界を加えることにより、その磁界の方向と同じ方向
またはそれにより近く再配列すべき概略同じ方向に大部
分またはすべての結晶即ち多結晶を配列しつつ結晶を成
長させることができることを見出した。そしてその結晶
は磁界とc軸方向が揃いやすいことを見出した。
According to the present invention, oxide ceramics obtained by temporarily firing an oxide material containing such an element or its starting material is subjected to a reduced pressure such as a sputtering method, an electron beam vapor deposition method, an ion plating method, a chemical vapor deposition method or the like. Method of forming a film by spraying
It is effective for a thin film forming method of forming a film under atmospheric pressure, such as a method and a screen printing method. The present invention applies a magnetic field, preferably 0.3 Tesla (T) or more, during the film formation or during the thermal anneal after the film formation, so that the magnetic field is in the same direction as the direction of the magnetic field or near the same direction. It has been found that crystals can be grown while arranging most or all of the crystals or polycrystals in the direction. Then, it was found that the crystal easily aligns with the magnetic field in the c-axis direction.

【0015】かくすることにより、多結晶を呈する1つ
の結晶粒を大きくでき、ひいてはその結晶粒界でのバリ
ア(障壁)をより消失させ単結晶とし得る構成とせしめ
た。そしてそれぞれの結晶をすべてab面(C軸に垂直な
面)に合わせることが可能となる。その結果、臨界電流
密度をこれまでの結晶方位がバラバラの場合の102A/cm2
(77K) より本発明方法によって104 〜105A/cm2(77Kにて
測定) にまで増し、単結晶の約1/5 にまで近づけること
が可能となった。そして酸化物超電導材料の理想である
大面積の単結晶構造をより作りやすくせしめた。
By doing so, one crystal grain exhibiting a polycrystal can be enlarged, and by extension, the barrier at the crystal grain boundary can be further disappeared to form a single crystal. Then, it becomes possible to match all the crystals to the ab plane (plane perpendicular to the C axis). As a result, the critical current density was 10 2 A / cm 2 when the crystal orientations were different.
From (77K), it was possible to increase to 10 4 to 10 5 A / cm 2 (measured at 77K) by the method of the present invention, and to approach to about 1/5 of a single crystal. And we made it easier to make a large-area single crystal structure, which is ideal for oxide superconducting materials.

【0016】[0016]

【作用】本発明においては、かかる軸配列をした超電導
薄膜を作るのに、この薄膜が作られるべき面に対し、垂
直または水平方向に磁界を加えたが、さらにこれに加え
て磁界に対し垂直方向に電界を加えることはTco を向上
させるために有効である。このため、本発明では、それ
より十分離れた位置で磁場を作り、ニッケル、鉄等の磁
性体で加熱されている酸化物超電導材料近傍に磁界を誘
導する手段を有すればよく、特に高価な設備を用いなく
ともよいという他の特徴も有する。
In the present invention, a magnetic field is applied vertically or horizontally to the surface on which this thin film is to be formed in order to form such an axially arranged superconducting thin film. Applying an electric field in the direction is effective for improving Tco. Therefore, in the present invention, a magnetic field may be formed at a position sufficiently distant therefrom, and a means for inducing the magnetic field in the vicinity of the oxide superconducting material heated by a magnetic material such as nickel or iron may be provided, which is particularly expensive. It also has the other feature of not using equipment.

【0017】また例えば、この磁界による結晶の配列方
向に合わせて被形成面を構成する基板の結晶軸を合わせ
ることを有効である。例えばMgO(酸化マグネシウム),Sr
TiO3( チタン酸ストロチウム),YSZ(イットリウム・スタ
ビライズト・ジルコン) において(100) 面を用い、かつ
被形成面に垂直方向に磁界を加えて成膜または成膜後の
アニ−ルを行い、ab面を被形成面に平行にすることがで
きる。また(110) 面を有する結晶の基板に用い、さらに
被形成面に平行に磁界を加えて形成すると、ab面を被形
成面に垂直方向に成膜または成膜後のアニ−ルで得るこ
とができる。そして被形成面の結晶方位と磁界とを併用
することにより、より単結晶に近い薄膜を得ることがで
きる。
Further, for example, it is effective to align the crystal axis of the substrate forming the surface to be formed in accordance with the crystal array direction by the magnetic field. For example, MgO (magnesium oxide), Sr
In TiO 3 (strontium titanate) and YSZ (yttrium stabilized zircon), the (100) plane is used, and a magnetic field is applied to the surface to be formed in the vertical direction to perform film formation or annealing after film formation. The ab plane can be parallel to the formation surface. Also, when used for a crystal substrate having a (110) plane and further applying a magnetic field parallel to the formation surface, the ab plane is formed in the direction perpendicular to the formation surface or obtained by an annealing after the formation. You can Then, by using the crystal orientation of the formation surface and the magnetic field together, a thin film closer to a single crystal can be obtained.

【0018】以下に実施例に従い、本発明を記す。The present invention will be described below with reference to Examples.

【0019】[0019]

【実施例】【Example】

「実施例1」本発明の実施例として、AとしてY,B とし
てBaを用いた。
[Example 1] As an example of the present invention, A was used as Y and B was used as Ba.

【0020】出発材料は、Y化合物として酸化イットリ
ウム(Y2O3), Ba化合物としてBaCO3,銅化合物としてCuO
を用いた。これらは高純度化学工業株式会社より入手
し、純度は99.95%またはそれ以上の微粉末を用い、成膜
後、例えばx=0.67、y=3,z=3,w=6〜9(YBa2)Cu
3O6 8 となるべく選んだ。
The starting materials are yttrium oxide (Y 2 O 3 ) as a Y compound, BaCO 3 as a Ba compound, and CuO as a copper compound.
Was used. These are obtained from Kojundo Kagaku Kogyo Co., Ltd., and fine powder having a purity of 99.95% or higher is used. After film formation, for example, x = 0.67, y = 3, z = 3, w = 6 to 9 (YBa 2 ) Cu
3 chose as much as possible with the O 6 ~ 8.

【0021】これらを十分乳鉢で混合しカプセルに封入
し、100Kg/cm2 の荷重を加えてタブレット化( 外径25mm
φ, 厚さ3mm 円筒状) した。さらに酸化性雰囲気例えば
大気中で500 〜1400℃、例えば950 ℃で8時間加熱酸化
後さらに徐冷し(4℃/ 分の徐熱速度)400℃、1 時間の酸
化をした。この工程を仮焼成とした。
These are thoroughly mixed in a mortar and encapsulated, and a tablet is formed by applying a load of 100 Kg / cm 2 (outer diameter 25 mm
φ, thickness 3mm cylindrical). Further, it was heated and oxidized at 500 to 1400 ° C., for example, 950 ° C. for 8 hours in an oxidizing atmosphere, for example, and then gradually cooled (gradual heating rate of 4 ° C./min) at 400 ° C. for 1 hour. This process was pre-baked.

【0022】この酸化アニ−ルの時、外部より磁場を加
えた。 この磁場は磁石より導出された金属の端面をタ
ブレットの上下または横方向に配設し、一方をN、他方
をSとするべく直流磁場とし、強さは0.3T以上例えば1.
5Tとした。この磁場の強さは強ければ強いほど好ましい
ことはいうまでもない。
At the time of this oxidation anneal, a magnetic field was applied from the outside. This magnetic field is a direct current magnetic field in which the end faces of the metal led out from the magnet are arranged in the vertical or horizontal direction of the tablet, and one is N and the other is S, and the strength is 0.3T or more, for example 1.
5T. It goes without saying that the stronger the magnetic field, the better.

【0023】図2は本発明の超電導薄膜を作製するため
のスパッタ装置の概要を示す。
FIG. 2 shows an outline of a sputtering apparatus for producing the superconducting thin film of the present invention.

【0024】図2において、タ−ゲット(10), 反応室(4
1), ド−ピング系(40), 排気系(25)を有する。
In FIG. 2, the target (10), the reaction chamber (4
1), Doping system (40), Exhaust system (25).

【0025】ド−ピング系は、アルゴン(32), 酸素(33)
およびハロゲン元素を有する気体(ここでは弗化窒素(NF
3) を用いる)(34) を導入せしめている。排気系(25)は
タ−ボ分子ポンプ(21), 圧力調整バルブ(22), ロ−タリ
−ポンプ(23)よりなる。基板(30)はヒ−タ(29)を有する
ホルダ(31)上に配設され、室温より最高950 ℃の温度ま
で加熱せしめている。 被膜形成中は400 〜900 ℃、例
えば750 ℃とした。タ−ゲット(10)と基板(30)の被形成
面との距離は2〜15cmとなっている。
The doping system consists of argon (32), oxygen (33)
And a gas containing a halogen element (here, nitrogen fluoride (NF
3 ) is used) (34). The exhaust system (25) comprises a turbo molecular pump (21), a pressure regulating valve (22), and a rotary pump (23). The substrate (30) is arranged on a holder (31) having a heater (29) and is heated from room temperature to a maximum temperature of 950 ° C. During film formation, the temperature was set to 400 to 900 ° C, for example 750 ° C. The distance between the target (10) and the formation surface of the substrate (30) is 2 to 15 cm.

【0026】タ−ゲットはすでに示した形成されるべき
薄膜と同一結晶方向を有するタブレットのタ−ゲット(1
2)を用いた。なぜなら、タ−ゲットの結晶配位が薄膜が
成膜されるべき方向と同一方向にすることにより、より
単結晶に近い薄膜を得ることができるからである。
The target is a tablet target (1) having the same crystal orientation as that of the thin film to be formed as described above.
2) was used. This is because by setting the crystal orientation of the target in the same direction as the direction in which the thin film is to be formed, a thin film closer to a single crystal can be obtained.

【0027】タ−ゲット側は、パッキングプレ−ト(1
3), マグネット(16), 冷却水の入口(15), 冷却水の出口
(15'),シ−ルド板(17)よりなる。これらは、テフロン絶
縁体(18)によりスパッタ装置本体(41)より電気的に分離
されている。そしてこのタ−ゲット(12)に対し電流導入
端子(20)に負の高電圧が印加されるようになっている。
On the target side, the packing plate (1
3), magnet (16), cooling water inlet (15), cooling water outlet
(15 ') and shield plate (17). These are electrically separated from the sputtering apparatus main body (41) by the Teflon insulator (18). Then, a high negative voltage is applied to the current introducing terminal (20) with respect to the target (12).

【0028】更に磁界発生装置(26)により、基板ホルダ
(31)の内側に磁気回路端部を有する磁極(27), 他方には
タ−ゲット(12)の裏側に磁気回路端部を示す磁極(14)と
を有する。この間で磁界(28)を発生させている。この磁
界(28)は垂直方向に基板(30)の被形成面を有する。
Further, by using the magnetic field generator (26), the substrate holder
A magnetic pole (27) having a magnetic circuit end is provided inside (31), and a magnetic pole (14) showing the magnetic circuit end is provided on the other side of the target (12) on the other side. A magnetic field (28) is generated during this period. This magnetic field (28) has the surface on which the substrate (30) is formed in the vertical direction.

【0029】DC( 直流) スパッタ法を行う場合、このタ
−ゲットが負に印加され、基板(30)は接地電位としてい
る。
In the case of performing the DC (direct current) sputtering method, this target is negatively applied and the substrate (30) is at the ground potential.

【0030】AC( 交流) スパッタ法を行う場合、基板は
電気的にフロ−ティングとして用いる。
When the AC (alternating current) sputtering method is performed, the substrate is used as an electrically floating surface.

【0031】「実験例1」タ−ゲット(12)としてYBa2Cu
3.8O6 8 を用いた。タ−ゲットと基板との距離は3cm
とした。アルゴンの圧力は4×10-1Pa、酸素量はArに対
して20%を加えた。DCスパッタの出力は500Wとした。磁
界の強さは0.2Tを基板表面で発生させた。このタ−ゲッ
トは直径25mmのものを用いた。基板(2) は750 ℃に加熱
しホルダ(3) を回転させ、均一な厚さになるようにし
た。かかる条件にて5〜100A/ 分例えば50A/分の速度で
薄膜( 厚さ0.5 〜3 μm)(50)を作り、これを徐冷した。
さらにこの後成膜に磁界を加えつつ内部を酸素のみとし
て大気圧とし、850 ℃、3時間酸素アニ−ルを行い、徐
冷した。特に350 〜500 ℃にてこの後2時間保持させ、
被膜中のすべての結晶の結晶構造を斜方晶形の変形ペロ
ブスカイトに変成させた。酸化物超電導材料としてのTc
o として 98Kを作ることができた。
[Experimental Example 1] YBa 2 Cu was used as the target (12).
Using a 3.8 O 6 ~ 8. The distance between the target and the substrate is 3 cm
And The pressure of argon was 4 × 10 −1 Pa, and the amount of oxygen was 20% with respect to Ar. The output of DC sputter was set to 500W. A magnetic field strength of 0.2 T was generated on the substrate surface. This target had a diameter of 25 mm. The substrate (2) was heated to 750 ° C. and the holder (3) was rotated so as to have a uniform thickness. Under these conditions, a thin film (thickness 0.5 to 3 μm) (50) was formed at a rate of 5 to 100 A / min, for example, 50 A / min, and this was gradually cooled.
After that, while applying a magnetic field to the film formation, the inside of the film was made to contain only oxygen to atmospheric pressure, and oxygen annealing was performed at 850 ° C. for 3 hours, followed by slow cooling. In particular, hold at 350-500 ℃ for 2 hours after this,
The crystal structure of all the crystals in the film was transformed to the orthorhombic deformed perovskite. Tc as an oxide superconducting material
I was able to make 98K as o.

【0032】図面においてタ−ゲット(12)および薄膜(5
0)の細線は第1図の銅(2),酸素(5)で作られる面、即ちa
b面を象徴化したものである。
In the drawing, the target (12) and the thin film (5
The thin line of (0) is the surface made of copper (2) and oxygen (5) in Fig. 1, that is, a
It is a symbol of the b side.

【0033】また臨界電流密度は3×104A/cm2を基板表
面と平行方向に測定して得た。
The critical current density was obtained by measuring 3 × 10 4 A / cm 2 in the direction parallel to the substrate surface.

【0034】この実験で磁界の印加をまったく行わない
場合、そのTco は60K 、臨界電流密度は600A/cm2でしか
なかった。即ち第1図に示す如き結晶構造が成膜時およ
びその後の熱アニ−ルにて十分形成され、そのc軸方向
も磁界と平行の方向即ち被形成面に垂直方向に作製され
たことがX線回析の結果より明らかになった。
In this experiment, when no magnetic field was applied, the Tco was 60 K and the critical current density was 600 A / cm 2 . That is, the crystal structure as shown in FIG. 1 was sufficiently formed by thermal annealing during film formation and thereafter, and the c-axis direction was also formed in the direction parallel to the magnetic field, that is, in the direction perpendicular to the surface to be formed. It became clear from the results of line diffraction.

【0035】「実験例2」ab面に垂直な表面を有するタ
−ゲット(12)を用い、その成分材料としてY0.5Yb0.5BaS
rCu3.6O68 を用いた。磁界(28)の加える方向は図3に
示す如くにした。即ち図2の装置における基板(30)、ホ
ルダ(31), ヒ−タ(29)は同じである。かくして被形成面
上に薄膜(50)をab面を垂直方向に作ることができた。図
示されていない部分は図2と同じである。磁界発生源(2
6)より磁気回路を経て導出された磁極(27),(14) を有す
る。磁界(28)は基板(30)の被形成面に平行に設けた。そ
の値は実験例1と同じである。その結果、基板、例えば
ガラス、アルミナ、ZrO2等上上に白金(500℃でスパッタ
法で作製) を設けて被形成面とし、その上に形成された
超電導材料薄膜に対し、さらにその表面に金を電極とし
て設け、この金と裏面の白金との間で作られた電流密度
は2.4 ×104A/cm2を得た。しかし被形成面に平行する方
向は1×103A/cm2しかなかった。Tco として93K を得
た。
"Experimental Example 2" A target (12) having a surface perpendicular to the ab plane was used, and Y 0.5 Yb 0.5 BaS was used as its constituent material.
using rCu 3.6 O 6 ~ 8. The direction of applying the magnetic field (28) was as shown in FIG. That is, the substrate (30), the holder (31) and the heater (29) in the apparatus of FIG. 2 are the same. Thus, the thin film (50) could be formed on the surface to be formed with the ab plane in the vertical direction. The parts not shown are the same as those in FIG. Magnetic field source (2
It has magnetic poles (27) and (14) derived from 6) through a magnetic circuit. The magnetic field (28) was provided parallel to the formation surface of the substrate (30). The value is the same as in Experimental Example 1. As a result, platinum (prepared by the sputtering method at 500 ° C) was provided on the substrate, such as glass, alumina, ZrO 2 etc., as the surface to be formed, and for the superconducting material thin film formed on it, further to the surface. Gold was provided as an electrode, and the current density produced between this gold and platinum on the back surface was 2.4 × 10 4 A / cm 2 . However, the direction parallel to the surface to be formed was only 1 × 10 3 A / cm 2 . We got 93K as Tco.

【0036】「実施例2」この実施例として、図4に示
す如き電子ビ−ム蒸着装置を用いた例を示す。図面にお
いて基板(30), ホルダ(31), ヒ−タ(29)を真空容器(41)
中に有する。排気系(25)にはタ−ボ分子ポンプ(21)、バ
ルブ(22), ロ−タリ−ポンプ(23)を有する。ルツボ(55)
にはそれぞれイットリウム(51), 銅(32), バリウム(33)
を有し、これらを電子ビ−ム(図示せず)で基板(30)の
被形成面上に蒸着させた。また磁界発生源(26)より磁気
回路をへてその磁極部(27),(27')を有し、磁界(28)を構
成させた。かくしてY:Ba:Cu =1:2:3 とし、さらにこれ
を実験例と同様に、磁界を加えつつ酸素中でアニ−ルを
した。するとTcオンセットとして 97K、Tco として94K
を得ることができた。また出来上がった薄膜の臨界電流
密度も1.5 ×104A/cm2を得た。
[Embodiment 2] As an embodiment, an example using an electron beam vapor deposition apparatus as shown in FIG. 4 is shown. In the drawing, the substrate (30), the holder (31), and the heater (29) are attached to the vacuum container (41).
Have inside. The exhaust system (25) has a turbo molecular pump (21), a valve (22), and a rotary pump (23). Crucible (55)
Yttrium (51), Copper (32), Barium (33) respectively
And an electron beam (not shown) was used to deposit these on the formation surface of the substrate (30). Further, a magnetic circuit is provided from the magnetic field generation source (26) to have magnetic pole portions (27) and (27 ') thereof to form a magnetic field (28). Thus, Y: Ba: Cu was set to 1: 2: 3, and this was annealed in oxygen while applying a magnetic field as in the experimental example. Then Tc onset 97K, Tco 94K
I was able to get The critical current density of the resulting thin film was also 1.5 × 10 4 A / cm 2 .

【0037】磁場を加えない場合は、102A/cm2のオ−ダ
−しか得られなかった。
When no magnetic field was applied, only an order of 10 2 A / cm 2 was obtained.

【0038】「実施例3」実施例1の実験例1におい
て、基板をMgO(100)または SrTiO3(100)とした。そして
成膜中磁場を被形成面上にて1.5Tとなるように加えた。
するとこの基板上には1cm2以上の単結晶薄膜を厚さが1.
5 μmで得ることができた。
Example 3 In Experimental Example 1 of Example 1, the substrate was MgO (100) or SrTiO 3 (100). Then, a magnetic field was applied during film formation so as to be 1.5 T on the surface to be formed.
Then, a single crystal thin film with a thickness of 1 cm 2 or more was formed on this substrate with a thickness of 1.
It could be obtained at 5 μm.

【0039】「実施例4」実施例1の実験例2におい
て、基板をMgO(110),SrTiO3(110) とした。そして磁界
を被形成面上で1.5Tとなるように加えた。するとこの基
板上に5mm2 に近い単結晶薄膜を3μmの厚さにて得る
ことができた。
Example 4 In Experimental Example 2 of Example 1, the substrate was MgO (110), SrTiO 3 (110). Then, a magnetic field was applied so as to be 1.5 T on the formation surface. Then, a single crystal thin film having a thickness of 3 μm could be obtained on this substrate with a thickness of about 5 mm 2 .

【0040】「実施例5」この実施例は、スパッタ法
(実施例1,3,4)、電子ビ−ム蒸着法(実施例2)により
得られた基板上で700 〜950 ℃で熱アニ−ルを行う際、
予め作られている結晶面に合わせてc軸方向に磁界がく
るように加えた。さらにこの磁界に垂直方向に電界を10
3 〜5×104V/cm 加えた。すると結晶の配列に加えて図
1の酸素(6)も除去され、酸素ベイカンシ(7) が多数で
きる。その結果、Tco はさらに約100Kも向上させること
ができ、230 〜280Kを得た。また磁界電流密度も4×10
5A/cm2を得た。本発明において、成形物は薄膜形状とし
た。しかし、この形状はその市場のニ−ズに従って3〜
30μmの厚さの膜構造、帯構造、線構造に変形改良し得
る。
[Embodiment 5] In this embodiment, thermal annealing is performed at 700 to 950 ° C. on a substrate obtained by a sputtering method (Embodiments 1, 3, 4) and an electron beam evaporation method (Embodiment 2). -When doing
The magnetic field was applied so that the magnetic field would be in the c-axis direction in accordance with the crystal plane that was previously made. In addition, an electric field of 10
3 was added ~5 × 10 4 V / cm. Then, in addition to the crystal arrangement, oxygen (6) in FIG. 1 is also removed, and many oxygen vacancy (7) is formed. As a result, Tco could be further improved by about 100K, and 230-280K was obtained. The magnetic field current density is also 4 × 10.
5 A / cm 2 was obtained. In the present invention, the molded product has a thin film shape. However, this shape is 3 ~ depending on the needs of the market.
It can be modified into a film structure, a band structure, and a line structure having a thickness of 30 μm.

【0041】[0041]

【発明の効果】本発明により、これまでまったく不可能
とされていた液体窒素温度以上の温度で動作する酸化物
超電導材料の薄膜をその結晶軸を合わせて作ることがで
きるようになった。
According to the present invention, it has become possible to form a thin film of an oxide superconducting material which operates at a temperature above the liquid nitrogen temperature, which has been impossible at all, with its crystal axes aligned.

【0042】さらにこの到達材料の化合物における多結
晶構造間で層構造をより一致させやすくするため、元素
周期表における2a、3aの元素を複数個混合させ得
る。本発明に示す如く、加熱中に磁界を加えて分子配列
をより統一化することにより、最終完成化合物中に、ボ
イドおよび結晶粒界の障壁の高さを低くすること等の存
在をより除去することができ、ひいてはTcオンセット、
Tco をより高温化できるものと推定される。
Further, in order to more easily match the layer structures between the polycrystalline structures in the compound of the ultimate material, a plurality of elements 2a and 3a in the periodic table of elements can be mixed. As shown in the present invention, by applying a magnetic field during heating to more unify the molecular arrangement, the presence of voids and lowering of grain boundary barriers in the final finished compound is further eliminated. And, by extension, Tc onset,
It is estimated that Tco can be heated to a higher temperature.

【0043】本発明の実施例は、薄膜にしたものであ
る。しかし気化して薄膜化するのではなく、タブレット
を仮焼成または本焼成の後、再び粉末化し、その粉末を
溶媒にとかし、基板等にその溶液を印刷法またはスプレ
−法によりコ−ティングしてこれを乾燥させ、さらに酸
化性雰囲気で磁場を加えつつ焼成し、その後還元性雰囲
気で焼成をすることにより薄膜の結晶配向の揃った超電
導膜とすることも可能である。またこれを繰り返し多層
膜とすることも有効である。
The embodiment of the present invention is a thin film. However, instead of being vaporized to form a thin film, the tablet is pre-baked or main-baked, then powdered again, the powder is dissolved in a solvent, and the solution is coated on a substrate or the like by a printing method or a spraying method. It is also possible to obtain a superconducting film in which the crystal orientation of the thin film is uniform by drying it, firing it in an oxidizing atmosphere while applying a magnetic field, and then firing it in a reducing atmosphere. It is also effective to repeat this to form a multilayer film.

【0044】本発明は、すでに所望の形状にジョセフソ
ン素子等に完成しているものを再び熱アニ−ルを300 ℃
以上で行い、その際同時に電流を流すべき方向と垂直方
向に磁界を加えて結晶方位をー方向に合わせこむことも
有効である。
According to the present invention, a Josephson element or the like having a desired shape has been completed, and a thermal anneal is conducted again at 300 ° C.
It is also effective to perform the above, and at the same time, apply a magnetic field in the direction perpendicular to the direction in which an electric current should flow to align the crystal orientation in the negative direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いられる酸化物超電導材料の結晶構
造の1例
FIG. 1 is an example of a crystal structure of an oxide superconducting material used in the present invention.

【図2】本発明に用いられたスパッタ装置の概要FIG. 2 is a schematic view of a sputtering apparatus used in the present invention.

【図3】本発明に用いられたスパッタ装置の要部FIG. 3 is a main part of a sputtering apparatus used in the present invention

【図4】本発明に用いられた電子ビ−ム蒸着装置FIG. 4 is an electron beam vapor deposition apparatus used in the present invention.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA B 8728−4M Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01L 39/24 ZAA B 8728-4M

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】酸化物超電導材料よりなる薄膜で、該薄膜
の結晶のab面が基板に対して概略平行になるように一
定方向に配設され、その結果高い臨界電流密度を有する
ことを特徴とする酸化物超電導薄膜。
1. A thin film made of an oxide superconducting material, which is arranged in a certain direction so that the ab plane of the crystal of the thin film is substantially parallel to the substrate, and as a result has a high critical current density. Oxide superconducting thin film.
【請求項2】請求項1において、酸化物超電導材料は(A
1-x Bx)yCuOz,x=0〜1,y=2.0 〜4.0,z=1.0 〜4.
0,w=4.0 〜10.0を有し、AはY(イットリウム),Gd(ガ
ドリニウム),Yb( イッテルビウム),Eu( ユ−ロピウム),
Tb( テルビウム),Dy( ジスプロシウム),Ho( ホルミウ
ム),Er( エルビウム),Tm( ツリウム),Lu( ルテチウム),
Sc(スカンジウム) およびその他のランタノイドより選
ばれた1種または複数種の元素よりなり、BはRa( ラジ
ウム),Ba ( バリウム), Sr(ストロンチウム),Ca( カル
シウム),Mg( マグネシウム),Be( ベリリウム) より選ば
れた元素よりなることを特徴とする酸化物超電導薄膜。
2. The oxide superconducting material according to claim 1, wherein
1-x Bx) yCuOz, x = 0 to 1, y = 2.0 to 4.0, z = 1.0 to 4.
0, w = 4.0 to 10.0, A is Y (yttrium), Gd (gadolinium), Yb (ytterbium), Eu (europium),
Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Lu (lutetium),
Consists of one or more elements selected from Sc (scandium) and other lanthanoids, and B is Ra (radium), Ba (barium), Sr (strontium), Ca (calcium), Mg (magnesium), Be. An oxide superconducting thin film characterized by comprising an element selected from (beryllium).
JP3094817A 1987-08-31 1991-04-01 Oxide superconducting thin film Pending JPH05279025A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62218535A JP2564562B2 (en) 1987-08-31 1987-08-31 How to make superconducting material
CN88106462A CN1016387B (en) 1987-08-31 1988-08-31 Method of manufacturing superconducting ceramics in magnetic field and apparatus for the same
DE3855391T DE3855391T2 (en) 1987-08-31 1988-08-31 Method and device for the production of superconducting ceramic materials
KR1019880011107A KR920007799B1 (en) 1987-08-31 1988-08-31 Method for manufacturing super conducting oxide ceramics materials and deposition apparatus for its
EP88308047A EP0306286B1 (en) 1987-08-31 1988-08-31 Method and apparatus for manufacturing superconducting ceramics materials
JP3094817A JPH05279025A (en) 1987-08-31 1991-04-01 Oxide superconducting thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62218535A JP2564562B2 (en) 1987-08-31 1987-08-31 How to make superconducting material
JP3094817A JPH05279025A (en) 1987-08-31 1991-04-01 Oxide superconducting thin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62218535A Division JP2564562B2 (en) 1987-08-31 1987-08-31 How to make superconducting material

Publications (1)

Publication Number Publication Date
JPH05279025A true JPH05279025A (en) 1993-10-26

Family

ID=26436057

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62218535A Expired - Fee Related JP2564562B2 (en) 1987-08-31 1987-08-31 How to make superconducting material
JP3094817A Pending JPH05279025A (en) 1987-08-31 1991-04-01 Oxide superconducting thin film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP62218535A Expired - Fee Related JP2564562B2 (en) 1987-08-31 1987-08-31 How to make superconducting material

Country Status (1)

Country Link
JP (2) JP2564562B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166419A (en) * 1987-12-22 1989-06-30 Sumitomo Electric Ind Ltd Manufacture of superconductive membrane
CN114394852B (en) * 2022-01-06 2022-10-28 长安大学 Preparation method of ceramic material with grain size in gradient distribution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224113A (en) * 1987-03-11 1988-09-19 Matsushita Electric Ind Co Ltd Superconductor
JPS63310512A (en) * 1987-06-12 1988-12-19 Matsushita Electric Ind Co Ltd Membranous superconductor
JPS6459710A (en) * 1987-08-28 1989-03-07 Asahi Chemical Ind Orientative superconductive composite oxide material
JPS6465097A (en) * 1987-08-05 1989-03-10 Siemens Ag Manufacture of layer structure member made from oxide ceramic superconductive material
JPH01100022A (en) * 1987-05-31 1989-04-18 Sumitomo Electric Ind Ltd Preparation of superconducting thin film
JPH01100021A (en) * 1987-05-31 1989-04-18 Sumitomo Electric Ind Ltd Superconducting thin film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194786A (en) * 1985-02-22 1986-08-29 Nippon Telegr & Teleph Corp <Ntt> Heat treatment method of oxide superconductor thin-film
JPS63282153A (en) * 1987-05-13 1988-11-18 Hitachi Ltd Production of superconducting ceramic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63224113A (en) * 1987-03-11 1988-09-19 Matsushita Electric Ind Co Ltd Superconductor
JPH01100022A (en) * 1987-05-31 1989-04-18 Sumitomo Electric Ind Ltd Preparation of superconducting thin film
JPH01100021A (en) * 1987-05-31 1989-04-18 Sumitomo Electric Ind Ltd Superconducting thin film
JPS63310512A (en) * 1987-06-12 1988-12-19 Matsushita Electric Ind Co Ltd Membranous superconductor
JPS6465097A (en) * 1987-08-05 1989-03-10 Siemens Ag Manufacture of layer structure member made from oxide ceramic superconductive material
JPS6459710A (en) * 1987-08-28 1989-03-07 Asahi Chemical Ind Orientative superconductive composite oxide material

Also Published As

Publication number Publication date
JP2564562B2 (en) 1996-12-18
JPS6459973A (en) 1989-03-07

Similar Documents

Publication Publication Date Title
US4939121A (en) Method and apparatus for inducing grain orientation by magnetic and electric field ordering during bulk superconductor synthesis
US4963524A (en) Sputtering device for manufacturing superconducting oxide material and method therefor
US5096880A (en) Method and apparatus for inducing grain orientation by magnetic and electric field ordering during bulk superconductor synthesis
JP3332350B2 (en) Superconductor and method of using the same
JP3089294B2 (en) Manufacturing method of superconducting tape material
US5258364A (en) Method of shaping superconducting oxide material
KR920007799B1 (en) Method for manufacturing super conducting oxide ceramics materials and deposition apparatus for its
JP2564562B2 (en) How to make superconducting material
JPH0817253B2 (en) Method for forming oxide superconducting film
JPH0825742B2 (en) How to make superconducting material
JP2603688B2 (en) Superconducting material reforming method
JPH02167820A (en) Method for forming tl-base multiple oxide superconducting thin film
US5308800A (en) Apparatus and method for forming textured bulk high temperature superconducting materials
JP2713343B2 (en) Superconducting circuit fabrication method
JP2683689B2 (en) Method for producing oxide superconducting thin film
JPH0559041B2 (en)
JP2585561B2 (en) Oxide superconducting material
JPH0556283B2 (en)
JP2660246B2 (en) Superconducting device
JP2585621B2 (en) How to make superconducting material
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH0817254B2 (en) Method for forming oxide superconducting material
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JPS63240005A (en) Manufacture of superconducting material
JPH0556281B2 (en)