JPH05274883A - Semiconductor memory - Google Patents

Semiconductor memory

Info

Publication number
JPH05274883A
JPH05274883A JP4067011A JP6701192A JPH05274883A JP H05274883 A JPH05274883 A JP H05274883A JP 4067011 A JP4067011 A JP 4067011A JP 6701192 A JP6701192 A JP 6701192A JP H05274883 A JPH05274883 A JP H05274883A
Authority
JP
Japan
Prior art keywords
bit line
bit lines
resistance
bit
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4067011A
Other languages
Japanese (ja)
Inventor
Yasunobu Tokuda
泰信 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4067011A priority Critical patent/JPH05274883A/en
Publication of JPH05274883A publication Critical patent/JPH05274883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

PURPOSE:To speed up operation by arranging and connecting bit line load circuits on the center of plural memory cells or bit lines. CONSTITUTION:The bit line load circuits 11, 21 are arranged and connected on the center of plural aligned memory cells, i.e., the center of plural bit lines 1, 2. Resistance from the circuits 11, 21 up to the uppermost part of the bit lines is R/2 and resistance from the circuits 11, 21 up to the lowermost part is also R/2. Thereby the resistance of the bit line influenced by reading is R/2 independently of the selected memory cell. Consequently the voltage drop of the bit lines 1, 2 is reduced to a half as compared with a convensional memory increasing a potential difference in reading data. Since resistance on the endmost part of the bit lines 1, 2 is reduced to a half of a convensional value in the case of charging the disccharged bit lines 1, 2 by the circuits 11, 12, the precharging time can be shortened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体記憶装置に関する
ものであり。特にビット線の負荷回路に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor memory device. In particular, it relates to a bit line load circuit.

【0002】[0002]

【従来の技術】従来のスタティックRAMの回路を図5
に示す。相補のビット線1、2には異なるワード線X0
〜Xnにつながる複数のメモリセルが接続されている。
図中にはメモリセルはビット線の最上部と最下部の2つ
だけしか記していないが、実際はメモリセルアレイの行
の数だけメモリセルが接続される。256kビットのス
タティックRAMの場合を示すと1本のビット線には5
12個のメモリセルがアルミニウムの長い配線上に接続
されており、その抵抗は数百Ω、静電容量は数pFにな
る。図5にはこの抵抗がR/2ずつ2箇所、容量がC/
3ずつ3箇所に分けて示してある。トータルの値はそれ
ぞれR、Cである。ビット線1、2と電源との間のMO
SFET11、21はビット線に電圧を供給するための
ビット線負荷回路である。スタティックRAMでは負荷
回路からビット線への電流の供給とビット線からメモリ
セルへの電流の流れ込みによって決まるビット線の電位
を相補のビット線の電位差として引出してデータの読み
出しが行なわれる。14、24はビット線を選択するた
めのカラムゲートであり、Yiで選択されたビット線の
信号が共通データ線3、4に伝えられてセンスアンプで
増幅される。
2. Description of the Related Art A conventional static RAM circuit is shown in FIG.
Shown in. Different word lines X0 are provided for the complementary bit lines 1 and 2.
A plurality of memory cells connected to Xn are connected.
Although only two memory cells at the top and the bottom of the bit line are shown in the figure, the memory cells are actually connected by the number of rows of the memory cell array. In the case of a static RAM of 256 kbit, one bit line has 5
Twelve memory cells are connected on a long aluminum wiring, and the resistance thereof is several hundred Ω and the electrostatic capacitance is several pF. In Figure 5, this resistance is R / 2 at two locations and the capacitance is C /
It is shown divided into three parts, each of which is three. The total values are R and C, respectively. MO between bit lines 1 and 2 and power supply
The SFETs 11 and 21 are bit line load circuits for supplying a voltage to the bit lines. In the static RAM, the data is read by extracting the potential of the bit line, which is determined by the current supply from the load circuit to the bit line and the current flow from the bit line to the memory cell, as the potential difference between the complementary bit lines. Column gates 14 and 24 are for selecting bit lines, and the signal of the bit line selected by Yi is transmitted to the common data lines 3 and 4 and amplified by the sense amplifier.

【0003】メモリセルへのデータの書き込みは相補の
ビット線をデータに従ってHレベルとLレベルにそれぞ
れ駆動する。スタティックRAMではメモリセルのノー
ドがLレベルに引き込まれるとメモリセルを構成するト
ランジスタがスイッチングを起こして状態が切り替わる
ため、書き込みのときLレベル側のビット線はほぼ0V
の電圧にする。
To write data to a memory cell, complementary bit lines are driven to H level and L level according to the data. In the static RAM, when the node of the memory cell is pulled to the L level, the transistor forming the memory cell causes switching and the state is switched, so that the bit line on the L level side is almost 0 V at the time of writing.
To the voltage of.

【0004】[0004]

【発明が解決しようとする課題】読み出し時にメモリセ
ルに流れる電流は数百μA、得られるデータの電位差は
数百mVと小さく、ビット線の抵抗が大きいとその分デ
ータの電位差は小さくなってしまう。従来の半導体記憶
装置では図5のようにビット線負荷回路はビット線の端
に1組置かれているだけであったため、ビット線の最下
部のメモリセルの読み出しを行なうときは負荷回路1
1、21からビット線の全抵抗Rを通してメモリセルに
電流が流れることになり電圧降下で電位差が少なくなっ
ていた。また、同一ビット線上のあるメモリセルのデー
タを読み出して引き続き別のメモリセルの読み出しに移
る場合、ビット線1、2に先のデータが残っていると次
のデータの状態になるまでに時間がかかるためデータの
読み出し以前にビット線は負荷回路を通して十分なレベ
ルまでプリチャージされ電位差が残らないようにしてお
かなくてはならない。この問題は書き込み時においても
同じである。特に書き込み時はビット線の電圧が0V近
くまで下げられているためプリチャージはさらに長い時
間を要することになる。図5の従来の回路では11から
抵抗Rを経由するビット線の最下部のプリチャージに最
も時間がかかっていた。
The current flowing through the memory cell at the time of reading is several hundred μA, and the potential difference of the obtained data is as small as several hundred mV. If the resistance of the bit line is large, the potential difference of the data becomes small accordingly. .. In the conventional semiconductor memory device, since only one set of bit line load circuits is placed at the end of the bit line as shown in FIG. 5, the load circuit 1 is read when the memory cell at the bottom of the bit line is read.
A current flows from 1 and 21 to the memory cell through the total resistance R of the bit line, and the potential difference decreases due to the voltage drop. Further, when the data of a certain memory cell on the same bit line is read and then the reading of another memory cell is continued, if the previous data remains on the bit lines 1 and 2, it takes time to reach the state of the next data. Therefore, before reading data, the bit line must be precharged to a sufficient level through the load circuit so that no potential difference remains. This problem is the same when writing. Especially at the time of writing, since the voltage of the bit line is lowered to near 0 V, precharging requires a longer time. In the conventional circuit of FIG. 5, it took the longest time to precharge the lowermost part of the bit line from 11 through the resistor R.

【0005】本発明はこのような問題を解決するために
なされたもので、ビット線の読み出しデータの電位差を
大きく得るとともに短時間でビット線のプリチャージを
行なうことで高速で高い安定性を持ったスタティックR
AMを提供することを目的とする。
The present invention has been made in order to solve such a problem and has a high stability at a high speed by obtaining a large potential difference between read data of bit lines and precharging the bit lines in a short time. Static R
The purpose is to provide AM.

【0006】[0006]

【課題を解決するための手段】上記目的は、複数のメモ
リセルが接続されたビット線に電位を供給するためのビ
ット線負荷回路を複数のメモリセルまたはビット線の中
央部に配置、接続すること、ビット線負荷回路を複数の
メモリセルまたはビット線の少なくとも2つ以上の異な
る場所に配置、接続することで達成される。
The above object is to arrange and connect a bit line load circuit for supplying a potential to a bit line to which a plurality of memory cells are connected, in the central portion of the plurality of memory cells or bit lines. This is achieved by arranging and connecting the bit line load circuit in at least two or more different locations of the plurality of memory cells or bit lines.

【0007】[0007]

【作用】本発明は以上の構成を有するのでデータの読み
出し時においてビット線負荷回路からメモリセルの間の
抵抗が少なくなり、途中の電圧降下が減るため大きなデ
ータの電位差が得られる。ビット線のプリチャージも中
央または複数箇所から行なわれるため急速に行なわれ
る。
Since the present invention has the above-mentioned structure, the resistance between the bit line load circuit and the memory cell is reduced at the time of reading data, and the voltage drop on the way is reduced, so that a large data potential difference can be obtained. Precharging of the bit line is also performed rapidly from the center or a plurality of locations.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の第1の実施例を示すスタテ
ィックRAMの回路図である。ビット線負荷回路11、
21は一列に並んだメモリセルの中央、すなわちビット
線1、2の中央部に配置され、接続されている。負荷回
路からビット線の最上部までの抵抗はR/2、最下部ま
での抵抗もR/2である。従ってどのメモリセルが選択
されても読み出し時に影響をうけるビット線の抵抗はR
/2ですみ、図5の回路では最大の場合抵抗Rを経由し
たのと比べて半分ですむ。例えば最上部のメモリセルが
選択されてビット線1がHレベル、2がLレベルの状態
になったとする。Hレベル側のメモリセルに流れ込む電
流は0であり1は電源電圧からMOSFETのしきい値
電圧だけ低い電圧に保持される。ビット線2側のメモリ
セルには負荷21から抵抗R/2、最上部メモリセルの
経路で電流Iが流れる。メモリセル部分のビット線電圧
をAとするとビット線の中央部の電圧はA+I・R/2
になる。また中央部から下側には電流は流れないため、
センスアンプの入力である共通データ線4の電圧もA+
I・R/2でビット線の電圧降下がもとでI・R/2だ
けデータの電圧差が減少する。従って従来の場合に比べ
てビット線における電圧降下は半分になってその分読み
出しデータの電位差が大きく得られる。次に放電された
ビット線を11、21で充電する場合であるが、ビット
線の最上部と最下部が最も遅くなるがこれもメモリセル
の読み出しの場合と同じく負荷回路からビット線の最端
部までの抵抗が従来の1/2になっているためプリチャ
ージに要する時間が短縮される。ビット線負荷回路1
1、21のゲートは電源電圧が供給されて常にビット線
のプリチャージが行なわれているが、ゲートに信号を与
えて制御する方法もある。例えばデータの読み出し時は
電源電圧を与えて導通状態にして書き込み時は接地電圧
を与えて非導通にすると、ビット線を0Vに引き込みや
すくなり書き込みが確実に行える。
FIG. 1 is a circuit diagram of a static RAM showing a first embodiment of the present invention. Bit line load circuit 11,
Reference numeral 21 is arranged and connected in the center of the memory cells arranged in a line, that is, in the center of the bit lines 1 and 2. The resistance from the load circuit to the top of the bit line is R / 2, and the resistance to the bottom is R / 2. Therefore, no matter which memory cell is selected, the resistance of the bit line that is affected during reading is R
In the case of the maximum, in the circuit of FIG. 5, it is half as compared with the case where the resistance R is used. For example, assume that the uppermost memory cell is selected and the bit line 1 is in the H level and 2 is in the L level. The current flowing into the memory cell on the H level side is 0, and 1 is held at a voltage lower than the power supply voltage by the threshold voltage of the MOSFET. A current I flows from the load 21 to the memory cell on the bit line 2 side through the resistance R / 2 and the path of the uppermost memory cell. Assuming that the bit line voltage of the memory cell portion is A, the voltage of the central portion of the bit line is A + I · R / 2
become. Also, since no current flows from the center to the bottom,
The voltage of the common data line 4 which is the input of the sense amplifier is also A +
Due to the voltage drop of the bit line at I · R / 2, the data voltage difference is reduced by I · R / 2. Therefore, the voltage drop on the bit line is halved as compared with the conventional case, and the potential difference of the read data can be obtained correspondingly. Next, when the discharged bit line is charged by 11 and 21, the top and bottom of the bit line become the slowest, but this is also the case when reading the memory cell. Since the resistance up to the part is half that of the conventional one, the time required for precharging is shortened. Bit line load circuit 1
The power supply voltage is supplied to the gates of 1 and 21 to precharge the bit lines at all times, but there is also a method of giving a signal to the gates to control. For example, when data is read out, a power supply voltage is applied to make it conductive, and at the time of writing, ground voltage is applied to make it non-conductive.

【0010】図2は本発明の第2の実施例の回路図であ
る。この例ではビット線負荷回路は11、12と21、
22があり片側に2つずつ存在し、しかも別の場所に離
れて置かれ、接続されている。11と21はビット線の
最上部にあり、12と22は最下部にある。負荷回路を
2つに増やすのであるから、各々の負荷の電流能力を1
/2ずつに分配する。負荷回路からメモリセルまでのビ
ット線の抵抗は中央部が最も大きくなるがR/2です
む。読み出しのとき負荷回路から中央部のメモリセルに
流れる電流の半分は11または21からで残りの半分は
12または22からになる。そのためビット線の電圧降
下はI/2とR/2の積であり従来の場合と比較して1
/4に減少する。ビット線のプリチャージも2つの負荷
を通して行なわれるため高速になる。
FIG. 2 is a circuit diagram of the second embodiment of the present invention. In this example, the bit line load circuits are 11, 12 and 21,
There are 22 and there are two on each side, and they are placed apart and connected to each other. 11 and 21 are at the top of the bit line and 12 and 22 are at the bottom. Since the number of load circuits is increased to 2, the current capacity of each load is set to 1
Distribute every two. The resistance of the bit line from the load circuit to the memory cell is maximum at the center, but only R / 2. When reading, half of the current flowing from the load circuit to the central memory cell is 11 or 21 and the other half is 12 or 22. Therefore, the voltage drop of the bit line is the product of I / 2 and R / 2, which is 1 compared to the conventional case.
It decreases to / 4. The bit line precharge is also performed through two loads, resulting in high speed.

【0011】図3は本発明の第3の実施例を示す。ビッ
ト線負荷をビット線の最上部11、21と中央部12、
22と最下部13、23の3つずつ、3箇所に分けて置
いてある。この場合は負荷としての電流能力を3つに分
ける。前記の2つの実施例から明かなように読み出し時
のビット線の電圧降下、プリチャージの時間ともにさら
に少なくなる。
FIG. 3 shows a third embodiment of the present invention. The bit line load is applied to the uppermost portions 11 and 21 of the bit line and the central portion 12,
22 and the lowermost portions 13 and 23 are divided into three parts, each of which is divided into three parts. In this case, the current capacity as a load is divided into three. As is apparent from the above two embodiments, both the voltage drop of the bit line and the precharge time at the time of reading are further reduced.

【0012】第2、第3の実施例ではビット線の負荷回
路の電流能力を均等に分けてきたが、負荷回路として特
に電流能力が必要とされるのはビット線の電圧が低下し
た後のプリチャージのときであり読み出し時には単にレ
ベル保持を行なうだけで十分である。図4に示す本発明
の実施例では負荷回路をプリチャージ用とレベル保持用
に分けて置いている。11、21はプリチャージ用の負
荷でビット線のレベルが低下していて急速な充電を行な
うときに制御信号5がHレベルになり導通する。12、
22はおもに読み出し時のレベル保持用の負荷として働
き、ゲートには電源電圧が与えられている。従って1
2、22よりも11、21の電流能力は大きく設定され
る。読み出し時には11、21は非導通でビット線中央
にある12、22が負荷として機能する。そのため負荷
からビット線両端までの抵抗はR/2で電圧降下が抑え
られる。プリチャージは11、12が導通するとともに
12、22を通しても行なわれる。
In the second and third embodiments, the current capability of the load circuit of the bit line has been divided evenly, but the current capability of the load circuit is particularly required after the voltage of the bit line has dropped. At the time of precharge, it is sufficient to simply hold the level at the time of reading. In the embodiment of the present invention shown in FIG. 4, the load circuits are separately arranged for precharging and level holding. Reference numerals 11 and 21 are precharge loads, the level of the bit line of which is lowered, and the control signal 5 becomes H level and conducts when rapid charging is performed. 12,
22 mainly acts as a load for holding the level at the time of reading, and the power supply voltage is given to the gate. Therefore 1
The current capabilities of 11 and 21 are set to be larger than those of 2 and 22. At the time of reading, 11 and 21 are non-conductive, and 12 and 22 in the center of the bit line function as a load. Therefore, the resistance from the load to both ends of the bit line is R / 2, and the voltage drop is suppressed. Precharging is also performed through 12 and 22 as well as when 11 and 12 are conducting.

【0013】以上の実施例ではビット線負荷回路として
NチャネルMOSFETをもとに説明してきたがPチャ
ネルMOSFETを使用しても構わない。PチャネルM
OSFETの場合はゲートをビット線に接続したり接地
電圧にしたりして導通するゲート電圧のレベルが変わる
だけである。また使用するデバイスについてもMOSF
ETに限られたものではなく、バイポーラトランジス
タ、MESFETなどでも同様の方法が適用できる。さ
らにはダイナミックRAM、ROM、PROMなどの他
の半導体記憶装置もスタティックRAMと同じようにメ
モリセルをビット線上に数多く並べて共通の負荷回路を
持つ構成をとっており本発明を適用することが可能であ
る。
Although the above embodiments have been described based on the N-channel MOSFET as the bit line load circuit, the P-channel MOSFET may be used. P channel M
In the case of OSFET, the level of the gate voltage which conducts only changes by connecting the gate to the bit line or setting it to the ground voltage. Also, regarding the device used, MOSF
The same method can be applied not only to ET but also to a bipolar transistor, MESFET and the like. Further, other semiconductor memory devices such as a dynamic RAM, a ROM, and a PROM have a configuration in which a large number of memory cells are arranged on a bit line and have a common load circuit like the static RAM, and the present invention can be applied. is there.

【0014】[0014]

【発明の効果】本発明によりビット線に大きな読み出し
電圧が得られるためデータの増幅が速くなり、ビット線
のプリチャージも短時間に行なわれるため高速な記憶装
置を実現できる。また、十分なデータ振幅が得られるこ
とからノイズによる誤動作も防ぐことができる。
According to the present invention, since a large read voltage can be obtained on the bit line, the data can be amplified quickly and the bit line can be precharged in a short time, so that a high-speed memory device can be realized. Further, since a sufficient data amplitude can be obtained, malfunction due to noise can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体記憶装置の第1の実施例を
示す回路図。
FIG. 1 is a circuit diagram showing a first embodiment of a semiconductor memory device according to the present invention.

【図2】本発明による半導体記憶装置の第2の実施例を
示す回路図。
FIG. 2 is a circuit diagram showing a second embodiment of the semiconductor memory device according to the present invention.

【図3】本発明による半導体記憶装置の第3の実施例を
示す回路図。
FIG. 3 is a circuit diagram showing a third embodiment of the semiconductor memory device according to the present invention.

【図4】本発明による半導体記憶装置の第4の実施例を
示す回路図。
FIG. 4 is a circuit diagram showing a fourth embodiment of a semiconductor memory device according to the present invention.

【図5】従来の半導体記憶装置の回路図。FIG. 5 is a circuit diagram of a conventional semiconductor memory device.

【符号の説明】[Explanation of symbols]

1、2 ビット線 3、4 共通データ線 11、12、13、21、22、23 ビット線負荷回
路のMOSFET 14、24 カラムゲート
1, 2 bit lines 3, 4 common data lines 11, 12, 13, 21, 22, 23 bit line load circuit MOSFETs 14, 24 column gates

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のメモリセルが接続されたビット線
に電位を供給するためのビット線負荷回路を備え、該ビ
ット線負荷回路を複数のメモリセルまたはビット線の中
央部に配置、接続することを特徴とする半導体記憶装
置。
1. A bit line load circuit for supplying a potential to a bit line to which a plurality of memory cells are connected, the bit line load circuit being arranged and connected in the central portion of the plurality of memory cells or bit lines. A semiconductor memory device characterized by the above.
【請求項2】 複数のメモリセルが接続されたビット線
に電位を供給するためのビット線負荷回路を備え、該ビ
ット線負荷回路を複数のメモリセルまたはビット線の少
なくとも2つ以上の異なる場所に配置、接続することを
特徴とする半導体記憶装置。
2. A bit line load circuit for supplying a potential to a bit line to which a plurality of memory cells are connected, the bit line load circuit being provided in at least two or more different locations of the plurality of memory cells or bit lines. A semiconductor memory device characterized in that it is arranged and connected to.
JP4067011A 1992-03-25 1992-03-25 Semiconductor memory Pending JPH05274883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4067011A JPH05274883A (en) 1992-03-25 1992-03-25 Semiconductor memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4067011A JPH05274883A (en) 1992-03-25 1992-03-25 Semiconductor memory

Publications (1)

Publication Number Publication Date
JPH05274883A true JPH05274883A (en) 1993-10-22

Family

ID=13332556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4067011A Pending JPH05274883A (en) 1992-03-25 1992-03-25 Semiconductor memory

Country Status (1)

Country Link
JP (1) JPH05274883A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881905A (en) * 1986-05-23 1989-11-21 Amp Incorporated High density controlled impedance connector
JPH0773678A (en) * 1993-09-02 1995-03-17 Nec Corp Semiconductor static memory
JP2003281884A (en) * 2001-12-13 2003-10-03 Hynix Semiconductor Inc Nonvolatile ferroelectric memory device and method for writing and reading multi-bit data using the device
JP2005050492A (en) * 2003-07-30 2005-02-24 Hynix Semiconductor Inc Nonvolatile ferroelectric memory cell array block, and nonvolatile ferroelectric memory device utilizing this memory cell array block
JP2010027127A (en) * 2008-07-17 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> Determination circuit and determination method
CN116564387A (en) * 2023-07-03 2023-08-08 芯天下技术股份有限公司 non flash reading method, device, memory chip and equipment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881905A (en) * 1986-05-23 1989-11-21 Amp Incorporated High density controlled impedance connector
JPH0773678A (en) * 1993-09-02 1995-03-17 Nec Corp Semiconductor static memory
JP2003281884A (en) * 2001-12-13 2003-10-03 Hynix Semiconductor Inc Nonvolatile ferroelectric memory device and method for writing and reading multi-bit data using the device
JP2005050492A (en) * 2003-07-30 2005-02-24 Hynix Semiconductor Inc Nonvolatile ferroelectric memory cell array block, and nonvolatile ferroelectric memory device utilizing this memory cell array block
JP4486836B2 (en) * 2003-07-30 2010-06-23 株式会社ハイニックスセミコンダクター Nonvolatile ferroelectric memory cell array block and nonvolatile ferroelectric memory device using the memory cell array block
JP2010027127A (en) * 2008-07-17 2010-02-04 Nippon Telegr & Teleph Corp <Ntt> Determination circuit and determination method
CN116564387A (en) * 2023-07-03 2023-08-08 芯天下技术股份有限公司 non flash reading method, device, memory chip and equipment
CN116564387B (en) * 2023-07-03 2023-10-31 芯天下技术股份有限公司 non flash reading method, device, memory chip and equipment

Similar Documents

Publication Publication Date Title
US3967252A (en) Sense AMP for random access memory
US4616342A (en) Semiconductor memory device
US5371713A (en) Semiconductor integrated circuit
US5282175A (en) Semiconductor memory device of divided word line
KR950000757B1 (en) Semiconductor memory having sense amplifier
EP0199501B1 (en) Cmos current sense amplifiers
EP0698271A1 (en) Memory core organization
KR940001639B1 (en) Semiconductor memory circuit
US5068830A (en) High speed static ram sensing system
US4587639A (en) Static semiconductor memory device incorporating redundancy memory cells
EP0212665B1 (en) Sense amplifier for static memory
US4733112A (en) Sense amplifier for a semiconductor memory device
US4639898A (en) Bit-line pull-up circuit
JP4717173B2 (en) Memory device and method
US6600672B2 (en) Semiconductor memory device
US4903237A (en) Differential sense amplifier circuit for high speed ROMS, and flash memory devices
JP2531671B2 (en) Semiconductor memory device
JP2865078B2 (en) Semiconductor storage device
JP3112019B2 (en) Semiconductor device
JPH05274883A (en) Semiconductor memory
US4709352A (en) MOS read-only memory systems
JPH029087A (en) Bi-cmos programming recovery circuit
US4899309A (en) Current sense circuit for a ROM system
US4376987A (en) Threshold referenced MNOS sense amplifier
US6333882B1 (en) Equilibration/pre-charge circuit for a memory device