JPH05274626A - Mr head - Google Patents

Mr head

Info

Publication number
JPH05274626A
JPH05274626A JP10190792A JP10190792A JPH05274626A JP H05274626 A JPH05274626 A JP H05274626A JP 10190792 A JP10190792 A JP 10190792A JP 10190792 A JP10190792 A JP 10190792A JP H05274626 A JPH05274626 A JP H05274626A
Authority
JP
Japan
Prior art keywords
insulating film
film
head
internal stress
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10190792A
Other languages
Japanese (ja)
Inventor
Sunao Horiai
直 堀合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP10190792A priority Critical patent/JPH05274626A/en
Publication of JPH05274626A publication Critical patent/JPH05274626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To prevent the generation of noise by a change in magnetic characteristics and the drop of an output voltage by forming an MR element in such a manner that the element hardly receives the deformation by the internal stress of insulating films enclosing the element. CONSTITUTION:The lower insulating film 34, the MR element 14 and the upper insulating film 36 are laminated and formed on a substrate 10. The internal stress of the lower substrate 34 is balanced by the deformation of the substrate 10 at the point of the time when this insulating film is formed and, therefore, even if the MR element 14 is laminated thereon, the deformation that the MR element 14 receives from the internal stress of the lower insulating film 34 is small. Since a space 38 is formed atop the MR element 14, the internal stress of the upper insulating film 36 is not directly transmitted to the MR element 14 and its deformation is small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、MR(magnetoresis
tive)ヘッドに関し、MR素子を包囲する絶縁膜の内部
応力による磁気特性の変化を抑制したものである。
BACKGROUND OF THE INVENTION The present invention relates to MR (magnetoresis).
This is a magnetic head that suppresses changes in magnetic characteristics due to internal stress of an insulating film surrounding the MR element.

【0002】[0002]

【従来の技術】MRヘッドは、MR素子を用いて磁気記
録媒体の磁極から発生する磁界を検出して記録情報を再
生する磁気ヘッドで、薄膜ヘッドに比べてトラック密度
を向上できる利点があり、例えばハードディスク用の再
生ヘッドとしての利用が期待されている。
2. Description of the Related Art An MR head is a magnetic head for reproducing recorded information by detecting a magnetic field generated from a magnetic pole of a magnetic recording medium by using an MR element, and has an advantage that a track density can be improved as compared with a thin film head. For example, it is expected to be used as a reproducing head for a hard disk.

【0003】MRヘッドの概要を図2(a),(b)に
示す。(a)は再生専用ヘッドで、基板10の後端部に
形成した絶縁膜12中に、MR素子14とその前後に磁
気シールド16,18を配設してMRヘッド19を構成
し、MR素子14の先端部を磁気記録媒体(例えばハー
ドディスク)の記録面20に対向させて、その記録情報
の読み出しを行なう。MRヘッド19の読出端面部の構
造を図2(a)のA矢視図として図3に示す。
An outline of the MR head is shown in FIGS. 2 (a) and 2 (b). (A) is a read-only head, in which an MR element 14 and magnetic shields 16 and 18 in front of and behind the MR element 14 are provided in an insulating film 12 formed at a rear end portion of a substrate 10 to form an MR head 19. The tip of 14 is made to face the recording surface 20 of the magnetic recording medium (for example, hard disk), and the recorded information is read. The structure of the read end surface portion of the MR head 19 is shown in FIG.

【0004】図2(b)は(a)の絶縁膜12の上に記
録用の誘導型の薄膜ヘッド22を積層して、複合型ヘッ
ドを構成したものである。薄膜ヘッド22は下コア24
上にギャップ層26を形成し、その上に絶縁層27を形
成して、その中に薄膜コイル28を配置している。さら
に絶縁層27の上に上コア30を形成し、その上に保護
膜32を全体に被せて構成されている。
FIG. 2B shows a composite type head in which a recording induction type thin film head 22 is laminated on the insulating film 12 of FIG. The thin film head 22 is the lower core 24.
The gap layer 26 is formed on the insulating layer 27, and the thin film coil 28 is arranged in the insulating layer 27. Further, an upper core 30 is formed on the insulating layer 27, and a protective film 32 is entirely covered on the upper core 30.

【0005】[0005]

【発明が解決しようとする課題】図2のMRヘッド19
において、絶縁膜12は例えばAl2 3 をスパッタリ
ングで成膜して構成され、通常108 〜109 dym /cm
2 のオーダの内部応力(残留応力)を有する。一方、M
R素子14は磁性体であるため、磁歪が存在し、パーマ
ロイの場合でも10-6程度の磁歪定数を有する。このた
め、MR素子14は絶縁膜12の内部応力により磁気特
性が影響を受け、出力低下やノイズの増加等素子として
の特性が低下する問題があった。これは、絶縁膜12の
内部応力により磁気異方性が影響を受けて、MR素子1
4の長手方向についていた異方性が減少するためと考え
られる。その結果、MR素子14の長手方向に直角に被
検出磁場が入っても出力が減少するものと考えられる。
また、ノイズに関しては、応力により磁気異方性分散が
増加して、バルクハウゼンノイズが増加するものと考え
られる。
The MR head 19 shown in FIG.
In, the insulating film 12 is formed by sputtering Al 2 O 3, for example, and is usually 10 8 to 10 9 dym / cm 2.
It has an internal stress (residual stress) of the order of 2 . On the other hand, M
Since the R element 14 is a magnetic substance, it has magnetostriction, and even in the case of permalloy, it has a magnetostriction constant of about 10 −6 . Therefore, the MR element 14 has a problem that the magnetic characteristics are affected by the internal stress of the insulating film 12 and the characteristics as an element such as output reduction and noise increase deteriorate. This is because the magnetic anisotropy is affected by the internal stress of the insulating film 12, and the MR element 1
It is considered that this is because the anisotropy of No. 4 in the longitudinal direction is reduced. As a result, it is considered that the output is reduced even when the magnetic field to be detected enters at right angles to the longitudinal direction of the MR element 14.
Regarding noise, it is considered that the magnetic anisotropy dispersion increases due to stress and Barkhausen noise increases.

【0006】MR素子14の磁気特性が絶縁膜12の応
力により影響を受けないようにするためには、MR素子
14の磁歪定数を小さくすることが考えられるが、磁歪
定数はMR素子14の材料組成に大きく依存し(特に、
パーマロイの場合)、理想の組成からずれるとその値は
大きくなる。工業的に考えた場合、この組成を厳密に制
御するのは難しく、多少組成がずれても磁気特性が影響
を受けないようにすることが望まれる。
In order to prevent the magnetic characteristics of the MR element 14 from being affected by the stress of the insulating film 12, it is conceivable to reduce the magnetostriction constant of the MR element 14, but the magnetostriction constant is the material of the MR element 14. Heavily dependent on composition (especially
In the case of permalloy), the value becomes large if it deviates from the ideal composition. From an industrial point of view, it is difficult to strictly control this composition, and it is desired that the magnetic characteristics are not affected even if the composition deviates slightly.

【0007】この発明は、上述の点に鑑みてなされたも
ので、磁歪定数がある程度大きな磁気抵抗材料を用いて
も絶縁膜の内部応力により磁気特性があまり影響を受け
ないようにして、出力低下やノイズ増加等の特性の低下
を防止したMRヘッドを提供しようとするものである。
The present invention has been made in view of the above points, and even if a magnetoresistive material having a large magnetostriction constant is used, the magnetic characteristics are not so much influenced by the internal stress of the insulating film, and the output is lowered. The present invention intends to provide an MR head in which deterioration of characteristics such as increase in noise and noise is prevented.

【0008】[0008]

【課題を解決するための手段】この発明は、基板と、こ
の基板上に形成された下部絶縁膜と、この下部絶縁膜上
に形成されたMR素子と、このMR素子上に空間を隔て
て形成された上部絶縁膜とを一体的に積層してなるもの
である。
According to the present invention, a substrate, a lower insulating film formed on the substrate, an MR element formed on the lower insulating film, and a space on the MR element are provided. It is formed by integrally laminating the formed upper insulating film.

【0009】[0009]

【作用】この発明によれば、基板上に下部絶縁膜を成膜
した時点では下部絶縁膜の内部応力は基板の変形により
応力が釣り合った状態となるので、この上にMR素子を
形成しても、MR素子は下部絶縁膜からその内部応力の
影響(つまり変形)をあまり受けなくなる。ところが、
この状態でさらにMR素子の上面に密着して上部絶縁膜
を成膜すれば、上部絶縁膜の内部応力とその下の基板か
らMR素子までの全体の変形とが釣り合うことになるの
で、MR素子は上部絶縁膜の内部応力の影響(変形)を
直接受けることになる。そこで、この発明では、MR素
子の上方に空間を隔てて上部絶縁膜を形成することによ
り、MR素子が上部絶縁層の内部応力の影響(変形)直
接受けないようにしている。そして、これにより、MR
素子の磁歪定数がある程度大きくても絶縁膜の内部応力
により磁気特性があまり影響を受けなくなるので、出力
低下やノイズ増加等の特性の低下が防止される。
According to the present invention, when the lower insulating film is formed on the substrate, the internal stress of the lower insulating film is balanced by the deformation of the substrate. Therefore, the MR element is formed on this. However, the MR element is hardly affected by the internal stress (that is, deformed) from the lower insulating film. However,
If the upper insulating film is further formed in close contact with the upper surface of the MR element in this state, the internal stress of the upper insulating film and the entire deformation from the underlying substrate to the MR element are balanced, so that the MR element Will be directly affected (deformed) by the internal stress of the upper insulating film. Therefore, in the present invention, the upper insulating film is formed above the MR element with a space therebetween so that the MR element is not directly affected (deformed) by the internal stress of the upper insulating layer. And by this, MR
Even if the magnetostriction constant of the element is large to some extent, the internal stress of the insulating film does not significantly affect the magnetic characteristics, so that deterioration of characteristics such as output reduction and noise increase can be prevented.

【0010】[0010]

【実施例】この発明をハードディスク用MRヘッドに適
用した実施例を以下説明する。図1はこの発明のMRヘ
ッドの一実施例で、(a)は磁気記録媒体(ハードディ
スク)の記録面20に対し、MRヘッド33を浮上させ
て読出しを行っている状態を示す側面断面図((b)の
C−C矢視図)、(b)は(a)のB−B矢視図であ
る。MRヘッド33は、基板10上に下部絶縁膜34が
配設されて、その中に磁気シールド18が収容されてい
る。下部絶縁膜34上にはMR素子14が配設されてい
る。MR素子14の両端には電極としてコンダクター
(図示せず)が接続されている。下部絶縁膜34上に
は、MR素子14を除けて上部絶縁膜36が配設され、
その中に磁気シールド16が収容されている。したがっ
て、MR素子14上では空間38を隔てて上部絶縁膜3
6が配設されており、MR素子14と上部絶縁膜36と
は略々全体が非接触状態となっている。MR素子14お
よび磁気シールド16,18の先端部は読出面40に露
出している。空間38の先端部は開放されているが、塵
等の侵入が問題となる場合は閉じることもできる。ま
た、MRヘッド33上に前記図2(b)に示すように薄
膜ヘッド22を積層してMR・薄膜複合ヘッドとなるこ
ともできる。
EXAMPLE An example in which the present invention is applied to an MR head for a hard disk will be described below. FIG. 1 is an embodiment of an MR head of the present invention, in which (a) is a side sectional view showing a state in which an MR head 33 is levitated over a recording surface 20 of a magnetic recording medium (hard disk) for reading. (B) CC arrow view), (b) is a BB arrow view of (a). In the MR head 33, the lower insulating film 34 is provided on the substrate 10, and the magnetic shield 18 is housed in the lower insulating film 34. The MR element 14 is disposed on the lower insulating film 34. Conductors (not shown) are connected to both ends of the MR element 14 as electrodes. An upper insulating film 36 is provided on the lower insulating film 34 except for the MR element 14.
The magnetic shield 16 is housed therein. Therefore, on the MR element 14, the upper insulating film 3 is separated by the space 38.
6, the MR element 14 and the upper insulating film 36 are substantially in non-contact with each other. The tips of the MR element 14 and the magnetic shields 16 and 18 are exposed at the read surface 40. Although the tip of the space 38 is open, it can be closed if dust or the like is a problem. Further, the thin film head 22 may be laminated on the MR head 33 as shown in FIG. 2B to form an MR / thin film composite head.

【0011】以上の構成によれば、基板10上に下部絶
縁膜34を成膜した時点では下部絶縁膜34の内部応力
は基板の変形により応力が釣り合った状態となってい
る。したがって、この上にMR素子14を形成しても、
MR素子14は下部絶縁膜34からその内部応力の影響
をあまり受けなくなる。この状態でそのまま上部絶縁膜
36をMR素子14に密着して成膜すれば、上部絶縁膜
36の内部応力とその下の基板10からMR素子14ま
での全体の変形とが釣り合うことになるので、MR素子
14は上部絶縁膜36の内部応力の影響を直接受けるこ
とになる。しかし、ここではMR素子14の上方に空間
38を隔てて上部絶縁膜36を形成するようにしている
ので、MR素子14は上部絶縁膜36の内部応力の影響
を直接受けなくなる。したがって、MR素子14の磁歪
定数がある程度大きくても絶縁膜34,36の内部応力
により磁気特性があまり影響を受けなくなるので、出力
低下やノイズ増加等の特性の低下が防止される。
According to the above structure, at the time when the lower insulating film 34 is formed on the substrate 10, the internal stress of the lower insulating film 34 is in a balanced state due to the deformation of the substrate. Therefore, even if the MR element 14 is formed on this,
The MR element 14 is less affected by the internal stress of the lower insulating film 34. If the upper insulating film 36 is formed in close contact with the MR element 14 in this state as it is, the internal stress of the upper insulating film 36 and the entire deformation of the substrate 10 to the MR element 14 thereunder are balanced. The MR element 14 is directly affected by the internal stress of the upper insulating film 36. However, since the upper insulating film 36 is formed above the MR element 14 with the space 38 therebetween, the MR element 14 is not directly affected by the internal stress of the upper insulating film 36. Therefore, even if the magnetostriction constant of the MR element 14 is large to a certain extent, the internal characteristics of the insulating films 34 and 36 do not significantly affect the magnetic characteristics, so that deterioration in characteristics such as output reduction and noise increase can be prevented.

【0012】図4,5は、この発明のMRヘッドの製造
工程の一実施例を示したもので、その工程(1)〜(1
4)について説明する。なお、この工程は、薄膜ヘッド
の製造工程と同様に、1枚の基板10(ウエハ)上にM
Rヘッドを一度に多数作った後に個々のMRヘッドにカ
ットするもので、図4,5ではこれを1つのMRヘッド
の形成過程について示している。
FIGS. 4 and 5 show an embodiment of the manufacturing process of the MR head of the present invention. The processes (1) to (1) are shown.
4) will be described. Note that, in this step, as in the manufacturing process of the thin film head, M is formed on one substrate 10 (wafer).
A large number of R heads are formed at one time and then cut into individual MR heads. FIGS. 4 and 5 show this process of forming one MR head.

【0013】(1) 下部絶縁膜を途中まで成膜 Al2 3 −TiC等の基板10上に下部絶縁膜34と
してAl2 3 (SiO2 等でも可)等の誘電絶縁層を
高周波スパッタ成膜法により10μm成膜する。成膜速
度は200オングストローム/分とする。
(1) Lower insulating film is formed halfway on the substrate 10 of Al 2 O 3 —TiC or the like, and a dielectric insulating layer of Al 2 O 3 (SiO 2 or the like) is used as the lower insulating film 34 by high frequency sputtering. The film is formed to a thickness of 10 μm. The film forming rate is 200 angstrom / minute.

【0014】(2) 下部磁気シールドの成膜 直流スパッタ法によりNi81Fe19(Ni:81%,F
e:19%)膜18′を1μm成膜する。成膜時のアル
ゴン圧は5×10-3Torr、成膜速度は200オングスト
ローム/分とする。
(2) Deposition of lower magnetic shield Ni 81 Fe 19 (Ni: 81%, F by DC sputtering method)
e: 19%) A film 18 'is formed to a thickness of 1 μm. The argon pressure during film formation is 5 × 10 −3 Torr, and the film formation rate is 200 Å / min.

【0015】(3) 下部磁気シールドの加工 成膜されたNi81Fe91膜をフォトエッチング法により
30μm(幅)×30μm(奥行)に加工し、下側の磁
気シールド18とする。
(3) Processing of lower magnetic shield The formed Ni 81 Fe 91 film is processed into 30 μm (width) × 30 μm (depth) by a photoetching method to form the lower magnetic shield 18.

【0016】(4) 下部絶縁膜の残りを成膜 Al2 3 を成膜速度200オングストローム/分、バ
イアス−100Vで0.5μm成膜し、下部絶縁膜34
を完成する。下部絶縁膜34の成膜によりその内部に発
生する内部応力は基板10の変形によって釣り合う。
(4) Forming the rest of the lower insulating film Al 2 O 3 is formed at a film forming rate of 200 Å / min and a bias of −100 V to 0.5 μm, and the lower insulating film 34 is formed.
To complete. The internal stress generated inside the lower insulating film 34 by the film formation is balanced by the deformation of the substrate 10.

【0017】なお、下部絶縁膜34を成膜後に適当な熱
処理を施せば下部絶縁膜34の内部応力自体を緩和する
ことができる。
The internal stress itself of the lower insulating film 34 can be relaxed by performing an appropriate heat treatment after forming the lower insulating film 34.

【0018】(5) MR素子の成膜 下部磁性膜34の表面を必要に応じて研磨して平滑化し
た後に、シャント膜としてTiを400オングストロー
ム、ソフトフィルムバイアス膜としてCo94Zr6 膜を
400オングストローム、磁気抵抗膜としてNi81Fe
19膜を300オングストローム順次成膜してMR素子膜
14′を成膜する。成膜は直流スパッタ法により、その
時のアルゴン圧は5×10-3Torrとし、成膜速度はそれ
ぞれ300,200,200オングストローム/分とす
る。MR素子膜14′を成膜する時点では下部絶縁膜3
4の内部応力は前述のように基板10の変形とすでに釣
り合っているので、MR素子14は下部絶縁膜34の内
部応力の影響をあまり受けなくてすむ。特に、下部絶縁
膜34を成膜後に熱処理すればその影響をきわめて小さ
くすることができる。
(5) Deposition of MR element After the surface of the lower magnetic film 34 is polished and smoothed as needed, Ti is used as a shunt film of 400 Å and Co 94 Zr 6 film is used as a soft film bias film of 400. Angstrom, Ni 81 Fe as magnetoresistive film
The MR element film 14 'is formed by sequentially forming 19 films in the order of 300 angstroms. The film formation is performed by a direct current sputtering method, the argon pressure at that time is 5 × 10 −3 Torr, and the film formation rates are 300, 200, and 200 Å / min, respectively. At the time of forming the MR element film 14 ', the lower insulating film 3 is formed.
Since the internal stress of No. 4 is already balanced with the deformation of the substrate 10 as described above, the MR element 14 does not need to be much affected by the internal stress of the lower insulating film 34. In particular, if the lower insulating film 34 is formed and then heat-treated, its influence can be made extremely small.

【0019】(6) MR素子の加工 成膜されたMR素子膜14′を20μm(幅)×5μm
(奥行)に加工してMR素子14を作る。加工方法は通
常のポジレジストを用いたフォトエッチング法を用い
る。すなわち、はじめにMR素子膜14′上にポジレジ
ストを全面塗布し、上記範囲外を現像除去し、さらに露
出したMR素子膜14′をエッチング(イオンミリン
グ)除去してMR素子14を作る。
(6) Processing of MR element The formed MR element film 14 'is 20 μm (width) × 5 μm
The MR element 14 is manufactured by processing to (depth). As a processing method, an ordinary photo-etching method using a positive resist is used. That is, first, a positive resist is applied on the entire surface of the MR element film 14 ', the area outside the above range is removed by development, and the exposed MR element film 14' is removed by etching (ion milling) to form the MR element 14.

【0020】(7) Auコンダクターの成膜 ネガレジストを全面塗布後、MR素子14のコンダクタ
ー(電極)として必要な大きさだけこれを現像除去す
る。そこにAuを成膜後レジストを剥離液で除去し、磁
気抵抗膜上に接合されたコンダクター部分のみを残して
Auコンダクター42,44とする。Auコンダクター
42,44の幅は10μm、厚みは2000オングスト
ローム、読取りギャップ46は5μmとする。
(7) Film formation of Au conductor After applying a negative resist on the entire surface, the resist is developed and removed by a size required as a conductor (electrode) of the MR element 14. After the Au film is formed there, the resist is removed with a stripping solution, leaving only the conductor portions bonded on the magnetoresistive film, and the Au conductors 42 and 44 are formed. The Au conductors 42 and 44 have a width of 10 μm, a thickness of 2000 Å, and a read gap 46 of 5 μm.

【0021】(8) 空間の形成 工程(8)〜(12)により空間38を形成しつつ上部
絶縁膜36を途中まで成膜する。まず、ポジレジスト4
8を全面塗布し、MR素子14より若干大きい21μm
(幅)×6μm(奥行)の大きさを残し、他は現像除去
する。
(8) Formation of Space The upper insulating film 36 is partially formed while forming the space 38 by the steps (8) to (12). First, positive resist 4
8 is applied over the entire surface and is slightly larger than the MR element 14 21 μm
The size of (width) × 6 μm (depth) is left, and the others are removed by development.

【0022】(9) 同 上部絶縁膜36として高周波スパッタ法によりAl2
3 を全面成膜する。成膜速度は200オングストローム
/分とする。レジストの段差を埋めるために−100V
のバイアスを印加する。成膜厚は0.5μmとする。
(9) As the upper insulating film 36, Al 2 O is formed by a high frequency sputtering method.
3 is formed on the entire surface. The film forming rate is 200 angstrom / minute. -100V to fill the step of the resist
Bias is applied. The film thickness is 0.5 μm.

【0023】(10) 同 全面にネガレジスト(図示せず)を塗布する。塗布後M
R素子14の上方位置のネガレジストに1μm(幅)×
1μm(奥行)の穴を現像除去する。この穴を通してエ
ッチング(イオンミリング)により上部絶縁膜36に穴
50を開ける。
(10) A negative resist (not shown) is applied to the entire surface. After application M
1 μm (width) on the negative resist above the R element 14
Develop and remove 1 μm (depth) holes. A hole 50 is formed in the upper insulating film 36 by etching (ion milling) through this hole.

【0024】(11) 同 基板全体を剥離液に浸し、上部絶縁膜36上に残ってい
るネガレジストおよびMR素子14上に残っているポジ
レジスト48を除去し、MR素子14上に空間38を形
成する。空間38に残っている剥離液は揮発性の有機溶
剤で置換した後この有機溶剤を加熱等で除去する。
(11) The entire substrate is immersed in a stripping solution to remove the negative resist remaining on the upper insulating film 36 and the positive resist 48 remaining on the MR element 14 to form a space 38 on the MR element 14. Form. The stripping solution remaining in the space 38 is replaced with a volatile organic solvent, and then the organic solvent is removed by heating or the like.

【0025】(12) 同 高周波スパッタ成膜法によりAl2 3 で穴50を埋め
る。この時の成膜速度は200オングストローム/分、
バイアスは−100Vとする。穴50を埋めた後必要に
応じて成膜面全体を研磨して平滑にする。研磨剤はアル
ミナ粒子(平均粒径1μm)を懸濁させた水溶液でpH
6、研磨速度は0.5μm/分で、平均荒さ100オン
グストローム以下になるまで研磨する。
(12) The hole 50 is filled with Al 2 O 3 by the same high frequency sputtering film forming method. The film forming speed at this time is 200 angstrom / min.
The bias is -100V. After filling the holes 50, the entire film-forming surface is polished and smoothed if necessary. The polishing agent is an aqueous solution in which alumina particles (average particle size 1 μm) are suspended
6. Polishing speed is 0.5 μm / min, and polishing is performed until the average roughness becomes 100 angstroms or less.

【0026】(13) 上部磁気シールドの成膜、加工 直流スパッタ法によりNi81Fe19膜を1μm成膜す
る。成膜時のアルゴン圧は5×10-3Torr、成膜速度は
200オングストローム/分とする。成膜されたNi81
Fe91膜をフォトエッチング法により30μm(幅)×
30μm(奥行)に加工し、上側の磁気シールド16と
する。
(13) Film formation and processing of upper magnetic shield A Ni 81 Fe 19 film of 1 μm is formed by DC sputtering. The argon pressure during film formation is 5 × 10 −3 Torr, and the film formation rate is 200 Å / min. Ni 81 deposited
Fe 91 film 30μm (width) x by photo-etching method
It is processed to 30 μm (depth) and used as the upper magnetic shield 16.

【0027】(14) 上部絶縁膜の残りを成膜 Al2 3 を成膜速度200オングストローム/分、バ
イアス−100Vで20μm成膜し、上部絶縁膜36を
完成する。この状態では、上部絶縁膜36の内部応力は
その下側の各層全体の変形で釣り合うように作用する
が、MR素子14上には空間38があり、上部絶縁膜3
6がMR素子14に直接接触していないので、上部絶縁
膜36の応力はMR素子14には直接伝わらない。した
がって、MR素子14は上部絶縁膜36により磁気特性
が直接影響を受けなくなり、出力低下やノイズの増加等
の特性の低下が防止される。特に、上部絶縁膜36は、
MR素子が温度により特性に影響を受けるため下部絶縁
膜36のような応力緩和のための熱処理(工程(5)参
照)ができないのが一般的なので、空間38を設けたこ
との効果は大きい。
(14) Forming Remaining Upper Insulating Film A film of Al 2 O 3 is formed at a film forming rate of 200 Å / min at a bias of −100 V to a thickness of 20 μm to complete the upper insulating film 36. In this state, the internal stress of the upper insulating film 36 acts so as to be balanced by the deformation of all the layers therebelow, but there is a space 38 on the MR element 14 and the upper insulating film 3
Since 6 is not in direct contact with the MR element 14, the stress of the upper insulating film 36 is not directly transmitted to the MR element 14. Therefore, the magnetic characteristics of the MR element 14 are not directly affected by the upper insulating film 36, and the deterioration of characteristics such as output reduction and noise increase is prevented. In particular, the upper insulating film 36 is
Since the MR element is affected by the characteristics depending on the temperature, it is generally impossible to perform the heat treatment for relaxing the stress of the lower insulating film 36 (see step (5)). Therefore, the effect of providing the space 38 is great.

【0028】以上の工程でMRヘッド33が完成する。
前記図2のようにMR・薄膜複合ヘッドにする場合は、
さらに引き続き従来から普通に行なわれているリソグラ
フィによる薄膜ヘッド製造工程を行なうことにより、M
Rヘッド33の上に薄膜ヘッドを積層形成することがで
きる。その後、基板10を個々の磁気ヘッドごとにカッ
トして分離し、カットされた基板10をスライダ形状に
形成し、浮上面を研磨してハードディスク用MR・薄膜
複合ヘッド(薄膜ヘッドで記録、MRヘッドで再生)が
完成する。
The MR head 33 is completed through the above steps.
When using the MR / thin film composite head as shown in FIG. 2,
Further, by continuing the conventional thin film head manufacturing process by lithography, M
A thin film head can be laminated on the R head 33. After that, the substrate 10 is cut and separated into individual magnetic heads, the cut substrate 10 is formed into a slider shape, the air bearing surface is polished, and the MR / thin film composite head for hard disk (recording with a thin film head, MR head Playback) is completed.

【0029】図6は、図4,5の工程で作られたMRヘ
ッド33と図3の従来のMRヘッド19とで同一記録媒
体の同一記録部分をトレースした時の再生出力の観測波
形を示したものである。(a)の従来のMRヘッド19
ではMR素子14はその全体に密着している絶縁膜12
の内部応力により磁気異方性が影響を受け、その結果ノ
イズ54(バルクハウゼンノイズ)が発生していること
がわかる。これに対し、(b)のこの発明によるMRヘ
ッドではこのようなノイズの発生がなく、出力レベルも
(a)に比べて高くなっていることがわかる。
FIG. 6 shows an observed waveform of the reproduction output when the same recording portion of the same recording medium is traced by the MR head 33 manufactured by the steps of FIGS. 4 and 5 and the conventional MR head 19 of FIG. It is a thing. (A) Conventional MR head 19
Then, the MR element 14 has the insulating film 12 adhered to the entire surface thereof.
It can be seen that the magnetic anisotropy is affected by the internal stress of 1 and the noise 54 (Barkhausen noise) is generated as a result. On the other hand, it can be seen that the MR head according to the present invention of (b) does not generate such noise and the output level is higher than that of (a).

【0030】なお、この発明のMRヘッドは、基板、下
部絶縁膜、MR素子、空間、上部絶縁膜が直接積層され
ている場合に限らず、必要に応じて他の層を間に介在さ
せることもできる。
The MR head of the present invention is not limited to the case where the substrate, the lower insulating film, the MR element, the space, and the upper insulating film are directly laminated, and other layers may be interposed between them if necessary. You can also

【0031】また、空間はMR素子の上面全体に形成す
るのでなく、一部に形成するだけでもある程度の効果は
得られる。
Further, the space is not formed on the entire upper surface of the MR element, but it is possible to obtain a certain effect only by forming the space on a part thereof.

【0032】また、この発明はハードディスク用磁気ヘ
ッド以外のMRヘッドにも適用することができる。
The present invention can also be applied to MR heads other than magnetic heads for hard disks.

【0033】[0033]

【発明の効果】以上説明したように、この発明によれ
ば、MR素子の上方に空間を隔てて上部絶縁膜を形成す
ることにより、MR素子が上部絶縁層の内部応力の影響
を直接受けないようにしたので、MR素子の磁歪定数が
ある程度大きくても絶縁膜の内部応力により磁気特性が
大きく影響を受けるのが防止され、出力低下やノイズ増
加等の特性の低下が防止される。
As described above, according to the present invention, by forming the upper insulating film with a space above the MR element, the MR element is not directly affected by the internal stress of the upper insulating layer. As a result, even if the magnetostriction constant of the MR element is large to some extent, it is possible to prevent the magnetic characteristics from being greatly affected by the internal stress of the insulating film, and to prevent the deterioration of characteristics such as output reduction and noise increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】 MRヘッドの概要構成を示す断面図である。FIG. 2 is a sectional view showing a schematic configuration of an MR head.

【図3】 従来のMRヘッドを図2(a)の矢印A方向
から見た状態を示す図である。
FIG. 3 is a diagram showing a state in which a conventional MR head is viewed from the direction of arrow A in FIG.

【図4】 この発明のMRヘッドの製造工程の一実施例
の前半部分を示す図である。
FIG. 4 is a diagram showing a first half portion of an embodiment of the manufacturing process of the MR head of the present invention.

【図5】 図4に続くこの発明のMRヘッドの製造工程
の一実施例の後半部分を示す図である。
FIG. 5 is a diagram showing a latter half of one embodiment of the manufacturing process of the MR head of the present invention, which is subsequent to FIG. 4;

【図6】図4,5の工程で作られたMRヘッド33と図
3の従来のMRヘッド19とで同一記録媒体の同一記録
部分をトレースした時の再生出力の観測波形を示す図で
ある。
6 is a diagram showing an observed waveform of a reproduction output when the same recording portion of the same recording medium is traced by the MR head 33 manufactured by the steps of FIGS. 4 and 5 and the conventional MR head 19 of FIG. ..

【符号の説明】[Explanation of symbols]

10 基板 14 MR素子 33 MRヘッド 34 下部絶縁膜 36 上部絶縁膜 38 空間 10 Substrate 14 MR Element 33 MR Head 34 Lower Insulating Film 36 Upper Insulating Film 38 Space

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板と、 この基板上に形成された下部絶縁膜と、 この下部絶縁膜上に形成されたMR素子と、 このMR素子上に空間を隔てて形成された上部絶縁膜と
を一体的に積層してなるMRヘッド。
1. A substrate, a lower insulating film formed on the substrate, an MR element formed on the lower insulating film, and an upper insulating film formed on the MR element with a space therebetween. An MR head that is integrally laminated.
JP10190792A 1992-03-27 1992-03-27 Mr head Pending JPH05274626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10190792A JPH05274626A (en) 1992-03-27 1992-03-27 Mr head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10190792A JPH05274626A (en) 1992-03-27 1992-03-27 Mr head

Publications (1)

Publication Number Publication Date
JPH05274626A true JPH05274626A (en) 1993-10-22

Family

ID=14312983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10190792A Pending JPH05274626A (en) 1992-03-27 1992-03-27 Mr head

Country Status (1)

Country Link
JP (1) JPH05274626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859355A1 (en) * 1997-02-13 1998-08-19 Sanyo Electric Co. Ltd Thin film magnetic head
US6075679A (en) * 1997-07-10 2000-06-13 Nec Corporation Magneto-resistive head accommodating a narrow gap

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0859355A1 (en) * 1997-02-13 1998-08-19 Sanyo Electric Co. Ltd Thin film magnetic head
US5986857A (en) * 1997-02-13 1999-11-16 Sanyo Electric Co., Ltd. Thin film magnetic head including adhesion enhancing interlayers, and upper and lower gap insulative layers having different hydrogen contents and internal stress states
US6075679A (en) * 1997-07-10 2000-06-13 Nec Corporation Magneto-resistive head accommodating a narrow gap
US6251231B1 (en) 1997-07-10 2001-06-26 Nec Corporation Manufacturing process for a magneto-resistive head accommodating a narrow gap

Similar Documents

Publication Publication Date Title
JP2000207714A (en) Magneto resistance effect type thin film magnetic head and manufacture of the same
JPH0916925A (en) Induction and mr type hybrid magnetic head and its manufacture
JP2000311316A (en) Thin-film magnetic head and its production as well as magneto-resistive device
US6477765B1 (en) Method of fabricating a magnetic write transducer
JPH05274626A (en) Mr head
JPH10149513A (en) Magneto-resistive composite head
JPH0573817A (en) Magnetic recording and reproducing device with magneto-resistance effect element
JP3367161B2 (en) Method of manufacturing magnetoresistive head
JPH07296337A (en) Magnetoresistance effect thin film magnetic head
JPH08263811A (en) Magnetic head and its production
JPH08221717A (en) Magneto-resistive magnetic head
JPH08329422A (en) Magnetoresistance effect head and its production
JPH07320235A (en) Magneto-resistance effect type head and its production
JP2000231706A (en) Magnetic recording and reproducing head and magnetic storage device using the same as well as its production
JP2000090417A (en) Thin-film magnetic head
JPH07240009A (en) Magneto-resistance effect type thin-film magnetic head and its production
JPH07105510A (en) Magnetic transducing element, thin film magnetic head, and production of magnetic transducer element
JPH064831A (en) Thin film magnetic head
JPH0896328A (en) Magnetoresistive effect thin film magnetic head and its production
JPH06274834A (en) Thin-film magnetic head and its production
JPH07129929A (en) Magneto-resistance effect type magnetic head
JPH0918069A (en) Magnetic reluctance device and its formation process
JP2003208708A (en) Magnetic head and magnetic storage device using the same
JPH05101342A (en) Magneto-resistance effect type head
JPH05135329A (en) Production of thin-film magnetic head