JPH05275227A - Manufacture of oxide magnetic material - Google Patents

Manufacture of oxide magnetic material

Info

Publication number
JPH05275227A
JPH05275227A JP4100200A JP10020092A JPH05275227A JP H05275227 A JPH05275227 A JP H05275227A JP 4100200 A JP4100200 A JP 4100200A JP 10020092 A JP10020092 A JP 10020092A JP H05275227 A JPH05275227 A JP H05275227A
Authority
JP
Japan
Prior art keywords
magnetic material
hours
oxide magnetic
loss
desirable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4100200A
Other languages
Japanese (ja)
Inventor
Katsuhisa Ishikawa
勝久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4100200A priority Critical patent/JPH05275227A/en
Publication of JPH05275227A publication Critical patent/JPH05275227A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To lessen the loss in the core of transformer by smashing, molding and sintering the material powder being mixed and prebaked. CONSTITUTION:Mn-Zn ferrite material powder is prebaked after being mixed, and then, the powder is smashed for 8-40hours with a ball mill made of zirconia. Next, it is molded and sintered. As the Mn-Zn ferrite material, Fe2O3 having content of 99% or more, MnCO3 having content of 99.5% or more, or ZnO having content of 99% or more is desirable. For the prebaking, it is desirable that it should be performed at 800-950 deg.C. Moreover, it is desirable that the sintering should be performed for about four hours at 1000-1200 deg.C in N2 gas atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低損失磁性材料の製造方
法に関し、特に高周波スイッチング電源用に用いられる
磁性材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a low loss magnetic material, and more particularly to a method for manufacturing a magnetic material used for a high frequency switching power supply.

【0002】[0002]

【従来の技術およびその課題】近年、スイッチング電源
の周波数は、電源の小型化のために200〜300kH
zが主流となっているが、さらに小型化の要請が強く、
電源用各部品には、より高周波で動作する高性能素子が
要求されている。電源トランス用としての磁性材料に
は、小型化のために次の数式1に示されるように、磁束
密度が大きいことと、電気エネルギーの損失、すなわち
コイルを巻き電圧を印加したときに磁性材料の特性によ
って発生するコア損失を小さくするために、可能なかぎ
りヒステリシス損失および渦電流損失が小さいことが要
求される。
2. Description of the Related Art In recent years, the frequency of a switching power supply is 200 to 300 kH in order to miniaturize the power supply.
z is the mainstream, but there is a strong demand for further miniaturization,
High-performance devices that operate at higher frequencies are required for each power supply component. The magnetic material for a power transformer has a large magnetic flux density and a loss of electric energy, that is, the magnetic material when a coil is wound and a voltage is applied, as shown in the following formula 1 for downsizing. In order to reduce the core loss caused by the characteristics, it is required that hysteresis loss and eddy current loss are as small as possible.

【0003】[0003]

【数1】 A:磁路断面積(cm2 ) E:電圧 (V) B:磁束密度 (mT) N:コイル巻数 f:周波数 (kHz)[Equation 1] A: Magnetic path cross-sectional area (cm 2 ) E: Voltage (V) B: Magnetic flux density (mT) N: Number of coil turns f: Frequency (kHz)

【0004】従来より、1MHz帯までのスイッチング
電源トランス用磁性材料としてMn−Zn系酸化物磁性
材料が用いられているが、Mn−Zn系酸化物磁性材料
のコア損失は充分小さいとはいえないのが現状である。
一方、トランスコアの体積をさらに小さくするため、使
用周波数がさらに高周波化されようとしている。コア損
失は高周波になるほど大きいので、この要望に応えるた
めには、少しでもトランスコアの損失を小さくすること
が急務である。本発明の目的は、上記の課題を解決した
酸化物磁性材料の製造方法を提供することにある。
Conventionally, an Mn-Zn oxide magnetic material has been used as a magnetic material for a switching power supply transformer up to 1 MHz band, but the core loss of the Mn-Zn oxide magnetic material cannot be said to be sufficiently small. is the current situation.
On the other hand, in order to further reduce the volume of the transformer core, the frequency used is becoming higher. Since the core loss increases as the frequency increases, it is urgent to reduce the loss of the transformer core as much as possible in order to meet this demand. An object of the present invention is to provide a method for producing an oxide magnetic material that solves the above problems.

【0005】[0005]

【課題を解決するための手段】本発明は、マンガン−亜
鉛(Mn−Zn)フェライトの製造方法において、原料
粉末を混合した後、予備焼成した粉末をジルコニヤ製ボ
ールにて8〜40時間粉砕し、次いで成形および焼成す
ることを特徴とする酸化物磁性材料の製造方法である。
According to the present invention, in a method for producing manganese-zinc (Mn-Zn) ferrite, raw material powders are mixed and pre-fired powder is crushed with a zirconia ball for 8 to 40 hours. Then, the method is a method for producing an oxide magnetic material, which is characterized by forming and firing.

【0006】[0006]

【作用】以下、本発明の構成について詳細に説明する。
まず、Mn−Znフェライト原料として、酸化鉄(Fe
23)は99%以上のもの、炭酸マンガン[MnC
3,酸化マンガン(MnO)の原料形態]は99.5
%以上のもの、酸化亜鉛(ZnO)は99%以上のもの
が好ましい。上記原料のうち、MnCO3は乾燥した場
所での保管が好ましい。上記原料を、Fe23を53.
0モル%、MnOを36.0モル%、ZnOを11.0
モル%になるように秤量する。これをボールミル等にて
充分均一になるように混合する。混合は湿式混合法が好
ましい。次に混合物を乾燥後、予備焼成する。予備焼成
は800〜950℃が好ましい。次いで、得られた予備
焼成粉をジルコニヤ製ボールを用いて8〜40時間粉砕
する。ジルコニア製ボールは、微粉砕効果が大であり、
従って特性改善効果が大であることから特に好ましい。
また、8時間以下では予備焼成粉が充分粉砕されないの
で焼結体のコア損失の低減に効果がなく、40時間以上
粉砕したものは、成形後焼結すると焼結体表面部分に巨
大粒子相ができるためエディ・カーレント・ロスが大き
くなり、全体のコア損失が大きくなるので好ましくな
い。次いで、成形後、焼結を行う。焼結は1000〜1
200℃で4時間程度行うことが好ましい。焼結の雰囲
気はN2ガスが好ましい。
The structure of the present invention will be described in detail below.
First, as an Mn-Zn ferrite raw material, iron oxide (Fe
2 O 3 ) is 99% or more, manganese carbonate [MnC
O 3 , the raw material form of manganese oxide (MnO)] is 99.5.
%, Zinc oxide (ZnO) is preferably 99% or more. Of the above raw materials, MnCO 3 is preferably stored in a dry place. The above raw material was mixed with Fe 2 O 3 at 53.
0 mol%, MnO 36.0 mol%, ZnO 11.0
Weigh it to be mol%. This is mixed with a ball mill or the like so as to be sufficiently uniform. The mixing is preferably a wet mixing method. Next, the mixture is dried and then pre-baked. The pre-baking temperature is preferably 800 to 950 ° C. Next, the obtained pre-baked powder is crushed for 8 to 40 hours using a zirconia ball. Zirconia balls have a great crushing effect,
Therefore, it is particularly preferable because the effect of improving the characteristics is great.
In addition, since the pre-fired powder is not sufficiently crushed for 8 hours or less, it is not effective in reducing the core loss of the sintered body. As a result, the eddy current loss becomes large and the overall core loss becomes large, which is not preferable. Then, after molding, sintering is performed. Sintering is 1000-1
It is preferable to carry out at 200 ° C. for about 4 hours. The sintering atmosphere is preferably N 2 gas.

【0007】[0007]

【実施例】以下、本発明の実施例について説明する。F
23を53.0モル%、MnO(原料形態はMnCO
3)を36.0モル%、ZnOを11.0モル%となる
ように秤量し、結晶粒界相高抵抗化材料としてSiO2
を0.05モル%、CaO(原料形態はCaCO3)を
0.1モル%加えて鉄製ボールミルにて30時間湿式混
合した。この際の分散媒は99%のアルコールを用い
た。
EXAMPLES Examples of the present invention will be described below. F
53.0 mol% of e 2 O 3 and MnO (the raw material form is MnCO
3 ) and ZnO are weighed so as to be 36.0 mol% and 11.0 mol%, and SiO 2 is used as a grain boundary phase high resistance material.
Of 0.05% and CaO (the raw material form is CaCO 3 ) of 0.1 mol% were added and wet mixed for 30 hours in an iron ball mill. At this time, 99% alcohol was used as the dispersion medium.

【0008】次に泥奨を濾過・乾燥後、850℃で予備
焼成した。次いで、予備焼成粉100g,φ5のジルコ
ニヤボール1kgおよびアルコール250ccをポリプ
ロピレン製ポット(内容積:約1600cc)に入れ、
回転数130r.p.m.で表1に示した条件で粉砕し
た。次に、粉末結合剤(糊)としてPVA(ポリ・ビニ
ル・アルコール)を加えた後、φ30×φ20×7tに
なるように2.5トン/cm2 の圧力で成形した。成形
体を大気中で480℃−12時間、加熱・脱脂し、11
30℃で4時間、N2ガス中で焼成した。昇温速度は2
00℃/Hで行い、冷却は炉冷とした。得られた焼結体
の形状は、φ25×φ17×5tであった。焼結体のコ
ア損失はu関数計で測定した。周波数は1MHz、磁束
密度は0.05テスラとし、この測定結果を表1に示し
た。比較例であるNo.1,7に対し、実施例の方法で
製造した焼結体は、コア損失が約40%小さくなってお
り、本発明の効果が著しいことは明らかである。透磁率
μは2000以上、飽和磁束密度4πMsは4900以
上であった。
Next, the mud cloth was filtered, dried, and then pre-baked at 850.degree. Next, 100 g of the pre-baked powder, 1 kg of φ5 zirconia balls and 250 cc of alcohol were placed in a polypropylene pot (internal volume: about 1600 cc),
Rotation speed 130r. p. m. Was crushed under the conditions shown in Table 1. Next, after adding PVA (polyvinyl alcohol) as a powder binder (paste), it was molded at a pressure of 2.5 tons / cm 2 so as to be φ30 × φ20 × 7t. The molded body is heated and degreased in the atmosphere at 480 ° C for 12 hours,
It was calcined in N 2 gas at 30 ° C. for 4 hours. Heating rate is 2
The temperature was 00 ° C./H, and the cooling was furnace cooling. The shape of the obtained sintered body was φ25 × φ17 × 5t. The core loss of the sintered body was measured with a u function meter. The frequency was 1 MHz and the magnetic flux density was 0.05 tesla, and the measurement results are shown in Table 1. No. which is a comparative example. In contrast to Nos. 1 and 7, the sintered body produced by the method of the example has a core loss reduced by about 40%, and it is clear that the effect of the present invention is remarkable. The magnetic permeability μ was 2000 or more, and the saturation magnetic flux density 4πMs was 4900 or more.

【0009】[0009]

【表1】 ─────────────────────────────────── 粉砕時間 BET 平均粒径 PL(コア損失)60℃ No. (H) (m2/g) (μm) (mw/cm2) ─────────────────────────────────── 1* 0 2.33 0.51 1050 2 8 2.47 0.48 820 3 16 2.76 0.43 710 4 24 3.20 0.37 650 5 32 3.39 0.35 660 6 40 2.89 0.41 810 7* 48 4.09 0.29 960 ─────────────────────────────────── *印:比較例[Table 1] ─────────────────────────────────── Grinding time BET Average particle size PL (Core loss) 60 ° C No. (H) (m 2 / g) (μm) (mw / cm 2 ) ───────────────────────────────── ─── 1 * 0 2.33 0.51 1050 2 8 2.47 0.48 820 3 16 2.76 0.43 710 4 24 3.20 0.37 650 5 32 3.39 0.35 660 6 40 2.89 0.41 810 7 * 48 4.09 0.29 960 ────────── ───────────────────────── * : Comparative example

【0010】[0010]

【発明の効果】以上説明したように、本発明の製造方法
によれば、コア損失が大幅に改善されたMn−Znフェ
ライトの酸化物磁性材料が得られる。本発明で得られる
磁性材料は、電源トランスのコアとして用いることによ
り、情報機器、通信機器、事務用機器、電子計測器、影
像機器、音声機器等の小型化、薄型化、軽量化、高密度
実装化が可能になるなど、工業的に極めて有用なもので
ある。
As described above, according to the manufacturing method of the present invention, an oxide magnetic material of Mn-Zn ferrite having a significantly improved core loss can be obtained. The magnetic material obtained by the present invention is used as a core of a power transformer to reduce the size, thickness, weight and density of information equipment, communication equipment, office equipment, electronic measuring instruments, image equipment, audio equipment, etc. It is extremely useful industrially because it can be mounted.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マンガン−亜鉛(Mn−Zn)フェライ
トの製造方法において、原料粉末を混合した後、予備焼
成した粉末をジルコニヤ製ボールにて8〜40時間粉砕
し、次いで成形および焼成することを特徴とする酸化物
磁性材料の製造方法。
1. A method for producing manganese-zinc (Mn-Zn) ferrite, which comprises mixing raw material powders, crushing the pre-fired powder with a zirconia ball for 8 to 40 hours, and then molding and firing. A method for producing a characteristic oxide magnetic material.
JP4100200A 1992-03-27 1992-03-27 Manufacture of oxide magnetic material Pending JPH05275227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4100200A JPH05275227A (en) 1992-03-27 1992-03-27 Manufacture of oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4100200A JPH05275227A (en) 1992-03-27 1992-03-27 Manufacture of oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH05275227A true JPH05275227A (en) 1993-10-22

Family

ID=14267665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4100200A Pending JPH05275227A (en) 1992-03-27 1992-03-27 Manufacture of oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH05275227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650716A (en) * 2022-11-02 2023-01-31 安徽龙磁科技股份有限公司 Preparation method of permanent magnetic ferrite wet-pressing magnetic shoe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650716A (en) * 2022-11-02 2023-01-31 安徽龙磁科技股份有限公司 Preparation method of permanent magnetic ferrite wet-pressing magnetic shoe

Similar Documents

Publication Publication Date Title
KR101403728B1 (en) Ni-zn-cu ferrite powder, green sheet and sintered body
JPH10163017A (en) High frequency soft-magnetic material for low temp. sintering and manufacture of inductor using the same
JP2917706B2 (en) Oxide magnetic material
JPH06310321A (en) Oxide magnetic substance material
JP3492802B2 (en) Low loss ferrite material
JPH06310320A (en) Oxide magnetic substance material
JP3490504B2 (en) Low-loss oxide magnetic material
JP2016056051A (en) MnZn-BASED FERRITE AND MnZn-BASED FERRITE LARGE SIZE CORE
JPH05275227A (en) Manufacture of oxide magnetic material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JPH07130527A (en) Oxide magnetic material
JP2802839B2 (en) Oxide soft magnetic material
JP3654303B2 (en) Low loss magnetic material
JP2004262710A (en) Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JPH0661033A (en) Low-loss oxide magnetic material
JPH05166621A (en) Oxide magnetic material and its production
JPH08148323A (en) Production of oxide magnetic material and molding
JPH04223303A (en) Manufacture of oxide magnetic material
JP3580144B2 (en) Method for producing Ni-Cu-Zn ferrite material
JPH07169613A (en) Composite magnetic substance material
JP2002179460A (en) Ferrite material and ferrite core by using the same
JP2001118714A (en) Small-loss oxide magnetic material
JPH05190316A (en) Manufacture of oxide magnetic material
JPH05226137A (en) Oxide magnetic body material and its manufacture