JPH05190316A - Manufacture of oxide magnetic material - Google Patents

Manufacture of oxide magnetic material

Info

Publication number
JPH05190316A
JPH05190316A JP4025941A JP2594192A JPH05190316A JP H05190316 A JPH05190316 A JP H05190316A JP 4025941 A JP4025941 A JP 4025941A JP 2594192 A JP2594192 A JP 2594192A JP H05190316 A JPH05190316 A JP H05190316A
Authority
JP
Japan
Prior art keywords
imn
ferrite
ray diffraction
magnetic material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4025941A
Other languages
Japanese (ja)
Inventor
Katsuhisa Ishikawa
勝久 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4025941A priority Critical patent/JPH05190316A/en
Publication of JPH05190316A publication Critical patent/JPH05190316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To reduce the core loss of Mn-Zn ferrite as a transformer core material, at a high frequency. CONSTITUTION:For a presintering step of a Mn-Zn ferrite manufacture process, a power of 0.855g/cm<2> or below to the base area of a container is placed thereinto. Then presintering is performed in an air or oxygen atmosphere to produce (Mn, Fe)2O3 of such a quantity that I(Mn, Fe)2O3/IMn-Zn, a ratio of an X-ray diffraction intensity (I(Mn, Fe)2O3) of the Miller indices [222] face of (Mn, Fe)2O3 to an X-ray diffraction strength (IMn-Zn) of the Miller indices [311] face of Mn-Zn ferrite, will be 0.38 or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低損失の酸化物磁性材料
の製造方法に関し、特に高周波スイッチング電源用に用
いられるマンガン−亜鉛系フェライトの製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a low loss oxide magnetic material, and more particularly to a method for producing a manganese-zinc based ferrite used for a high frequency switching power supply.

【0002】[0002]

【従来の技術】近年、スイッチング電源の周波数は、電
源の小型化のため200〜300kHzが主流となって
いるが、さらに小型化の要請が強い。電源トランス用磁
性材料の磁路断面積Aと作動周波数fおよび磁束密度B
との間には(1)式に示す関係がある。 A={E/(4.4×B・N・f)}×10-7 ・・・(1) ここにAは磁路断面積(cm2),Eは電圧(V),B
は磁束密度(mT),Nはコイル巻数,fは作動周波数
(kHz)である。(1)式から明らかなように、電源
トランス用磁性材料の小型化のためには、磁束密度が大
きい磁性材料を用い作動周波数を高くすればよい。この
際、電気エネルギーの損失、すなわち、コイルを巻き電
圧を印加した時に磁性材料の特性によって発生するコア
損失(主としてヒステリシス・ロスおよびエディ・カー
レントロス)を可能な限り小さくすることが要求され
る。Mn−Zn系酸化物磁性材料は他の磁性材料に比べ
磁束密度が大きく、コア損失も比較的小さいことから1
MHz帯までのスイッチング電源トランス用磁性材料と
して用いられ、かつ、研究が進められている。しかし、
高周波帯域でのコア損失は、まだ大きく、さらにコア損
失の改良が望まれているのが現状である。
2. Description of the Related Art In recent years, the frequency of a switching power supply has been mainly 200 to 300 kHz for downsizing the power supply, but there is a strong demand for further downsizing. Magnetic path cross section A of magnetic material for power transformer, operating frequency f and magnetic flux density B
And have a relationship shown in the equation (1). A = {E / (4.4 × B · N · f)} × 10 −7 (1) where A is the magnetic path cross-sectional area (cm 2 ), E is the voltage (V), B
Is the magnetic flux density (mT), N is the number of coil turns, and f is the operating frequency (kHz). As is apparent from the equation (1), in order to reduce the size of the magnetic material for the power transformer, a magnetic material having a high magnetic flux density may be used to increase the operating frequency. At this time, it is required to reduce electric energy loss, that is, core loss (mainly hysteresis loss and eddy current loss) generated by the characteristics of the magnetic material when a coil is applied with a voltage. The Mn-Zn-based oxide magnetic material has a higher magnetic flux density and a relatively smaller core loss than other magnetic materials.
It is used as a magnetic material for switching power supply transformers up to the MHz band, and is being researched. But,
The core loss in the high frequency band is still large, and it is the current situation that improvement of the core loss is desired.

【0003】[0003]

【発明が解決しようとする課題】トランス用コアの体積
を小さくするためには(1)式から明らかなように、ト
ランス用コアの作動周波数をさらに高周波数化する必要
があるが、コアの損失は高周波数になる程大きいのが現
状である。従って高周波数帯域でのトランス用コアの損
失を少しでも小さくすることが急務の課題となってい
る。本発明の目的は上記課題を解決した酸化物磁性材料
の製造方法を提供することにある。
In order to reduce the volume of the transformer core, it is necessary to further increase the operating frequency of the transformer core, as is apparent from the equation (1), but the core loss is reduced. At present, the higher the frequency becomes, the larger it becomes. Therefore, it is an urgent task to reduce the loss of the transformer core in the high frequency band as much as possible. An object of the present invention is to provide a method for producing an oxide magnetic material that solves the above problems.

【0004】[0004]

【課題を解決するための手段】本発明は、原料粉末を予
備焼成した後、本焼成することよりなるマンガン(M
n)−亜鉛(Zn)系酸化物磁性材料の製造方法におい
て、予備焼成工程で容器に入れる粉末量を容器の底面積
に対し0.855g/cm2以下とし、雰囲気は、大気
または酸素中として(Mn,Fe)23を生成せしめ、
その量が、(Mn,Fe)23のミラー指数[222]
面のX線回折強度(I(Mn,Fe)2O3)とMn−Znフェラ
イトのミラー指数[311]面のX線回折強度(IMn-Z
n)との比I(Mn,Fe)2O3/IMn-Zn が0.38以上とな
るように予備焼成することを特徴とする酸化物磁性材料
の製造方法である。
According to the present invention, manganese (M) is formed by pre-firing raw material powder and then pre-firing.
In the method for producing an n) -zinc (Zn) -based oxide magnetic material, the amount of powder placed in the container in the pre-baking step is 0.855 g / cm 2 or less with respect to the bottom area of the container, and the atmosphere is air or oxygen (Mn, Fe) 2 O 3 is generated,
The amount is (Mn, Fe) 2 O 3 Miller index [222]
X-ray diffraction intensity of the plane (I (Mn, Fe) 2 O 3 ) and the Miller index of the Mn-Zn ferrite [311] plane X-ray diffraction intensity (IMn-Z
n) and a ratio I (Mn, Fe) 2 O 3 / IMn-Zn of 0.38 or more are pre-baked.

【0005】以下、本発明について具体的に説明する。
まずMn−Znフェライトの原料として、Fe23は9
9%以上のもの、MnCO3(MnOの原料の形態)は
99.5%以上のもの、ZnOは99%以上のものが好
ましい。上記原料を、Fe23を53.0モル%,Mn
Oを37.5モル%,ZnOを9.5モル%秤量して添
加物を加え、これらをボールミル等にて充分に均一にな
るように混合する。混合は湿式混合が好ましい。
The present invention will be specifically described below.
First, as a raw material for Mn-Zn ferrite, Fe 2 O 3 is 9
9% or more, MnCO 3 (form of MnO raw material) is 99.5% or more, and ZnO is 99% or more. The above raw materials were mixed with 53.0 mol% of Fe 2 O 3 and Mn.
37.5 mol% of O and 9.5 mol% of ZnO are weighed, additives are added, and these are mixed by a ball mill or the like so as to be sufficiently uniform. The mixing is preferably wet mixing.

【0006】次に混合体を乾燥後、予備焼成する。予備
焼成工程では容器に入れる粉末量を容器の底面積に対し
0.855g/cm2以下とし、雰囲気は大気または酸
素中とし、(Mn,Fe)23を生成せしめ、その量が
(Mn,Fe)23のX線回折強度とMn−Znフェラ
イトのX線回折強度との比が0.38以上となるように
予備焼成することが必要である。但し、I(Mn,Fe)2O3
(Mn,Fe)23のミラー指数[222]面のX線回
折強度と、IMn-ZnをMn−Znフェライトのミラー指
数[311]面のX線回折強度との比で示せば、I(Mn,
Fe)2O3/IMn-Zn≧0.38 である。(Mn,Fe)2
3の[222]面のX線回折強度と、Mn−Znフェ
ライトの[311]面のX線回折強度との比 I(Mn,Fe)
2O3/IMn-Zn が0.38未満ではコア損失(パワー・
ロス,PL)が大きくなり好ましくない。また、予備焼
成粉が酸素により多く接する機会がある予備焼成方法、
例えば、予備焼成粉を過疎につめること、予備焼成粉の
厚みを薄くすること、予備焼成粉に酸素ガスまたは大気
を吹き込むこと等も同様の効果があり、これらを併用す
ることでさらに良い結果が得られる。次に、予備焼成粉
に粉末結合剤(糊)を混合させる。粉末結合剤(糊)と
してはポリ・ビニル・アルコール(P.V.A)が好ま
しいが、特にこれに限定されるものではない。成形圧は
1.0〜3.0ton/cm2が好ましい。成形後粉末
結合剤を脱脂し焼成を行う。
Next, the mixture is dried and then pre-baked. In the pre-baking step, the amount of powder put in the container is 0.855 g / cm 2 or less with respect to the bottom area of the container, the atmosphere is in the atmosphere or in oxygen, and (Mn, Fe) 2 O 3 is produced, and the amount is (Mn, Fe) 2 O 3. , Fe) 2 O 3 needs to be pre-fired so that the ratio of the X-ray diffraction intensity of Mn—Zn ferrite to the X-ray diffraction intensity is 0.38 or more. However, I (Mn, Fe) 2 O 3 is the X-ray diffraction intensity of the (Mn, Fe) 2 O 3 Miller index [222] plane, and IMn-Zn is the Mn-Zn ferrite of the Miller index [311] plane. If expressed as a ratio with the X-ray diffraction intensity, I (Mn,
Fe) 2 O 3 /IMn-Zn≧0.38. (Mn, Fe) 2
Ratio of X-ray diffraction intensity of [222] plane of O 3 to X-ray diffraction intensity of [311] plane of Mn—Zn ferrite I (Mn, Fe)
When 2 O 3 / IMn-Zn is less than 0.38, core loss (power
Loss, PL) becomes large, which is not preferable. In addition, the pre-baking method in which the pre-baked powder has a chance to come into contact with oxygen more,
For example, sparsely filling the pre-baked powder, thinning the thickness of the pre-baked powder, blowing oxygen gas or air into the pre-baked powder, etc. have the same effect. can get. Next, the powder binder (glue) is mixed with the pre-baked powder. Polyvinyl alcohol (PVA) is preferable as the powder binder (paste), but it is not particularly limited thereto. The molding pressure is preferably 1.0 to 3.0 ton / cm 2 . After molding, the powder binder is degreased and fired.

【0007】[0007]

【実施例】以下、本発明の実施例を説明する。Fe23
を53.0モル%,MnO(原料の形態はMnCO3
を37.5モル%,ZnOを9.5モル%となるように
秤量し、結晶粒界相高抵抗化材料としてSiO2を0.
05モル%,CaO(原料の形態はCaCO3)を0.
1モル%加えて、鉄製ボールミルにて30時間湿式混合
した。この際の分散媒は99%のアルコールを用いた。
次に泥奨をろ過、乾燥後、850℃で4時間、表1に示
す重量を同表に示した材質のボートに入れて、同表に示
した雰囲気で予備焼成した。石英ボートの大きさは内寸
法で130×180×50mmt,白金ボートの大きさ
は50×120×50mmtである。このようにして得
られた予備焼成粉中の(Mn,Fe)23の量は、I(M
n,Fe)2O3/IMn-Zn の比で同表に示した通りであった。
X線回折装置は理学電機(株)製 Rigaku Geiger Flex
を用いた。
EXAMPLES Examples of the present invention will be described below. Fe 2 O 3
53.0 mol%, MnO (raw material form is MnCO 3 )
37.5 mol%, the ZnO were weighed so as to be 9.5 mol%, SiO 2 as grain boundary phase high resistance material 0.
0.05 mol%, CaO (the form of the raw material is CaCO 3 ) is 0.1%.
1 mol% was added and wet-mixed for 30 hours in an iron ball mill. At this time, 99% alcohol was used as the dispersion medium.
Then, after filtering and drying the mud cloth, the weight shown in Table 1 was put into a boat of the material shown in the same table at 850 ° C. for 4 hours and pre-baked in the atmosphere shown in the same table. The size of the quartz boat is 130 × 180 × 50 mmt in internal dimensions, and the size of the platinum boat is 50 × 120 × 50 mmt. The amount of (Mn, Fe) 2 O 3 in the pre-baked powder thus obtained is I (M
The ratio of (n, Fe) 2 O 3 / IMn-Zn was as shown in the table.
Rigaku Geiger Flex manufactured by Rigaku Denki Co., Ltd.
Was used.

【0008】次に、粉末結合剤(糊)としてP.V.A
を加えた後、成形体の形状が外径φ30,内径φ20,
厚さ7mmtのトロイダル型になるように成形した。こ
の成形体をアルミナ基板にのせ電気炉内にセットした。
雰囲気はN2ガスとし、室温から600℃迄は50℃/
hの速度で加熱昇温させ、脱脂するために、600℃で
4時間保持した。その後、1130℃迄200℃/hの
速度で昇温加熱し、1130℃で4時間保持した。得ら
れた試料の形状は外径φ25,内径φ17,厚さ5mm
tのトロイダル型であった。コア損失(PL)はu関数
計で周波数は1MHz,磁束密度は0.05テスラの条
件のもとに測定し、60℃での測定結果を表1に示し
た。I(Mn,Fe)2O3/IMn-Zn≧0.38では、コア損失
(PL)は950mW/cm3以下と著しく小さいこと
が明らかである。透磁率μは2000以上、飽和磁束密
度4πMsは5000Gauss以上であった。また、
抗折強度は2700kg/cm2以上であった。
Next, as a powder binder (paste), P. V. A
After adding, the shape of the molded body is outer diameter φ30, inner diameter φ20,
It was molded into a toroidal type having a thickness of 7 mmt. This compact was placed on an alumina substrate and set in an electric furnace.
The atmosphere is N 2 gas, 50 ℃ / from room temperature to 600 ℃
The temperature was raised at a rate of h and the temperature was maintained at 600 ° C. for 4 hours for degreasing. After that, the temperature was raised to 1130 ° C. at a rate of 200 ° C./h and heated, and kept at 1130 ° C. for 4 hours. The shape of the obtained sample is outer diameter φ25, inner diameter φ17, thickness 5mm
It was a toroidal type of t. The core loss (PL) was measured with a u function meter under the conditions of a frequency of 1 MHz and a magnetic flux density of 0.05 Tesla, and the measurement results at 60 ° C. are shown in Table 1. It is clear that when I (Mn, Fe) 2 O 3 /IMn-Zn≧0.38, the core loss (PL) is 950 mW / cm 3 or less, which is extremely small. The magnetic permeability μ was 2000 or more, and the saturation magnetic flux density 4πMs was 5000 Gauss or more. Also,
The bending strength was 2700 kg / cm 2 or more.

【0009】[0009]

【表1】 ──────────────────────────────────── 予備焼成 容器 予備焼成 容器中に入 I(Mn,Fe)2O3/ コア損失(PL) No 仕込量 材質 の雰囲気 れる粉末量 IMn-Zn (mW/cm3) (g) (g/cm2) ──────────────────────────────────── 1 10 石英 大気中 0.043 0.84 680 2 50 石英 大気中 0.217 0.74 740 3 100 石英 大気中 0.427 0.63 810 4 200 石英 大気中 0.855 0.38 950 5* 100 白金 窒素中 1.667 0 1350 ──────────────────────────────────── *印; 比較例[Table 1] ──────────────────────────────────── Pre-baking container Pre-baking container Fill I (Mn, Fe) 2 O 3 / Core loss (PL) No Charge amount Powder amount in atmosphere of material IMn-Zn (mW / cm 3 ) (g) (g / cm 2 ) ────────── ──────────────────────────── 1 10 Quartz Atmosphere 0.043 0.84 680 2 50 Quartz Atmosphere 0.217 0.74 740 3 100 Quartz Atmosphere 0.427 0.63 810 4 200 Quartz in air 0.855 0.38 950 5 * 100 Platinum in nitrogen 1.667 0 1350 ───────────────────────────────── ──── * mark; Comparative example

【0010】[0010]

【発明の効果】以上説明したように、本発明の製造方法
によれば、従来の製造方法により製造したものよりもコ
ア損失を小さくすることができる。本発明によるMn−
Znフェライトを電源トランスのコアとして用いること
により、情報機器、通信機器、電子計測器、映像機器、
音声機器等に使われている電源の小型化、薄型化、軽量
化等が可能になるため、本発明は工業的に極めて有用な
ものである。
As described above, according to the manufacturing method of the present invention, the core loss can be made smaller than that produced by the conventional manufacturing method. Mn- according to the invention
By using Zn ferrite as the core of a power transformer, information equipment, communication equipment, electronic measuring equipment, video equipment,
The present invention is extremely useful industrially because it enables downsizing, thinning, weight reduction, and the like of a power source used in audio equipment and the like.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原料粉末を予備焼成した後、本焼成する
ことよりなるマンガン(Mn)−亜鉛(Zn)系酸化物
磁性材料の製造方法において、予備焼成工程で容器に入
れる粉末量を容器の底面積に対し0.855g/cm2
以下とし、雰囲気は、大気または酸素中として(Mn,
Fe)23を生成せしめ、その量が、(Mn,Fe)2
3のミラー指数[222]面のX線回折強度(I(Mn,F
e)2O3)とMn−Znフェライトのミラー指数[31
1]面のX線回折強度(IMn-Zn)との比 I(Mn,Fe)2O3
/IMn-Zn が0.38以上となるように予備焼成するこ
とを特徴とする酸化物磁性材料の製造方法。
1. In a method for producing a manganese (Mn) -zinc (Zn) -based oxide magnetic material, which comprises pre-firing a raw material powder and then pre-firing, the amount of powder to be put in the container in the pre-firing step is 0.855 g / cm 2 for the bottom area
The atmosphere is as follows (Mn,
Fe) 2 O 3 was produced, and the amount thereof was (Mn, Fe) 2
X-ray diffraction intensity of the mirror index [222] plane of O 3 (I (Mn, F
e) 2 O 3 ) and the Miller index of Mn-Zn ferrite [31
1] ratio of X-ray diffraction intensity (IMn-Zn) to I (Mn, Fe) 2 O 3
/ IMn-Zn is pre-fired to be 0.38 or more, a method for producing an oxide magnetic material.
JP4025941A 1992-01-17 1992-01-17 Manufacture of oxide magnetic material Pending JPH05190316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4025941A JPH05190316A (en) 1992-01-17 1992-01-17 Manufacture of oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4025941A JPH05190316A (en) 1992-01-17 1992-01-17 Manufacture of oxide magnetic material

Publications (1)

Publication Number Publication Date
JPH05190316A true JPH05190316A (en) 1993-07-30

Family

ID=12179786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4025941A Pending JPH05190316A (en) 1992-01-17 1992-01-17 Manufacture of oxide magnetic material

Country Status (1)

Country Link
JP (1) JPH05190316A (en)

Similar Documents

Publication Publication Date Title
JP2917706B2 (en) Oxide magnetic material
JP3288113B2 (en) Mn-Zn ferrite magnetic material
JPH06310320A (en) Oxide magnetic substance material
JP3490504B2 (en) Low-loss oxide magnetic material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JPH05190316A (en) Manufacture of oxide magnetic material
JP3790606B2 (en) Mn-Co ferrite material
JPH05166621A (en) Oxide magnetic material and its production
JPH07130527A (en) Oxide magnetic material
JP2726388B2 (en) High magnetic permeability high saturation magnetic flux density Ni-based ferrite core and method of manufacturing the same
JPH10270229A (en) Mn-ni ferrite material
JP2004262710A (en) Mn-Zn BASED FERRITE AND METHOD OF MANUFACTURING THE SAME
JP3771941B2 (en) Low loss ferrite manufacturing method and low loss ferrite
JP2802839B2 (en) Oxide soft magnetic material
US2992990A (en) Soft magnetic material
JPH09232124A (en) Low loss oxide magnetic material
JPH05275227A (en) Manufacture of oxide magnetic material
JPH08148323A (en) Production of oxide magnetic material and molding
JPH04257204A (en) Manufacture of oxide magnetic material
JPH04373103A (en) Manufacture of oxide magnetic material
JPH04373104A (en) Manufacture of oxide magnetic material
JPH04223303A (en) Manufacture of oxide magnetic material
JP2939035B2 (en) Soft magnetic oxide substance
KR100415119B1 (en) Magnetic materials for power line communicating filter and transformer and method for preparing the same
JPS5815037A (en) Magnetic manganese-zinc ferrite material and its manufacture