JPH05273320A - Magnetic sensor - Google Patents
Magnetic sensorInfo
- Publication number
- JPH05273320A JPH05273320A JP4012703A JP1270392A JPH05273320A JP H05273320 A JPH05273320 A JP H05273320A JP 4012703 A JP4012703 A JP 4012703A JP 1270392 A JP1270392 A JP 1270392A JP H05273320 A JPH05273320 A JP H05273320A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- elements
- magnetic sensor
- magnetoresistive element
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は磁気センサに関し、特に
強磁性磁気抵抗素子と波形処理回路を同一チップ上に集
積化した磁気センサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor, and more particularly to a magnetic sensor in which a ferromagnetic magnetoresistive element and a waveform processing circuit are integrated on the same chip.
【0002】[0002]
【従来の技術】従来、回転検出あるいは物体の位置検出
等に用いられる検出装置等には、磁気抵抗素子を備えた
磁気センサが組み込まれている。2. Description of the Related Art Conventionally, a magnetic sensor having a magnetoresistive element is incorporated in a detection device or the like used for rotation detection or object position detection.
【0003】図3は従来の一例を示す磁気センサの切欠
き斜視図である。図3に示すように、従来の磁気センサ
は磁気抵抗素子回路1と信号処理回路9を基板12上に
搭載し、ボンディングワイヤ10により端子11に接続
している。しかも、全体をパッケージ13で覆うことに
より構成される。なお、端子11は電源(+VCC)端
子,GND端子およびセンサ出力端子を表わしている。FIG. 3 is a cutaway perspective view of a conventional magnetic sensor. As shown in FIG. 3, the conventional magnetic sensor has a magnetoresistive element circuit 1 and a signal processing circuit 9 mounted on a substrate 12 and connected to a terminal 11 by a bonding wire 10. Moreover, it is constructed by covering the whole with the package 13. The terminal 11 represents a power supply (+ VCC) terminal, a GND terminal, and a sensor output terminal.
【0004】図4は図3における磁気抵抗素子回路のパ
ターン図である。図4に示すように、従来の磁気センサ
は磁気記録媒体より有限の距離を隔てた位置に連続的折
り返し構造を有し且つNi−Fe,Ni−Co等からな
る磁気抵抗素子R1,R2,R3,R4を直列接続した
磁気抵抗素子回路1を備えている。これら磁気抵抗素子
R1〜R4のそれぞれの接続部を電源端子A1,磁気抵
抗素子回路出力端子A2,A3,GND端子A4として
いる。FIG. 4 is a pattern diagram of the magnetoresistive element circuit shown in FIG. As shown in FIG. 4, the conventional magnetic sensor has magnetoresistive elements R1, R2, R3 having a continuous folding structure at a position separated from the magnetic recording medium by a finite distance and made of Ni-Fe, Ni-Co or the like. , R4 are connected in series. The respective connection portions of these magnetic resistance elements R1 to R4 are used as a power supply terminal A1, magnetic resistance element circuit output terminals A2, A3 and GND terminal A4.
【0005】図5は図3に示す磁気センサの回路図であ
る。図5に示すように、この磁気センサ回路は前述した
磁気抵抗素子R1〜R4からなる磁気抵抗素子回路1
と、この素子回路端子A2,A3からの信号を入力して
比較する比較器3と、抵抗7,8とを有している。この
ように、磁気抵抗素子回路1の出力A2,A3端子間の
電位差を増幅し比較することにより、磁界の極性につい
てON/OFF判定を行い、被測定物の移動量に比例し
たパルス数を出力することができる。従って、かかる磁
気センサはカウンタを用いてパルス数等を計数すること
により、速度検知や位置検出に応用されている。FIG. 5 is a circuit diagram of the magnetic sensor shown in FIG. As shown in FIG. 5, this magnetic sensor circuit includes a magnetoresistive element circuit 1 including the above-described magnetoresistive elements R1 to R4.
And a comparator 3 for inputting and comparing signals from the element circuit terminals A2 and A3, and resistors 7 and 8. In this way, by amplifying and comparing the potential difference between the outputs A2 and A3 terminals of the magnetoresistive element circuit 1, the polarity of the magnetic field is determined to be ON / OFF, and the number of pulses proportional to the amount of movement of the DUT is output. can do. Therefore, such a magnetic sensor is applied to speed detection and position detection by counting the number of pulses using a counter.
【0006】[0006]
【発明が解決しようとする課題】上述した従来の磁気セ
ンサは、磁気抵抗素子の抵抗値の温度特性の影響が生じ
る。すなわち、磁気抵抗素子の抵抗値は+0.3%/℃
程度の正の温度係数を持っているのに対して、単位磁界
が加わることによる抵抗値変化量の温度特性は上記温度
係数と比較して充分に小さい。図5における回路出力A
2,A3間に生ずる電位差ΔEは、比較器の入力インピ
ーダンスを無限大、磁気抵抗素子の磁界による抵抗値変
化をΔRで表わすと、以下のようになる。In the above-mentioned conventional magnetic sensor, the temperature characteristic of the resistance value of the magnetoresistive element has an influence. That is, the resistance value of the magnetoresistive element is + 0.3% / ° C.
Although it has a positive temperature coefficient of a certain degree, the temperature characteristic of the amount of change in resistance value due to application of a unit magnetic field is sufficiently smaller than the temperature coefficient. Circuit output A in FIG.
The potential difference ΔE generated between 2 and A3 is as follows when the input impedance of the comparator is infinite and the resistance value change due to the magnetic field of the magnetoresistive element is represented by ΔR.
【0007】 ΔE=(R4+ΔR4)I1−R3・I2 ここで、経路電流I1,I2は、I1=VCC/(R1
+R4+ΔR4)およびI2=VCC/(R2+ΔR2
+R3)のようになる。ΔE = (R4 + ΔR4) I1−R3 · I2 Here, the path currents I1 and I2 are I1 = VCC / (R1
+ R4 + ΔR4) and I2 = VCC / (R2 + ΔR2)
+ R3).
【0008】仮に、VCC=10V,0℃におけるR1
〜R4=20KΩ,ΔR=200Ωとすると、 0℃におけるΔE≒50mV(R1〜R4=20KΩ) 80℃におけるΔE≒40mV(R1〜R4=24.8
KΩ)となり、ΔEが約20%低下することになる。こ
のΔEの低下は磁気センサの感度低下並びに磁界に対す
る出力信号のヒステリシス変動を生じる。従って、従来
の磁気センサはΔEの低下により次段に接続されるカウ
ンタ等の処理回路の誤動作の原因になるという欠点があ
る。さらに、従来の磁気センサは磁気抵抗素子を一度パ
ターニングすると、抵抗値の微調整が困難であるため、
露光や現像およびエッチング等の製造条件の変動によっ
て生じる抵抗のばらつきやバイアス点のばらつきを吸収
できず、良品率向上の妨げになっているという欠点があ
る。Assuming that R1 at VCC = 10V and 0 ° C.
˜R4 = 20 KΩ, ΔR = 200 Ω, ΔE≈50 mV at 0 ° C. (R1 to R4 = 20 KΩ) ΔE≈40 mV at 80 ° C. (R1 to R4 = 24.8)
KΩ), and ΔE is reduced by about 20%. This decrease in ΔE causes a decrease in the sensitivity of the magnetic sensor and a hysteresis variation of the output signal with respect to the magnetic field. Therefore, the conventional magnetic sensor has a drawback that a decrease in ΔE causes a malfunction of a processing circuit such as a counter connected to the next stage. Further, in the conventional magnetic sensor, it is difficult to finely adjust the resistance value once the magnetoresistive element is patterned,
There is a drawback in that variations in resistance and variations in bias points caused by variations in manufacturing conditions such as exposure, development, and etching cannot be absorbed, which hinders improvement of the yield rate.
【0009】本発明の目的は、かかる磁気抵抗素子の特
性変動を補償するとともに、良品率を向上させることの
できる磁気センサを提供することにある。An object of the present invention is to provide a magnetic sensor capable of compensating for the characteristic variation of the magnetoresistive element and improving the yield rate.
【0010】[0010]
【課題を解決するための手段】本発明の磁気センサは、
強磁性合金薄膜を基板上に蒸着し且つ特定の形状にパタ
ーニングして形成される複数の磁気抵抗素子からなる磁
気抵抗素子回路と、トランジスタおよび抵抗を備え且つ
前記磁気抵抗素子回路に直列接続される定電流回路と、
前記磁気抵抗素子によって発生する電圧信号を増幅して
比較する比較器とを有して構成される。The magnetic sensor of the present invention comprises:
A magnetoresistive element circuit comprising a plurality of magnetoresistive elements formed by depositing a ferromagnetic alloy thin film on a substrate and patterning it into a specific shape; and a transistor and a resistor, which are connected in series to the magnetoresistive element circuit. Constant current circuit,
And a comparator for amplifying and comparing the voltage signal generated by the magnetoresistive element.
【0011】[0011]
【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の一実施例を示す磁気センサ
の回路図である。図1に示すように、本実施例は前述し
た図4の従来例と同様、磁気抵抗素子(以下、MR素子
と称す)R1,R2,R3,R4を同一形状にパターニ
ングし且つタスキ掛けに配置した磁気抵抗素子回路1
と、その回路1とGNDに直列に接続される定電流回路
2と、磁気抵抗素子回路1のA2,A3出力を入力して
増幅するとともに比較する比較器3と、抵抗7,8とを
有している。このMR素子回路1は同一極性の磁界が加
わると、タスキ掛けに配置されたMR素子R1とR3が
同等の抵抗値変動を生ずるという特性を有する。また、
MR素子R2とR4はMR素子R1とR3に対して垂直
方向にパターニングされているため、MR素子R1,R
3の抵抗変化時にMR素子R2,R4の抵抗値は変動し
ない。この特性により、MR素子R1〜R4からなるM
R素子回路1の出力A2,A3間に電位差が生じる。一
方、定電流回路2は抵抗4,5および抵抗6と、トラン
ジスタQ1,Q2とから構成され、MR素子R1〜R4
と同一基板上にモノリシック回路として配置される。こ
の定電流回路2によりトランジスタQ2のコレクタ電流
I3が一定に保たれるので、温度変化によってMR素子
R1,R2,R3,R4の抵抗値が変動しても、MR素
子R1〜R4内を流れる電流(I1+I2)の値は変化
しない。また、MR素子R1,R4とMR素子R2,R
3は対称な形状であるので、I1+I2=一定ならば、
I1=I2=一定の関係が成り立つ。Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a circuit diagram of a magnetic sensor showing an embodiment of the present invention. As shown in FIG. 1, this embodiment is similar to the conventional example of FIG. 4 described above, in which magnetoresistive elements (hereinafter referred to as MR elements) R1, R2, R3, and R4 are patterned in the same shape and arranged in a skewed manner. Magnetoresistive element circuit 1
A constant current circuit 2 connected in series with the circuit 1 and GND; a comparator 3 for inputting and amplifying the A2 and A3 outputs of the magnetoresistive element circuit 1 for comparison; and resistors 7 and 8. is doing. The MR element circuit 1 has a characteristic that when the magnetic fields of the same polarity are applied, the MR elements R1 and R3 arranged in a skewed manner produce the same resistance value fluctuations. Also,
Since the MR elements R2 and R4 are patterned in the direction perpendicular to the MR elements R1 and R3, the MR elements R1 and R4 are
When the resistance of No. 3 changes, the resistance values of the MR elements R2 and R4 do not change. Due to this characteristic, M including the MR elements R1 to R4
A potential difference occurs between the outputs A2 and A3 of the R element circuit 1. On the other hand, the constant current circuit 2 is composed of resistors 4 and 5 and a resistor 6 and transistors Q1 and Q2, and has MR elements R1 to R4.
And a monolithic circuit on the same substrate. The constant current circuit 2 keeps the collector current I3 of the transistor Q2 constant, so that even if the resistance values of the MR elements R1, R2, R3, and R4 change due to temperature changes, the current flowing through the MR elements R1 to R4. The value of (I1 + I2) does not change. Further, the MR elements R1 and R4 and the MR elements R2 and R
Since 3 has a symmetrical shape, if I1 + I2 = constant,
I1 = I2 = constant relationship holds.
【0012】ここで、単位磁界が加わることによるMR
素子R1〜R4の抵抗変化ΔRの温度変化は極めて小さ
いため不変とすれば、MR素子の出力A2,A3間の電
位差ΔEは、次のようになる。Here, the MR due to the addition of the unit magnetic field
Since the change in resistance ΔR of the elements R1 to R4 with temperature is extremely small, if it is not changed, the potential difference ΔE between the outputs A2 and A3 of the MR element is as follows.
【0013】 ΔE=(R4+ΔR4)I1−R3・I2(常温時) ΔE=(R4+α4+ΔR4)I1−(R3+α3)・
I2(温度変化時) 尚、α3,α4はMR素子の温度変化量である。ΔE = (R4 + ΔR4) I1−R3 · I2 (at normal temperature) ΔE = (R4 + α4 + ΔR4) I1− (R3 + α3) ·
I2 (when temperature changes) Note that α3 and α4 are the temperature changes of the MR element.
【0014】この時、温度変化はMR素子R3,R4に
同等に加わり、さらにMR素子の大きさや形状が等しけ
れば、R3=R4,α3=α4が成立する。At this time, the temperature change is equally applied to the MR elements R3 and R4, and if the MR elements have the same size and shape, then R3 = R4, α3 = α4.
【0015】次に、定電流回路2の温度変動を0℃およ
び80℃について求める。ここでは、MR素子R1〜R
4を流れる電流をI3、トランジスタQ1,Q2のベー
ス・エミッタ電圧をVBE、コレクタ遮断電流をICB
O、電流増幅率をhFEとし、それぞれの定数が表1の
ように温度変化すると仮定する。Next, temperature fluctuations of the constant current circuit 2 will be calculated for 0 ° C. and 80 ° C. Here, the MR elements R1 to R
4 is I3, the base / emitter voltage of transistors Q1 and Q2 is VBE, and the collector cutoff current is ICB.
O and the current amplification factor are hFE, and it is assumed that the respective constants change with temperature as shown in Table 1.
【0016】[0016]
【表1】 [Table 1]
【0017】以上の値から電流を求めると、0℃ではI
3=0.909(mA)となり、80℃ではI3=0.
923(mA)となる。従って、約1.5%の電流値変
動となる。しかるに、磁気抵抗効果による抵抗値変化の
温度係数を無視すれば、A2,A3出力間の電位差ΔE
の温度変動は、定電流回路2の電流I3の温度特性と一
致する。従って、0℃〜80℃における電位差ΔEの温
度変動は約+1.8%であり、前述した従来例構成のΔ
Eの変動−20%と比較しても10倍以上の特性改善と
なる。When the current is obtained from the above values, I at 0 ° C.
3 = 0.909 (mA), and I3 = 0.09 at 80 ° C.
It becomes 923 (mA). Therefore, the current value changes by about 1.5%. However, if the temperature coefficient of the resistance change due to the magnetoresistive effect is ignored, the potential difference ΔE between the A2 and A3 outputs is ΔE.
The temperature fluctuation of is in agreement with the temperature characteristic of the current I3 of the constant current circuit 2. Therefore, the temperature variation of the potential difference ΔE between 0 ° C. and 80 ° C. is about + 1.8%, and Δ of the above-described conventional example configuration.
Even if the fluctuation of E is -20%, the characteristic is improved 10 times or more.
【0018】図2は本発明の他の実施例を示す磁気セン
サの回路図である。図2に示すように、本実施例は定電
流回路2内の抵抗4および5をトリミング抵抗4a,5
aに置換したものである。その他は前述した一実施例と
同様である。本実施例ではMR素子R1,R2,R3,
R4を流れる電流I1,I2を調整可能にしている。そ
の調整方法としては、MR素子R1〜R4に規定値の磁
界をかけ、この時A2,A3出力間に発生する電位差Δ
Eを測定し、このΔEが規格内に入るように抵抗4,5
をトリミングする。これにより、磁気センサの初期ばら
つきを補正することができる。FIG. 2 is a circuit diagram of a magnetic sensor showing another embodiment of the present invention. As shown in FIG. 2, in this embodiment, the resistors 4 and 5 in the constant current circuit 2 are replaced with the trimming resistors 4a and 5.
It is replaced with a. Others are the same as those in the above-described embodiment. In this embodiment, the MR elements R1, R2, R3,
The currents I1 and I2 flowing through R4 are adjustable. The adjustment method is as follows. A magnetic field having a specified value is applied to the MR elements R1 to R4, and the potential difference Δ generated between the outputs A2 and A3 at this time.
E is measured, and resistors 4, 5 are set so that ΔE is within the standard.
To trim. Thereby, the initial variation of the magnetic sensor can be corrected.
【0019】[0019]
【発明の効果】以上説明したように、本発明の磁気セン
サは、MR素子に直列に定電流回路を接続することによ
り、MR素子の温度係数による特性変動を補償できると
いう効果がある。また、定電流回路内にトリミング抵抗
を設けると、MR素子の抵抗値の初期ばらつきを吸収す
ることが可能になり、特性の安定化を図れるとともに、
良品率を向上させることができるという効果がある。As described above, the magnetic sensor of the present invention has the effect of compensating for characteristic variations due to the temperature coefficient of the MR element by connecting a constant current circuit in series with the MR element. Further, when the trimming resistor is provided in the constant current circuit, it becomes possible to absorb the initial variation of the resistance value of the MR element, and the characteristic can be stabilized.
There is an effect that the non-defective rate can be improved.
【図1】本発明の一実施例を示す磁気センサの回路図で
ある。FIG. 1 is a circuit diagram of a magnetic sensor showing an embodiment of the present invention.
【図2】本発明の他の実施例を示す磁気センサの回路図
である。FIG. 2 is a circuit diagram of a magnetic sensor showing another embodiment of the present invention.
【図3】従来の一例を示す磁気センサの切欠き斜視図で
ある。FIG. 3 is a cutaway perspective view of a conventional magnetic sensor.
【図4】図3における磁気抵抗素子回路のパターン図で
ある。FIG. 4 is a pattern diagram of the magnetoresistive element circuit in FIG.
【図5】図3に示す磁気センサの回路図である。5 is a circuit diagram of the magnetic sensor shown in FIG.
1 磁気抵抗素子回路 2 定電流回路 3 比較器 4〜8 抵抗 4a,5a トリミング抵抗 R1〜R4 磁気抵抗素子 Q1,Q2 トランジスタ 1 Magnetoresistive element circuit 2 Constant current circuit 3 Comparator 4-8 Resistance 4a, 5a Trimming resistance R1-R4 Magnetoresistive element Q1, Q2 Transistor
Claims (1)
定の形状にパターニングして形成される複数の磁気抵抗
素子からなる磁気抵抗素子回路と、トランジスタおよび
抵抗を備え且つ前記磁気抵抗素子回路に直列接続される
定電流回路と、前記磁気抵抗素子によって発生する電圧
信号を増幅して比較する比較器とを有することを特徴と
する磁気センサ。1. A magnetoresistive element circuit comprising a plurality of magnetoresistive elements formed by depositing a ferromagnetic alloy thin film on a substrate and patterning it into a specific shape, and a magnetoresistive element circuit comprising a transistor and a resistor. A magnetic sensor, comprising: a constant current circuit connected in series with the above; and a comparator for amplifying and comparing a voltage signal generated by the magnetoresistive element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4012703A JPH05273320A (en) | 1992-01-28 | 1992-01-28 | Magnetic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4012703A JPH05273320A (en) | 1992-01-28 | 1992-01-28 | Magnetic sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05273320A true JPH05273320A (en) | 1993-10-22 |
Family
ID=11812770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4012703A Pending JPH05273320A (en) | 1992-01-28 | 1992-01-28 | Magnetic sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05273320A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6262858B1 (en) | 1997-12-26 | 2001-07-17 | Fujitsu Limited | Magnetic disk device for controlling a sense current supplied to a magneto-resistive head based on an ambient temperature |
JP2002116105A (en) * | 2000-10-06 | 2002-04-19 | Denso Corp | Physical quantity detecting device |
JP2012137312A (en) * | 2010-12-24 | 2012-07-19 | Asahi Kasei Electronics Co Ltd | Magnetic sensor |
-
1992
- 1992-01-28 JP JP4012703A patent/JPH05273320A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6262858B1 (en) | 1997-12-26 | 2001-07-17 | Fujitsu Limited | Magnetic disk device for controlling a sense current supplied to a magneto-resistive head based on an ambient temperature |
JP2002116105A (en) * | 2000-10-06 | 2002-04-19 | Denso Corp | Physical quantity detecting device |
JP4568982B2 (en) * | 2000-10-06 | 2010-10-27 | 株式会社デンソー | Physical quantity detection device |
JP2012137312A (en) * | 2010-12-24 | 2012-07-19 | Asahi Kasei Electronics Co Ltd | Magnetic sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2551321B2 (en) | Integrated magnetoresistive sensor | |
JP2574659B2 (en) | Temperature compensated magnetoresistive sensor circuit with high output voltage swing | |
JPH04369878A (en) | Magnetoresistance effect element circuit | |
JP2002116105A (en) | Physical quantity detecting device | |
JPH0450772A (en) | Current detector | |
JPH05273320A (en) | Magnetic sensor | |
US6909569B2 (en) | Low impedance semiconductor integrated circuit | |
JPH0695097B2 (en) | Integrated speed sensor with magnetic sensor resistance | |
JPH10281897A (en) | Semiconductor pressure detector | |
CN116222626A (en) | High-precision self-calibration magnetic switch chip | |
US6211736B1 (en) | Signal amplifying circuit for magnetoresistive element | |
EP0884602A1 (en) | Low noise preamplifier for a magnetoresistive data transducer | |
JP2715997B2 (en) | Magnetic sensor | |
US5488296A (en) | Temperature compensated magnetically sensitive circuit | |
JP3428205B2 (en) | Hall element drive circuit | |
JP3105716B2 (en) | Current mirror circuit | |
JP2610736B2 (en) | Amplification compensation circuit of semiconductor pressure sensor | |
JP2714317B2 (en) | Temperature compensator | |
JP3515248B2 (en) | Differential magnetic resistance circuit | |
JP3727788B2 (en) | Current detection circuit | |
JP2971613B2 (en) | Comparator circuit | |
KR20000011708A (en) | Device for reading magnetic information | |
JP2596125Y2 (en) | Operational amplifier circuit | |
JP2003185685A (en) | Detector | |
JP3507216B2 (en) | Differential magnetic resistance circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980818 |