JPH05273443A - Star type optical wiring circuit - Google Patents

Star type optical wiring circuit

Info

Publication number
JPH05273443A
JPH05273443A JP7438192A JP7438192A JPH05273443A JP H05273443 A JPH05273443 A JP H05273443A JP 7438192 A JP7438192 A JP 7438192A JP 7438192 A JP7438192 A JP 7438192A JP H05273443 A JPH05273443 A JP H05273443A
Authority
JP
Japan
Prior art keywords
optical
core
wiring circuit
type optical
star type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7438192A
Other languages
Japanese (ja)
Other versions
JP3125902B2 (en
Inventor
Katsuyuki Imoto
克之 井本
Mitsuo Usami
光雄 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP7438192A priority Critical patent/JP3125902B2/en
Publication of JPH05273443A publication Critical patent/JPH05273443A/en
Application granted granted Critical
Publication of JP3125902B2 publication Critical patent/JP3125902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To equally distribute a clock signal of small size and send and receive signals among respective LSIs by inputting a light signal which contains the clock signal from right below a conic groove and inputting it to a core. CONSTITUTION:This circuit is provided with a function which superposes the clock signal on the light signal with wavelength lambda1, transmits it from an optical transmission part 9, and equally distributes the signal to respective transmitting receiving circuits 1-1-1-8, and the light signal from one optical transmission part 9 is propagated in cores 3-1-3-8 arranged radially around the conic groove 6 at the center part of a circular substrate 2 and led to respective receiving circuits 1-1-1-8. The light signal with the wavelength lambda1 which is converged in an optical waveguide 7 provided right below the conic groove 6 reaches the comic groove 6 through a 1st clad 4 and is totally reflected and radially diverged, and made equally incident on and coupled with the respective cores 3-1-3-8. The light signals are propagated in the respective cores 3-1-3-8 as shown by arrows 12-1-12-8 and made incident on the respective optical receiving circuits 1-1-1-8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を利用して各LSI
へクロック信号を分配したり、LSI間で信号のやりと
りを行うためのスタ−型光配線回路に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to each LSI utilizing light.
The present invention relates to a star type optical wiring circuit for distributing a clock signal to and from the LSI and for exchanging signals between LSIs.

【0002】[0002]

【従来の技術】最近、光の高速性、低クロスト−ク性、
直流電位の遮断性、無誘導性を利用して、部屋間、ラッ
ク間、ボ−ド間、LSI間、さらにはLSI内で情報信
号をやりとりする研究が注目されるようになってきた。
その一例として、分散配置された各LSI内へクロック
信号を分配する方式が提案され、主な方式に (a)クロッ
ク信号を含んだ光信号を光ファイバで分配する方式、
(b)導波路型カプラで分配する方式、 (c)レンズで光信
号を拡げて分配する方式、 (d)ホログラムを用いる方式
がある(図3参照)。
2. Description of the Related Art Recently, high speed of light, low crosstalk,
Studies have been attracting attention for exchanging information signals between rooms, between racks, between boards, between LSIs, and further within an LSI by utilizing the blocking property and non-inductive property of a DC potential.
As an example, a method of distributing a clock signal to each LSI arranged in a distributed manner is proposed, and a main method is (a) a method of distributing an optical signal containing a clock signal by an optical fiber,
There are (b) a method of distributing with a waveguide type coupler, (c) a method of expanding and distributing an optical signal with a lens, and (d) a method of using a hologram (see FIG. 3).

【0003】[0003]

【発明が解決しようとする課題】しかし、従来提案され
てきた各種のクロック分配方式を実現するための装置乃
至回路は小形化が困難であり、分配数が増えるとさらに
大型化するばかりでなく、光信号を均等に分配すること
も難しくなるという問題があった。
However, it is difficult to miniaturize the device or circuit for realizing the various clock distribution systems proposed hitherto, and not only the size and size increase as the number of distribution increases, but also There is a problem that it is difficult to evenly distribute the optical signal.

【0004】本発明の目的は、前記した従来技術の欠点
を解消し、小型サイズで、かつ均等にクロック信号を分
配でき、さらに各LSI間での信号のやりとりも実現で
きるスタ−型光配線回路を提供することにある。
An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to make a compact size, to evenly distribute a clock signal, and to realize the exchange of signals between each LSI. To provide.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
創案された本発明のスタ−型光配線回路は、その機能か
ら、次の二つの態様に大きく分かれる。
The star type optical wiring circuit of the present invention, which was conceived to achieve the above object, is roughly divided into the following two modes according to its function.

【0006】第1の態様は、複数の光受信回路(受光素
子を内蔵したLSI)にクロック信号を均等に、かつ遅
延時間のばらつき無く分配する機能を持たせるべく、基
板上のクラッド層内に光伝搬用コアを放射状に形成し、
その放射状に形成されたコアのそれぞれの放射先端部に
は光受信回路を、放射起点部には円錐溝を設け、クロッ
ク信号を含んだ光信号を上記円錐溝の真下から入力させ
て上記コア内に結合させるようにしたものである。
The first aspect is to provide a function of distributing a clock signal to a plurality of optical receiving circuits (LSIs having a built-in light receiving element) evenly and without delay time variations, in a clad layer on a substrate. Radially formed light propagation core,
An optical receiving circuit is provided at each of the radiating tips of the radially formed cores, and a conical groove is provided at the radiating starting point, and an optical signal including a clock signal is input from directly below the conical groove so that the core It is designed to be combined with.

【0007】第2の態様は、上記第1の態様のスタ−型
光配線回路が持つクロック信号分配機能に加え、LSI
間において情報信号の授受が行える機能も持たせるべ
く、基板上のクラッド層内に光伝搬用コアを放射状に形
成し、その放射状に形成されたコアのそれぞれの放射先
端部に二股の光分岐部を形成すると共に放射起点部に円
錐溝を設け、上記光分岐部の一方の端には光受信回路を
接続し、他方の端には光送信回路(発光素子を内蔵した
LSIの一部の回路)を接続し、クロック信号を含んだ
光信号を上記円錐溝の真下から入力させて上記コア内に
結合させるようにしたものである。
The second aspect is an LSI in addition to the clock signal distribution function of the star type optical wiring circuit of the first aspect.
In order to have the function of exchanging information signals between the two, a light propagation core is radially formed in the clad layer on the substrate, and a bifurcated optical branching portion is provided at each radiation tip of the radially formed core. And a conical groove is formed at the radiation starting point, a light receiving circuit is connected to one end of the light branching portion, and a light transmitting circuit (part of an LSI containing a light emitting element is connected to the other end). ) Is connected and an optical signal including a clock signal is input from directly under the conical groove to be coupled into the core.

【0008】これらの態様において、上記円錐溝の円錐
角は70°から95°の範囲内にあり、円錐溝の真下には、
入力先端が球面加工されたロッド状の光導波路が設けら
れる。上記コアは4方向以上、多方向に放射状に形成す
ることができる。コアは断面が略矩形状または略円形状
に形成されていることが望ましく、伝送路長が互いに等
しいことが望ましい。特に第2の態様においては、上記
ロッド状の光導波路の先端球面部に、入力光信号は透過
させ上記光送信回路からの送信光信号は反射させる機能
を持った干渉膜フィルタが形成されていることが望まし
い。
In these embodiments, the cone angle of the conical groove is in the range of 70 ° to 95 °, and directly below the conical groove,
A rod-shaped optical waveguide whose input tip is spherically processed is provided. The core may be radially formed in four or more directions and in multiple directions. It is desirable that the core has a substantially rectangular cross section or a substantially circular cross section, and that the transmission path lengths are equal to each other. Particularly in the second aspect, an interference film filter having a function of transmitting an input optical signal and reflecting a transmission optical signal from the optical transmission circuit is formed on the tip spherical surface of the rod-shaped optical waveguide. Is desirable.

【0009】[0009]

【作用】第1の態様のスタ−型光配線回路にその円錐溝
の真下からクロック信号を含んだ光信号を入射させる
と、入射光信号は円錐溝の円錐面で全反射されて放射状
に拡がり、放射状に形成されたそれぞれのコアに均等に
入射し結合する。この入射光信号のそれぞれのコアに対
する結合は同時になされるので、クロック信号は各コア
の放射先端部に接続された光受信回路に、均等、かつ遅
延時間のばらつき無く分配される。
When an optical signal including a clock signal is made to enter the star type optical wiring circuit of the first aspect from directly below the conical groove, the incident optical signal is totally reflected by the conical surface of the conical groove and spreads radially. , Is uniformly incident on and coupled to each of the radially formed cores. Since this incident optical signal is coupled to each core at the same time, the clock signal is evenly distributed to the optical receiving circuit connected to the radiation tip of each core without variation in delay time.

【0010】第2の態様のスタ−型光配線回路において
も、光受信回路へのクロック信号の分配は均等、かつ遅
延時間のばらつき無く実現される。このスタ−型光配線
回路は、コアのそれぞれの放射先端部に二股の光分岐部
を介して光受信回路と光送信回路とが設けられているの
で、各光送信回路から情報信号を含む光信号を送出する
ことにより、それぞれのLSI間で情報信号の授受を行
うことが可能である。この場合、上記ロッド状光導波路
の先端球面部に、入力光信号は透過させて上記光送信回
路からの送信光信号は反射させる機能を持った干渉膜フ
ィルタを形成しておけば、各光送信回路から送出された
上記光信号を、上記円錐溝の円錐面で反射させたのち干
渉膜フィルタで反射させ、再び上記円錐溝の円錐面で反
射させてそれぞれのコアに入射結合させることができる
ので、このスタ−型光配線回路のみでLSI間の完全な
相互通信回路網が構築される。
Even in the star type optical wiring circuit of the second aspect, the distribution of the clock signal to the optical receiving circuit is realized uniformly and without delay time variation. In this star-type optical wiring circuit, since the optical receiving circuit and the optical transmitting circuit are provided at the respective radiation tips of the core via the bifurcated optical branching portions, the optical signal including the information signal from each optical transmitting circuit is provided. Information signals can be exchanged between the respective LSIs by transmitting the signals. In this case, if an interference film filter having a function of transmitting an input optical signal and reflecting a transmission optical signal from the optical transmission circuit is formed on the tip spherical surface of the rod-shaped optical waveguide, each optical transmission can be performed. Since the optical signal sent from the circuit can be reflected by the conical surface of the conical groove, reflected by the interference film filter, and then reflected again by the conical surface of the conical groove, it can be incident on and coupled to each core. A complete intercommunication circuit network between LSIs is constructed only by this star type optical wiring circuit.

【0011】本発明のスタ−型光配線回路は導波路構造
で構成されるので、半導体集積回路の製造技術として確
立されたフォトリソグラフィやドライエッチングなどの
微細加工技術を用いて精密に製造することができ、分配
数が増えても小型サイズで実現できる。
Since the star type optical wiring circuit of the present invention has a waveguide structure, it can be precisely manufactured by using a fine processing technique such as photolithography or dry etching established as a manufacturing technique of a semiconductor integrated circuit. Even if the number of distributions increases, it can be realized in a small size.

【0012】[0012]

【実施例】次に、本発明の実施例を添付図面を用いて説
明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0013】図1に示されるスタ−型光配線回路は、ク
ロック信号を波長λ1 の光信号にのせて光送信部9から
送信し、それぞれの光受信回路(受光素子を内蔵したL
SI)1-1〜1-8へ均等に分配する機能を持たせたもの
であり、1つの光送信部9からの光信号が、円形基板2
中心部の円錐溝6を起点として放射状に配設された複数
のコア3-1〜3-8内を伝搬してそれぞれの受信回路1-1
〜1-8へ導かれるよう構成されている。
The star type optical wiring circuit shown in FIG. 1 transmits a clock signal on an optical signal having a wavelength λ 1 from an optical transmitting section 9, and transmits each optical receiving circuit (L having a light receiving element incorporated therein).
SI) is provided with a function of evenly distributing to 1-1 to 1-8, and an optical signal from one optical transmitter 9 is transmitted to the circular substrate 2
Each of the receiving circuits 1-1 propagates through the plurality of cores 3-1 to 3-8 radially arranged with the conical groove 6 at the center as a starting point.
It is designed to lead to ~ 1-8.

【0014】基板2には、Si、GaAs、InPなど
の半導体材料、SiO2 、屈折率制御用ド−パント
(B、P、Ti、Ge、Al、Zn、Ta、Na、L
i、Kなど)を少なくとも1種含んだSiO2 などのガ
ラス材料、LiNbO3 、LiTaO3 などの誘電体材
料、さらには、磁性材料などが用いられる。基板2上に
は、その表面を覆うようにして第1クラッド4(屈折率
c1)が形成されている。第1クラッド4の材料として
は上記基板2と同様な材料を用いることができる。第1
クラッド4の厚みは数μmから数十μmの範囲から選ば
れる。上記コア3-1〜3-8(屈折率nw ;nw >nc1
は、この第1クラッド4の表面に基板中心部を起点とし
て放射状に形成される。コア3-1〜3-8は、断面が略矩
形状あるいは略円形状に形成され、その材料としては第
1クラッド4と同様な材料を用いることができる。コア
3-1〜3-8の厚みおよび幅は、シングルモ−ド伝送の場
合には数μm〜数十μmの範囲、マルチモ−ド伝送の場
合には十数μm〜数百μmの範囲から選ばれる。また、
コア3-1〜3-8の屈折率nw と第1クラッド4との間の
比屈折率差Δ(=(nw −nc1)/nw ×100 %)は、
シングルモ−ド伝送の場合には0.1 %から数%の範囲、
マルチモ−ド伝送の場合には0.数%から10%の範囲か
ら選ばれる。これらコア3-1〜3-8の表面は第2クラッ
ド5(屈折率nc2;nc2≒nc1)で覆われている。上記
円錐溝6は、コア3-1〜3-8の放射起点部に第2クラッ
ド5の表面から刻設されたものであり、その溝の底部
(円錐頂部)は第1クラッド4の表面に達している。円
錐溝6の円錐角 2θは、TEおよびTMモ−ドの伝搬損
失を考慮に入れ、70°から95°の範囲より選ばれる。第
2クラッド5の材料には第1クラッド4と同様な材料を
用いることができ、またその厚みも第1クラッド4の厚
みと同じように選ばれる。円錐溝6の真下には、基板2
を貫通させてロッド状の光導波路7が設けられている。
このロッド状光導波路7は円錐溝6の円錐軸と同軸的に
設けられ、その先端は、光送信部9からの波長λ1の光
信号を効率良く集光することができるように球面加工さ
れている。上記光受信回路1-1〜1-8は放射状に形成さ
れたそれぞれのコア3-1〜3-8の先端面に接続されて第
1クラッド4上に配置されている。光導波路7内に集光
された波長λ1 の光信号は、第1クラッド4を通って円
錐溝6に達し、ここで全反射されて放射状に拡がり、そ
れぞれのコア3-1〜3-8に均一に入射し結合する。そし
て光信号は矢印12-1〜12-8の向きにコア3-1〜3-8
内を伝搬し、それぞれの光受信回路1-1〜1-8に入射す
る。上記ロッド状光導波路7内に集光された波長λ1
光信号を効率良くそれぞれのコア3-1〜3-8内に伝搬さ
せるためには、放射状に形成されたコア数、すなわち分
配数が多いほど好ましい。この実施例ではコア数を 8と
した例が示されているが、100 程度、あるいはそれ以上
であってもよい。ロッド状光導波路7の材質は、コア3
-1〜3-8の材質と同様のものの他、光送信部9との光結
合効率を高めるためにさらに高屈折率の材質(たとえ
ば、サファイヤ、ルビ−など)を用いてもよい。円錐溝
6からそれぞれの光受信回路1-1〜1-8までの距離は、
クロック信号の遅延時間を最小限にするためにもできる
限り等しいことが望ましく、この点において、本発明の
スタ−型光配線回路は、半導体集積回路の製造技術と類
似の精密加工技術により上記距離を等しく設定できると
いう極めて有利な特徴を有している。なお、基板2は本
実施例では円形状のものが図示されているが、基板形状
はこれに限定されるものではない。たとえば、四角形、
楕円形などでもよい。また、光受信回路1-1〜1-8は、
受光素子を内蔵したLSI以外に、受光素子を内蔵した
種々の電気回路であってもよい。さらには、図示されて
いないが、冷却機構、電源回路、各種ドライブ回路、あ
るいは電気配線パタ−ンなどを含んでいてもよいことは
当然のことである。また、上記ロッド状の光導波路7の
代わりに、収束型ロッドレンズ、球レンズなどの光結合
系を少なくとも1つ用いて、光送信部9からの光信号を
それぞれのコア3-1〜3-8内に結合させるようにしても
よい。
The substrate 2 is made of a semiconductor material such as Si, GaAs, InP, SiO 2 , and a dopant for controlling the refractive index (B, P, Ti, Ge, Al, Zn, Ta, Na, L).
(i, K, etc.), a glass material such as SiO 2 containing at least one kind, a dielectric material such as LiNbO 3 , LiTaO 3 , and a magnetic material are used. A first clad 4 (refractive index n c1 ) is formed on the substrate 2 so as to cover the surface thereof. As the material of the first clad 4, the same material as that of the substrate 2 can be used. First
The thickness of the clad 4 is selected from the range of several μm to several tens of μm. The core 3-1-3-8 (refractive index n w; n w> n c1 )
Are radially formed on the surface of the first cladding 4 starting from the center of the substrate. The cores 3-1 to 3-8 are formed to have a substantially rectangular cross section or a substantially circular cross section, and the same material as the first clad 4 can be used as the material thereof. The thickness and width of the cores 3-1 to 3-8 are selected from the range of several μm to several tens of μm in the case of single mode transmission, and the range of ten and several μm to several hundreds of μm in the case of multimode transmission. Be done. Also,
The relative refractive index difference Δ (= (n w −n c1 ) / n w × 100%) between the refractive index n w of the cores 3-1 to 3-8 and the first cladding 4 is
In the case of single mode transmission, the range from 0.1% to several%,
In case of multi-mode transmission, 0. It is selected from the range of several% to 10%. The surfaces of these cores 3-1 to 3-8 are covered with the second cladding 5 (refractive index n c2 ; n c2 ≈n c1 ). The conical groove 6 is carved from the surface of the second clad 5 at the radiation starting point of the cores 3-1 to 3-8, and the bottom (conical top) of the groove is formed on the surface of the first clad 4. Has reached The cone angle 2θ of the conical groove 6 is selected from the range of 70 ° to 95 ° in consideration of the propagation loss of the TE and TM modes. The same material as the first clad 4 can be used as the material of the second clad 5, and the thickness thereof is selected similarly to the thickness of the first clad 4. Directly below the conical groove 6 is the substrate 2
And a rod-shaped optical waveguide 7 is provided.
The rod-shaped optical waveguide 7 is provided coaxially with the conical axis of the conical groove 6, and its tip is spherically processed so that an optical signal of wavelength λ 1 from the optical transmitter 9 can be efficiently condensed. ing. The light receiving circuits 1-1 to 1-8 are arranged on the first cladding 4 so as to be connected to the tip surfaces of the radially formed cores 3-1 to 3-8. The optical signal of wavelength λ 1 condensed in the optical waveguide 7 reaches the conical groove 6 through the first cladding 4, where it is totally reflected and radially spreads, and the respective cores 3-1 to 3-8. Are evenly incident on and coupled to. The optical signals are directed to the cores 3-1 to 3-8 in the directions of arrows 12-1 to 12-8.
The light propagates inside and enters the respective light receiving circuits 1-1 to 1-8. In order to efficiently propagate the optical signal of wavelength λ 1 condensed in the rod-shaped optical waveguide 7 into the respective cores 3-1 to 3-8, the number of radially formed cores, that is, the number of distributions. The higher the number, the better. In this embodiment, an example in which the number of cores is 8 is shown, but it may be about 100 or more. The material of the rod-shaped optical waveguide 7 is the core 3
In addition to the same material as that of -1 to 3-8, a material having a higher refractive index (for example, sapphire, ruby, etc.) may be used in order to enhance the optical coupling efficiency with the optical transmitter 9. The distance from the conical groove 6 to each of the light receiving circuits 1-1 to 1-8 is
In order to minimize the delay time of the clock signal, it is desirable that the distance is as equal as possible. In this respect, the star type optical wiring circuit of the present invention uses the precision processing technique similar to the manufacturing technique of the semiconductor integrated circuit. Has an extremely advantageous feature that they can be set equally. Although the substrate 2 is illustrated as having a circular shape in this embodiment, the substrate shape is not limited to this. For example, a rectangle,
It may be oval or the like. In addition, the optical receiving circuits 1-1 to 1-8 are
Other than the LSI having the light receiving element built therein, various electric circuits having the light receiving element built therein may be used. Further, although not shown, it goes without saying that they may include a cooling mechanism, a power supply circuit, various drive circuits, or an electric wiring pattern. Further, instead of the rod-shaped optical waveguide 7, at least one optical coupling system such as a converging rod lens or a spherical lens is used, and an optical signal from the optical transmitter 9 is supplied to each of the cores 3-1 to 3-3. You may make it couple | bond together in 8.

【0015】図2に示されるスタ−型光配線回路は、図
1の光配線回路のクロック信号分配機能に加え、LSI
間において情報信号の授受が行える機能も持たせたもの
であり、基板2上に放射状に形成された光伝搬用コア3
-1〜3-8の各放射先端部には導波路型の2股の光分岐器
11-1〜11-8が形成され、それぞれの光分岐器11-1
〜11-8の一方の端には光受信回路1-1〜1-8が、他方
の端には光送信回路(発光素子を内蔵したLSIの一部
の回路)10-1〜10-8が接続されている。円錐溝6の
真下に設けられたロッド状の光導波路7の先端球面部に
は、光送信部9からの波長λ1 の光信号はそのまま透過
させ、光送信回路10-1〜10-8からの波長λ2 (≠λ
1 )の光信号は反射させる干渉膜フィルタ8がコ−ティ
ングされている。したがって、クロック信号の分配は、
図1と同様に光送信部9からの波長λ1 の光信号をロッ
ド状光導波路7を介してそれぞれのコア3-1〜3-8内に
伝搬させ、それぞれの光受信回路1-1〜1-8で受信する
ことによって達成される。
The star type optical wiring circuit shown in FIG. 2 has an LSI in addition to the clock signal distribution function of the optical wiring circuit of FIG.
It also has a function of exchanging information signals between the two, and the light propagation cores 3 radially formed on the substrate 2
Waveguide type bifurcated optical branching devices 11-1 to 11-8 are formed at the respective radiation tips of the optical branching devices 11-1 to 3-8.
To 11-8, optical receiving circuits 1-1 to 1-8 are provided at one end, and optical transmitting circuits (partial circuits of an LSI having a light emitting element) 10-1 to 10-8 at the other end. Are connected. The optical signal of wavelength λ 1 from the optical transmitter 9 is transmitted as it is to the tip spherical surface of the rod-shaped optical waveguide 7 provided right below the conical groove 6, and the optical signal is transmitted from the optical transmitter circuits 10-1 to 10-8. Wavelength of λ 2 (≠ λ
An interference film filter 8 for reflecting the optical signal of 1 ) is coated. Therefore, the distribution of the clock signal is
Similar to FIG. 1, the optical signal of wavelength λ 1 from the optical transmitter 9 is propagated through the rod-shaped optical waveguide 7 into the respective cores 3-1 to 3-8, and the respective optical receiving circuits 1-1 to Achieved by receiving at 1-8.

【0016】この光配線回路の第2の機能であるLSI
間における双方向情報伝送機能は、次のようにして達成
される。例えば、光送信回路10-1からの情報信号は波
長λ2 の光信号にのせられて送出され、光分岐器11-1
によってコア3-1内に結合し、円錐溝6に向って伝搬す
る。そしてその光信号は円錐溝6の円錐面で反射されて
ロッド状光導波路7内に入り、光導波路7の球面部に形
成された干渉膜フィルタ8に達する。干渉膜フィルタ8
は波長λ2 の光信号を反射させる特性を持っているの
で、光送信回路10-1から送出された波長λ2 の光信号
はここで反射されて逆戻りする。そして逆戻りした光信
号は、再び円錐溝6の円錐面で反射されて放射状に拡が
り、コア3-1〜3-8内に均一に入射し、それぞれの光分
岐器11-1〜11-8に達する。それぞれの光分岐器11
-1〜11-8に入射した光信号の一部はそれぞれの光受信
回路1-1〜1-8によって受信され、残りの光信号はそれ
ぞれの光送信回路10-1〜10-8側へ送られる。光分岐
器11-1〜11-8の分岐比は任意に設定できるので、例
えば、光送信回路10-1からの波長λ2 の光信号の光受
信回路1-1側への結合量は小さく、光送信部9からの波
長λ1 の光信号の光受信回路1-1側への結合量は大きく
なるように設定することにより、受信感度を高めること
ができる。
The second function of this optical wiring circuit, the LSI
The bidirectional information transmission function between the two is achieved as follows. For example, the information signal from the optical transmission circuit 10-1 is transmitted by being carried on an optical signal of wavelength λ 2 , and the optical splitter 11-1
Is coupled into the core 3-1 by and propagates toward the conical groove 6. Then, the optical signal is reflected by the conical surface of the conical groove 6, enters the rod-shaped optical waveguide 7, and reaches the interference film filter 8 formed on the spherical portion of the optical waveguide 7. Interference film filter 8
Since it has the property of reflecting the optical signal of the wavelength lambda 2, the wavelength lambda 2 of the optical signal sent from the optical transmitting circuit 10-1 back is reflected here. Then, the returned optical signal is reflected again by the conical surface of the conical groove 6 and spreads radially, is uniformly incident on the cores 3-1 to 3-8, and is incident on the respective optical branching devices 11-1 to 11-8. Reach Each optical splitter 11
-1 to 11-8 part of the optical signals incident on the optical receiving circuits 1-1 to 1-8 are received, and the remaining optical signals are transmitted to the respective optical transmitting circuits 10-1 to 10-8. Sent. Since the branching ratios of the optical branching devices 11-1 to 11-8 can be set arbitrarily, for example, the coupling amount of the optical signal of the wavelength λ 2 from the optical transmitting circuit 10-1 to the optical receiving circuit 1-1 side is small. By setting the coupling amount of the optical signal of wavelength λ 1 from the optical transmitter 9 to the optical receiving circuit 1-1 side to be large, the receiving sensitivity can be increased.

【0017】図2の構成において、それぞれの光送信回
路10-1〜10-8を構成する発光素子の発振波長を少し
ずつ異ならせ、光送信回路10-1〜10-8からそれぞれ
専用の波長、たとえば、λ21,λ22,・・・λ27,λ28
の光信号を送出させるようにしてもよい。このようにす
れば、それぞれの光受信回路1-1〜1-8でどの光送信回
路10-1〜10-8から送られてきた光信号かを判別する
ことができ、また、クロスト−ク特性の改善を図ること
もできる。この場合、光受信回路1-1〜1-8に光波長チ
ュ−ナを内蔵させ、チュ−ニングによりそれぞれの光送
信回路10-1〜10-8からの光信号を判別、受信できる
構成とすることができる。
In the configuration of FIG. 2, the oscillation wavelengths of the light emitting elements forming the respective optical transmission circuits 10-1 to 10-8 are made slightly different from each other so that the optical transmission circuits 10-1 to 10-8 respectively have dedicated wavelengths. , Λ 21 , λ 22 , ... λ 27 , λ 28
The optical signal may be transmitted. In this way, each of the optical receiving circuits 1-1 to 1-8 can determine from which optical transmitting circuit 10-1 to 10-8 the optical signal is sent, and the crosstalk can be performed. It is also possible to improve the characteristics. In this case, an optical wavelength tuner is built in each of the optical receiving circuits 1-1 to 1-8, and the optical signal from each of the optical transmitting circuits 10-1 to 10-8 can be discriminated and received by tuning. can do.

【0018】なお、図2の構成において、光受信回路1
-1〜1-8の受光素子の後に波長λ2 の光信号を発光する
発光素子を接続し、その発光素子からの光信号を受光素
子を通過させてコア3-1〜3-8内に送出するようにすれ
ば光分岐器11-1〜11-8は用いなくてもよく、極めて
簡単な構成とすることができる。
In the configuration of FIG. 2, the optical receiving circuit 1
-A light emitting element that emits an optical signal of wavelength λ 2 is connected after the light receiving element of -1 to 1-8, and the optical signal from the light emitting element is passed through the light receiving element to enter the cores 3-1 to 3-8. If it is sent out, the optical branching devices 11-1 to 11-8 do not have to be used, and the configuration can be extremely simple.

【0019】[0019]

【発明の効果】以上要するに、本発明のスタ−型光配線
回路は次の如き優れた効果を発揮し得るものである。
In summary, the star type optical wiring circuit of the present invention can exhibit the following excellent effects.

【0020】(1) クロック信号を含んだ光信号を円錐溝
の円錐面で放射状に反射させ、放射状に形成されたそれ
ぞれのコア内に均等、且つ同時に結合させることができ
るので、コアの放射先端部に接続された光受信回路に、
遅延時間のばらつき無くクロック信号を分配することが
できる。
(1) Since the optical signal including the clock signal can be reflected radially by the conical surface of the conical groove and can be evenly and simultaneously coupled into each of the radially formed cores, the radiating tip of the core To the optical receiver circuit connected to the
The clock signal can be distributed without variations in delay time.

【0021】(2) 放射状に形成されたそれぞれのコアの
放射先端部に二股の光分岐部を介して光受信回路と光送
信回路とを設けた構成とすることにより、クロック信号
の分配に加え情報信号の授受も可能となる。
(2) In addition to the distribution of the clock signal, the configuration is such that the optical receiving circuit and the optical transmitting circuit are provided at the radiating tip of each of the radially formed cores through the bifurcated optical branching section. It is also possible to send and receive information signals.

【0022】(3) 半導体集積回路の製造技術として確立
された微細加工技術によって、コア、クラッドおよび円
錐溝から成る導波路部を基板上に精密に構成することが
できるので、分配数が増えても小型で実現できる。
(3) Since the waveguide portion consisting of the core, the clad and the conical groove can be precisely formed on the substrate by the fine processing technology established as the manufacturing technology of the semiconductor integrated circuit, the distribution number increases. Can be realized with a small size.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るスタ−型光配線回路の一実施例を
示す図であり、 (a) は平面図、(b) は (a) のA-A 断
面図である。
1A and 1B are diagrams showing an embodiment of a star type optical wiring circuit according to the present invention, in which FIG. 1A is a plan view and FIG. 1B is a sectional view taken along line AA of FIG.

【図2】本発明に係るスタ−型光配線回路の他の実施例
を示す図であり、 (a) は平面図、(b) は (a) のA-A
断面図である。
2A and 2B are views showing another embodiment of the star type optical wiring circuit according to the present invention, wherein FIG. 2A is a plan view and FIG. 2B is AA of FIG.
FIG.

【図3】従来の光を利用したクロック分配方式の概略図
である。
FIG. 3 is a schematic diagram of a conventional clock distribution system using light.

【符号の説明】[Explanation of symbols]

1-1〜1-8 光受信回路 2 基板 3-1〜3-8 コア 4 第1クラッド 5 第2クラッド 6 円錐溝 7 ロッド状の光導波路 8 干渉膜フィルタ 9 光送信部 10-1〜10-8 光送信回路 11-1〜11-8 光分岐器 1-1 to 1-8 Optical receiver circuit 2 Substrate 3-1 to 3-8 Core 4 First clad 5 Second clad 6 Conical groove 7 Rod-shaped optical waveguide 8 Interference film filter 9 Optical transmitter 10-1 to 10 -8 Optical transmitter circuit 11-1 to 11-8 Optical branching device

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板上のクラッド層内に光伝搬用コアを
放射状に形成し、該コアの放射先端部に光受信回路を接
続すると共に放射起点部に円錐溝を設け、クロック信号
を含んだ光信号を上記円錐溝の真下から入力させてコア
内に結合させるようにしたことを特徴とするスタ−型光
配線回路。
1. A light propagating core is radially formed in a clad layer on a substrate, an optical receiving circuit is connected to a radiating tip end of the core, and a conical groove is provided at a radiating start point to contain a clock signal. A star type optical wiring circuit, characterized in that an optical signal is inputted from directly below the conical groove and coupled into the core.
【請求項2】 基板上のクラッド層内に光伝搬用コアを
放射状に形成し、該コアの放射先端部に二股の光分岐部
を形成すると共に放射中心部に円錐溝を設け、上記光分
岐部の一方の端には光受信回路を接続し、他方の端には
光送信回路を接続し、クロック信号を含んだ光信号を上
記円錐溝の真下から入力させて上記コア内に結合させる
ようにしたことを特徴とするスタ−型光配線回路。
2. A light-propagating core is radially formed in a clad layer on a substrate, a bifurcated light branching portion is formed at a radiation tip end portion of the core, and a conical groove is provided at a radiation center portion. An optical receiving circuit is connected to one end of the section, an optical transmitting circuit is connected to the other end, and an optical signal including a clock signal is input from directly below the conical groove and coupled into the core. A star-type optical wiring circuit characterized in that
【請求項3】 上記円錐溝の真下に、入力先端が球面加
工されたロッド状の光導波路が設けられている請求項1
または2記載のスタ−型光配線回路。
3. A rod-shaped optical waveguide whose input tip is spherically processed is provided directly below the conical groove.
Alternatively, the star type optical wiring circuit described in 2.
【請求項4】 上記円錐溝の円錐角は70°から95°の範
囲内にあることを特徴とする請求項1,2,3のいずれ
かに記載のスタ−型光配線回路。
4. The star type optical wiring circuit according to claim 1, wherein the conical groove has a cone angle within a range of 70 ° to 95 °.
【請求項5】 上記ロッド状の光導波路の先端球面部
に、入力光信号は透過させ上記光送信回路からの送信光
信号は反射させるための干渉膜フィルタが形成されてい
ることを特徴とする請求項2または3記載のスタ−型光
配線回路。
5. An interference film filter for transmitting an input optical signal and reflecting a transmission optical signal from the optical transmission circuit is formed on the tip spherical surface of the rod-shaped optical waveguide. The star type optical wiring circuit according to claim 2 or 3.
【請求項6】 上記コアは少なくとも4方に放射状に形
成されていることを特徴とする請求項1または2記載の
スタ−型光配線回路。
6. The star type optical wiring circuit according to claim 1, wherein the core is radially formed in at least four directions.
【請求項7】 上記コアは断面が略矩形状または略円形
状に形成されていることを特徴とする請求項1,2,6
のいずれかに記載のスタ−型光配線回路。
7. The core is formed to have a substantially rectangular cross section or a substantially circular cross section.
5. The star type optical wiring circuit according to any one of 1.
【請求項8】 上記コアは伝送路長が互いに等しく形成
されていることを特徴とする請求項1,2,6,7のい
ずれかに記載のスタ−型光配線回路。
8. The star type optical wiring circuit according to claim 1, wherein the cores are formed so that the transmission path lengths are equal to each other.
JP7438192A 1992-03-30 1992-03-30 Star type optical wiring circuit Expired - Fee Related JP3125902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7438192A JP3125902B2 (en) 1992-03-30 1992-03-30 Star type optical wiring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7438192A JP3125902B2 (en) 1992-03-30 1992-03-30 Star type optical wiring circuit

Publications (2)

Publication Number Publication Date
JPH05273443A true JPH05273443A (en) 1993-10-22
JP3125902B2 JP3125902B2 (en) 2001-01-22

Family

ID=13545535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7438192A Expired - Fee Related JP3125902B2 (en) 1992-03-30 1992-03-30 Star type optical wiring circuit

Country Status (1)

Country Link
JP (1) JP3125902B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131574A (en) * 2000-10-23 2002-05-09 Nippon Telegr & Teleph Corp <Ntt> Fiber board and manufacturing method
JP2002299598A (en) * 2001-04-03 2002-10-11 Fujitsu Ltd Semiconductor device
JP2006171642A (en) * 2004-12-20 2006-06-29 Sony Corp Optical waveguide sheet, optoelectronic apparatus and their manufacturing method
JP2006227445A (en) * 2005-02-18 2006-08-31 Sony Corp Semiconductor apparatus and electronic apparatus using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131574A (en) * 2000-10-23 2002-05-09 Nippon Telegr & Teleph Corp <Ntt> Fiber board and manufacturing method
JP2002299598A (en) * 2001-04-03 2002-10-11 Fujitsu Ltd Semiconductor device
JP2006171642A (en) * 2004-12-20 2006-06-29 Sony Corp Optical waveguide sheet, optoelectronic apparatus and their manufacturing method
JP2006227445A (en) * 2005-02-18 2006-08-31 Sony Corp Semiconductor apparatus and electronic apparatus using the same
JP4543956B2 (en) * 2005-02-18 2010-09-15 ソニー株式会社 Semiconductor device and electronic apparatus using the same

Also Published As

Publication number Publication date
JP3125902B2 (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US6236784B1 (en) Y branching optical waveguide and optical integrated circuit
US7366380B1 (en) PLC for connecting optical fibers to optical or optoelectronic devices
US3704996A (en) Optical coupling arrangement
JP2770834B2 (en) Integrated optical decorrelator
US6477296B1 (en) Optical waveguide device, optical transmitting and receiving device, method of manufacturing optical waveguide device and method of manufacturing optical transmitting and receiving device
US9151901B2 (en) Wavelength-selective path-switching element
GB2231412A (en) Optical waveguide type star coupler
JP2000314818A (en) Mode converter and method therefor
JP3556831B2 (en) Silica optical circuit switch
JP3125902B2 (en) Star type optical wiring circuit
JP4946793B2 (en) Electronic device including optical wiring and optical wiring thereof
JP2001215371A (en) Optical waveguide type element with monitor
JPS6394205A (en) Optical excitation device for bidirectional transmission
JP2004320666A (en) Optical transmission device, photoelectric fusion circuit in which electronic circuit and optical circuit are mixed
JPH0758805B2 (en) Optical wiring circuit
US20070280577A1 (en) Optical multi-wavelength modulator
JP3661036B2 (en) Waveguide type optical functional element
JP2783362B2 (en) Waveguide type optical star coupler
US11693186B2 (en) Two-dimensional grating coupler and methods of making same
US11808998B2 (en) Optical coupling apparatus and methods of making same
JPH0427904A (en) Substrate for optical surface packaging circuit and its production
JP3803776B2 (en) Waveguide type optical functional device
JP2004295138A (en) Waveguide type optical function element
US6968104B2 (en) Variable bending radius H-tree distribution device
CN113281860A (en) Photoelectric integrated circuit board communication system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees