JP3515248B2 - Differential magnetic resistance circuit - Google Patents

Differential magnetic resistance circuit

Info

Publication number
JP3515248B2
JP3515248B2 JP23422295A JP23422295A JP3515248B2 JP 3515248 B2 JP3515248 B2 JP 3515248B2 JP 23422295 A JP23422295 A JP 23422295A JP 23422295 A JP23422295 A JP 23422295A JP 3515248 B2 JP3515248 B2 JP 3515248B2
Authority
JP
Japan
Prior art keywords
magnetoresistive
resistor
differential
circuit
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23422295A
Other languages
Japanese (ja)
Other versions
JPH0980139A (en
Inventor
彰一 楽満
直樹 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP23422295A priority Critical patent/JP3515248B2/en
Publication of JPH0980139A publication Critical patent/JPH0980139A/en
Application granted granted Critical
Publication of JP3515248B2 publication Critical patent/JP3515248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、磁気検出器として
利用される差動磁気抵抗回路の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of a differential magnetoresistive circuit used as a magnetic detector.

【0002】[0002]

【従来の技術】磁界の変化を検出する磁気検出回路とし
ては、図2に示すような差動磁気抵抗回路(ハーフブリ
ッジ回路)が知られている。この差動磁気抵抗回路11
は、半導体からなる2個の磁気抵抗素子12、13を直
列に接続したものであり、基準電圧が与えられる端子1
4および15と、この基準電圧を磁気抵抗素子12と1
3により分圧した中点電圧を出力する出力端子16とを
有するものである。
2. Description of the Related Art As a magnetic detection circuit for detecting a change in magnetic field, a differential magnetic resistance circuit (half bridge circuit) as shown in FIG. 2 is known. This differential magnetoresistive circuit 11
Is a device in which two magnetoresistive elements 12 and 13 made of semiconductor are connected in series, and a terminal 1 to which a reference voltage is applied.
4 and 15, and this reference voltage to the magnetoresistive elements 12 and 1.
The output terminal 16 outputs the midpoint voltage divided by 3.

【0003】ここで、磁気抵抗素子12、13は、磁界
の強さに応じてその抵抗値を変化させる素子であり、例
えば、特公昭50−21229号公報におけるもの等が
知られている。
Here, the magnetoresistive elements 12 and 13 are elements that change their resistance values according to the strength of the magnetic field. For example, those disclosed in Japanese Patent Publication No. 50-21229 are known.

【0004】さて、このような差動磁気抵抗回路11
が、例えば、図3に示すような強磁性体17と非磁性体
18とが周期的に配置される配列に近接して置かれたな
らば、その位置に応じて磁気抵抗素子12と13の周囲
の磁界がそれぞれ異なって変化し、これに応じて磁気抵
抗素子12と13の抵抗値も異なった変化をする。した
がって、差動磁気抵抗回路11と強磁性体17および非
磁性体18との相対位置の変化は、磁気抵抗素子12と
13の抵抗値の比にしたがって得られる中点電圧の変化
として検出されることとなる。
Now, such a differential magnetoresistive circuit 11
However, if, for example, the ferromagnetic substance 17 and the non-magnetic substance 18 as shown in FIG. 3 are placed close to an array in which they are periodically arranged, the magnetoresistive elements 12 and 13 are arranged in accordance with their positions. The surrounding magnetic fields change differently, and accordingly, the resistance values of the magnetoresistive elements 12 and 13 also change differently. Therefore, a change in the relative position of the differential magnetoresistive circuit 11 and the ferromagnetic body 17 and the nonmagnetic body 18 is detected as a change in the midpoint voltage obtained according to the ratio of the resistance values of the magnetoresistive elements 12 and 13. It will be.

【0005】しかし、このような差動磁気抵抗回路11
における磁気抵抗素子12、13の抵抗温度係数は、こ
れらの素子の材料自体のわずかな特性の違いや、これら
の素子の構造のわずかな相違から、若干の差異を有する
ことが多い。このような場合、差動磁気抵抗回路11の
周辺の温度変化により、異なる抵抗温度係数を有する2
個の磁気抵抗素子12、13の抵抗値が、周囲の磁界が
不変であるにもかかわらず、異なった比率で変化してし
まう。この結果、出力端子16から得られる中点電圧も
変化してしまうので、磁界変化の正確な検出が阻害され
てしまう。
However, such a differential magnetoresistive circuit 11
In many cases, the temperature coefficient of resistance of the magnetoresistive elements 12 and 13 has a slight difference due to a slight difference in characteristics of the materials of these elements and a slight difference in the structure of these elements. In such a case, the temperature difference around the differential magnetoresistive circuit 11 may cause a difference in the temperature coefficient of resistance 2
The resistance values of the individual magnetoresistive elements 12 and 13 change at different ratios even though the surrounding magnetic field is unchanged. As a result, the midpoint voltage obtained from the output terminal 16 also changes, which hinders accurate detection of magnetic field changes.

【0006】そこで、図4に示す差動磁気抵抗回路21
においては、一方の磁気抵抗素子22に、磁気抵抗素子
22、23に比べて抵抗温度係数が著しく小さくまた適
切な抵抗値を有する抵抗体27を並列に接続することに
より、2個の磁気抵抗素子22、23の特性の違いによ
る出力電圧の温度ドリフトを補償している。
Therefore, the differential magnetic resistance circuit 21 shown in FIG.
In the above, in one magnetic resistance element 22, by connecting in parallel a resistor 27 having a resistance temperature coefficient significantly smaller than those of the magnetic resistance elements 22 and 23 and having an appropriate resistance value, two magnetic resistance elements The temperature drift of the output voltage due to the difference in the characteristics of 22 and 23 is compensated.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うに温度補償用の抵抗体27を接続すると、差動磁気抵
抗回路21の磁界の存在しない初期状態での出力電圧
(オフセット電圧)は、抵抗体27を接続していないと
きに設定したオフセット電圧から変動してしまう。
However, when the temperature compensating resistor 27 is connected in this manner, the output voltage (offset voltage) of the differential magnetoresistive circuit 21 in the initial state in which the magnetic field does not exist is equal to that of the resistor. The offset voltage will change from the set offset voltage when 27 is not connected.

【0008】さらに、差動磁気抵抗回路21が複数ある
場合には、抵抗体27の抵抗値αは1個1個の差動磁気
抵抗回路21について異なる値が設定されるため、それ
ぞれの差動磁気抵抗回路21で抵抗体27によるオフセ
ット電圧の変動は同一ではなく、結局、同一条件下での
1個1個の差動磁気抵抗回路21の出力電圧には、ばら
つきが生じてしまう。
Further, when there are a plurality of differential magnetoresistive circuits 21, the resistance value α of the resistor 27 is set to a different value for each differential magnetoresistive circuit 21. The fluctuations of the offset voltage due to the resistors 27 in the magnetoresistive circuit 21 are not the same, and eventually the output voltage of each differential magnetoresistive circuit 21 under the same condition varies.

【0009】本発明は、このような問題点に着目して、
温度ドリフトに対する補償が行われた複数の差動磁気抵
抗回路において、同一の磁界の下では、あらかじめ設定
した共通の出力電圧を出力する差動磁気抵抗回路を提供
することを目的とする。
The present invention focuses on such problems,
An object of the present invention is to provide a differential magnetoresistive circuit that outputs a preset common output voltage under the same magnetic field in a plurality of differential magnetoresistive circuits that are compensated for temperature drift.

【0010】[0010]

【課題を解決するための手段】第1の発明は、2個の磁
気抵抗素子を直列に連結し、その中点電圧を出力電圧と
する差動磁気抵抗回路において、これらの磁気抵抗素子
に比べて抵抗温度係数の著しく小さな第1の抵抗体を前
記磁気抵抗素子のいずれか一方に並列に接続するととも
に、これらの磁気抵抗素子に比べて抵抗温度係数の著し
く小さな第2の抵抗体を前記2個の磁気抵抗素子に直列
に接続し、所定の温度範囲で、前記一方の磁気抵抗素
子、前記第1の抵抗体及び前記第2の抵抗体からなる回
路の抵抗温度係数と、もう一方の前記磁気抵抗素子の抵
抗温度係数とをほぼ等しくするとともに、中点電圧を補
正する
According to a first aspect of the present invention, in a differential magnetoresistive circuit in which two magnetoresistive elements are connected in series and a midpoint voltage thereof is used as an output voltage, these magnetoresistive elements are A first resistor having a remarkably small temperature coefficient of resistance is connected in parallel to one of the magnetoresistive elements, and a second resistor having a remarkably small temperature coefficient of resistance as compared with these magnetoresistive elements is connected to the second resistor. One magnetoresistive element is connected in series to each of the magnetoresistive elements, and the magnetoresistive element is
A circuit comprising a child, the first resistor and the second resistor
The temperature coefficient of resistance of the path and the resistance of the other magnetoresistive element.
Make the coercive temperature coefficient approximately equal and supplement the midpoint voltage.
To correct .

【0011】第2の発明は、前記第2の抵抗体を、前記
2個の磁気抵抗素子の中点よりも第1の抵抗体を並列に
接続した磁気抵抗素子側に直列に接続し、この第2の抵
抗体の抵抗値βを β={(a1 +α)b1 −(a11 +b1 α+αa
1 )χ}/(a1 +α)χ を満たすように設定する。ただし、ここで、a1 は所定
の磁界内での所定の温度t1 における第1の抵抗体を並
列に接続した方の磁気抵抗素子の抵抗値、b1 は所定の
磁界内での所定の温度t1 におけるもう一方の磁気抵抗
素子の抵抗値、αは第1の抵抗体の抵抗値、χは差動磁
気抵抗回路にかけられる基準電圧VC C に対してオフセ
ット電圧V0 をχVC C と定めたときの値χとする。
According to a second aspect of the present invention, the second resistor is connected in series to the side of the magnetoresistive element in which the first resistor is connected in parallel with respect to the midpoint of the two magnetoresistive elements. The resistance value β of the second resistor is β = {(a 1 + α) b 1 − (a 1 b 1 + b 1 α + αa
1 ) χ} / (a 1 + α) χ is set. Here, a 1 is a resistance value of the magnetoresistive element in which the first resistors are connected in parallel at a predetermined temperature t 1 in a predetermined magnetic field, and b 1 is a predetermined value in the predetermined magnetic field. the resistance of the other magnetoresistive element at a temperature t 1, alpha is the resistance of the first resistor, KaiV an offset voltage V 0 with respect to the reference voltage V C C chi is applied to the differential magnetoresistive circuit C C And the value is χ.

【0012】第3の発明は、前記第2の抵抗体を、前記
2個の磁気抵抗素子の中点よりも第1の抵抗体を並列に
接続した磁気抵抗素子と反対側に直列に接続し、この第
2の抵抗体の抵抗値βを β={(a1 +α)b1 −(a11 +b1 α+αa
1 )χ}/(a1 +α)(χ−1)} を満たすように設定する。ただし、ここで、a1 は所定
の磁界内での所定の温度t1 における第1の抵抗体を並
列に接続した方の磁気抵抗素子の抵抗値、b1 は所定の
磁界内での所定の温度t1 におけるもう一方の磁気抵抗
素子の抵抗値、αは第1の抵抗体の抵抗値、χは差動磁
気抵抗回路にかけられる基準電圧VC C に対してオフセ
ット電圧V0 をχVC C と定めたときの値χとする。
In a third aspect of the invention, the second resistor is connected in series on the side opposite to the magnetoresistive element in which the first resistor is connected in parallel with respect to the midpoint of the two magnetoresistive elements. , The resistance value β of this second resistor is β = {(a 1 + α) b 1 − (a 1 b 1 + b 1 α + αa
1 ) χ} / (a 1 + α) (χ-1)}. Here, a 1 is a resistance value of the magnetoresistive element in which the first resistors are connected in parallel at a predetermined temperature t 1 in a predetermined magnetic field, and b 1 is a predetermined value in the predetermined magnetic field. the resistance of the other magnetoresistive element at a temperature t 1, alpha is the resistance of the first resistor, KaiV an offset voltage V 0 with respect to the reference voltage V C C chi is applied to the differential magnetoresistive circuit C C And the value is χ.

【0013】[0013]

【作用】第1の発明では、第1および第2の抵抗体によ
り、出力電圧の温度ドリフトが補償されると同時に、差
動磁気抵抗回路に直列に接続された第2の抵抗体によ
り、差動磁気抵抗回路のオフセット電圧が任意に設定さ
れ、また、複数の差動磁気抵抗回路について出力電圧が
共通の任意の値に設定される。
According to the first aspect of the invention, the temperature drift of the output voltage is compensated by the first and second resistors, and at the same time, the difference is produced by the second resistor connected in series to the differential magnetoresistive circuit. The offset voltage of the dynamic magnetic resistance circuit is set arbitrarily, and the output voltage is set to a common arbitrary value for the plurality of differential magnetic resistance circuits.

【0014】第2の発明では、設定されたオフセット電
圧に対して、差動磁気抵抗回路の第1の抵抗体を並列に
接続した磁気抵抗素子の側に直列に接続された第2の抵
抗体の抵抗値が適切に設定されるので、複数の差動磁気
抵抗回路について共通のあらかじめ設定された適切なオ
フセット電圧および出力電圧が出力される。
In the second aspect of the invention, the second resistor connected in series with the side of the magnetoresistive element in which the first resistor of the differential magnetoresistive circuit is connected in parallel with respect to the set offset voltage. Since the resistance value of is properly set, an appropriate preset offset voltage and output voltage common to a plurality of differential magnetoresistive circuits are output.

【0015】第3の発明では、設定されたオフセット電
圧に対して、差動磁気抵抗回路の第1の抵抗体を並列に
接続した磁気抵抗素子と反対側に直列に接続された第2
の抵抗体の抵抗値が適切に設定されるので、複数の差動
磁気抵抗回路について共通のあらかじめ設定された適切
なオフセット電圧および出力電圧が出力される。
According to the third aspect of the invention, with respect to the set offset voltage, the second resistive element is connected in series on the opposite side of the magnetoresistive element in which the first resistive element of the differential magnetoresistive circuit is connected in parallel.
Since the resistance value of the resistor is appropriately set, a preset appropriate offset voltage and output voltage common to the plurality of differential magnetoresistive circuits are output.

【0016】[0016]

【発明の実施の形態】以下、図面に基づいて本発明の実
施の形態について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】ここで、差動磁気抵抗回路1は、従来例と
同様に、磁気抵抗素子2および3が直列に接続され、端
子4および5の間に与えられる基準電圧VC C を分圧し
た中点電圧が出力端子6から取り出される構成となって
いる。
[0017] Here, the differential magnetoresistive circuit 1, as in the conventional example, the magnetoresistive element 2 and 3 are connected in series and dividing the reference voltage V C C applied between the terminals 4 and 5 min The midpoint voltage is taken out from the output terminal 6.

【0018】また、磁気抵抗素子2および3は磁界の強
さによりその抵抗値を変化させる素子であり、例えばI
nSb(インジウムアンチモン)のような電子移動度の
大きな半導体により構成される。
The magnetoresistive elements 2 and 3 are elements that change their resistance values depending on the strength of the magnetic field.
It is composed of a semiconductor having a high electron mobility such as nSb (indium antimony).

【0019】さらに、本発明においては、磁気抵抗素子
2に並列に第1の抵抗体7が、また、磁気抵抗素子2、
3に直列に第2の抵抗体8が、それぞれ接続される。こ
こで、抵抗体7、8としては、半導体である磁気抵抗素
子2および3の抵抗温度係数に対して無視し得る程度に
抵抗温度係数が小さな抵抗として、例えば、一般の金属
抵抗や炭素皮膜抵抗等が用いられる。
Further, in the present invention, the first resistor 7 is provided in parallel with the magnetoresistive element 2, and the magnetoresistive element 2,
The second resistor 8 is connected in series with the third resistor 3, respectively. Here, the resistors 7 and 8 are resistors having a resistance temperature coefficient that is so small as to be negligible with respect to the resistance temperature coefficients of the magnetoresistive elements 2 and 3 which are semiconductors. Etc. are used.

【0020】また、抵抗体7および8の抵抗値は、磁気
抵抗素子2と抵抗体7および8とからなる回路の抵抗温
度係数が、磁気抵抗素子3の抵抗温度係数と、近似的に
等しくなるように選ばれる。具体的には、以下のとおり
である。
Regarding the resistance values of the resistors 7 and 8, the temperature coefficient of resistance of the circuit including the magnetoresistive element 2 and the resistors 7 and 8 is approximately equal to the temperature coefficient of resistance of the magnetoresistive element 3. To be chosen. Specifically, it is as follows.

【0021】すなわち、まず、差動磁気抵抗回路1の使
用状況に対応して適切に選ばれた所定の温度t1 、t2
に対して、同一の磁界内での磁気抵抗素子2の抵抗値a
1 、a2 および磁気抵抗素子3の抵抗値b1 、b2 の測
定を行う。ここで、温度t1、t2 としては、例えばこ
の差動磁気抵抗回路1が常温t1 の他に高温t2 におい
ても使用されるとしたならば、これらの温度t1 、t2
が選ばれる。
That is, first, the predetermined temperatures t 1 and t 2 appropriately selected according to the usage of the differential magnetoresistive circuit 1.
, The resistance value a of the magnetoresistive element 2 in the same magnetic field is
1 and a 2 and the resistance values b 1 and b 2 of the magnetoresistive element 3 are measured. Here, the temperature t 1, as the t 2, for example if the differential magnetoresistive circuit 1 was also used in high temperature t 2 in addition to the normal temperature t 1, these temperatures t 1, t 2
Is selected.

【0022】つぎに、温度変化に対して抵抗体7、8の
抵抗値α、βは不変と仮定して、同一の磁界内での、温
度t1 と温度t2 における差動磁気抵抗回路1の出力電
圧が同一となるように、抵抗値α、βの値を定める。す
なわち、磁気抵抗素子2と抵抗体7からなる並列回路と
磁気抵抗素子3の間の中点電圧が、この両温度において
等しくなるように抵抗値α、βの値を定める。
Next, assuming that the resistance values α and β of the resistors 7 and 8 do not change with respect to the temperature change, the differential magnetoresistive circuit 1 at the temperature t 1 and the temperature t 2 in the same magnetic field. The resistance values α and β are determined so that the output voltages of the same are the same. That is, the resistance values α and β are determined such that the midpoint voltage between the parallel circuit including the magnetoresistive element 2 and the resistor 7 and the magnetoresistive element 3 becomes equal at both temperatures.

【0023】ここで、 (t1 における中点電圧) =VC C1 /{b1 +a1 α/(a1 +α)+β} …(1) であり、 (t2 における中点電圧) =VC C2 /{b2 +a2 α/(a2 +α)+β} …(2) であるから、これらの式(1)の右辺と(2)の右辺を
等置することにより、求めるべき抵抗値α、βが求めら
れる。
Where (midpoint voltage at t 1 ) = V C C b 1 / {b 1 + a 1 α / (a 1 + α) + β} (1), and (midpoint voltage at t 2 ). = V C C b 2 / {b 2 + a 2 α / (a 2 + α) + β} (2) Therefore, by equating the right side of these equations (1) and (2), The resistance values α and β to be obtained are obtained.

【0024】このように、例えば差動磁気抵抗回路1の
実際に使用される温度t1 、t2 に対して、抵抗体7、
8の抵抗値α、βを適切に定めることにより、通常の使
用温度範囲では、磁気抵抗素子2と抵抗体7および8か
らなる回路の抵抗温度係数と、磁気抵抗素子3の抵抗温
度係数がほぼ等しく保たれ、端子4から端子6の間の抵
抗値と端子5から端子6の間の抵抗値がほぼ同一の割合
で変化するので、温度変化による抵抗値変動が原因の出
力電圧変動は相殺され、出力電圧の変動が抑制される。
Thus, for example, for the temperatures t 1 and t 2 at which the differential magnetoresistive circuit 1 is actually used, the resistor 7,
By properly determining the resistance values α and β of 8, the resistance temperature coefficient of the circuit including the magnetoresistive element 2 and the resistors 7 and 8 and the resistance temperature coefficient of the magnetoresistive element 3 are almost equal to each other in the normal operating temperature range. Since the resistance value between the terminals 4 and 6 and the resistance value between the terminals 5 and 6 change at substantially the same rate, the output voltage fluctuation caused by the resistance fluctuation due to temperature change is canceled out. The fluctuation of the output voltage is suppressed.

【0025】一方、磁界の存在しない初期状態での出力
電圧(オフセット電圧)V0 をχVC C とするならば、
このオフセット電圧V0 は、上記の式(1)の右辺また
は(2)の右辺をχVC C と等置することによって任意
に定められる。すなわち、 b1 /{b1 +a1 α/(a1 +α)+β}=χ …(3) となり、このとき抵抗体8の抵抗値βは、 β={(a1 +α)b1 −(a11 +b1 α+αa1 )χ}/(a1 +α)χ …(4) と求められる。
On the other hand, if the output voltage (offset voltage) V 0 in the initial state where no magnetic field exists is χ V C C ,
The offset voltage V 0 is determined arbitrarily by enumeration and χV C C a right side of the right side or (2) of the above formula (1). That is, b 1 / {b 1 + a 1 α / (a 1 + α) + β} = χ (3), where the resistance value β of the resistor 8 is β = {(a 1 + α) b 1- ( a 1 b 1 + b 1 α + αa 1 ) χ} / (a 1 + α) χ (4)

【0026】なお、本実施の形態においては図1のよう
に、抵抗体8は、磁気抵抗素子2と3の中点の出力端子
6よりも、抵抗体2が並列に接続された磁気抵抗素子2
側に、すなわち端子4側に直列に接続されたが、これと
は逆に、抵抗体8を、磁気抵抗素子2と反対側に、すな
わち出力端子6よりも磁気抵抗素子3および端子5側に
直列に接続する他の実施の形態を取ることも可能であ
る。この場合の抵抗体8の抵抗値βは、 β={(a1 +α)b1 −(a11 +b1 α+αa1 )χ}/{(a1 +α) (χ−1)}…(5) となる。このように、抵抗体8を差動磁気抵抗回路1に
直列に接続する場所は、抵抗体7、8の抵抗値α、βお
よびχの値に応じて任意に選択することができる。
In the present embodiment, as shown in FIG. 1, the resistor 8 is a magnetoresistive element in which the resistor 2 is connected in parallel rather than the output terminal 6 at the midpoint of the magnetoresistive elements 2 and 3. Two
Side, that is, connected in series to the terminal 4 side, but conversely, the resistor 8 is provided on the side opposite to the magnetoresistive element 2, that is, on the magnetoresistive element 3 and terminal 5 side with respect to the output terminal 6. Other embodiments in which they are connected in series are also possible. The resistance value β of the resistor 8 in this case is β = {(a 1 + α) b 1 − (a 1 b 1 + b 1 α + αa 1 ) χ} / {(a 1 + α) (χ−1)} ... ( 5) becomes. As described above, the location where the resistor 8 is connected in series to the differential magnetoresistive circuit 1 can be arbitrarily selected according to the resistance values α, β and χ of the resistors 7 and 8.

【0027】本発明では、このようにして、オフセット
電圧V0 を、複数の差動磁気抵抗回路1に共通の任意の
値に設定することが可能となる。例えば、V0 をVC C
/2と設定したいのならば、(4)式または(5)式に
おいてχ=0.5とおけばよく、このようにβが設定さ
れた総ての差動磁気抵抗回路1においてV0 =VC C
2となる。
In the present invention, the offset voltage V 0 can thus be set to an arbitrary value common to the plurality of differential magnetoresistive circuits 1. For example, the V 0 V C C
If it is desired to set / 2, it is sufficient to set χ = 0.5 in the equation (4) or the equation (5), and V 0 = in all differential magnetoresistive circuits 1 in which β is set in this way. V C C /
It becomes 2.

【0028】なお、抵抗体7、8の抵抗値α、βの設定
は、1個1個の差動磁気抵抗回路1に対して別々に行わ
れることとなり、それぞれの差動磁気抵抗回路1に対し
て適切な抵抗値α、βが設定される。
The resistance values α and β of the resistors 7 and 8 are set separately for each differential magnetoresistive circuit 1, and each differential magnetoresistive circuit 1 is set. On the other hand, appropriate resistance values α and β are set.

【0029】つぎに作用を説明する。Next, the operation will be described.

【0030】本発明の差動磁気抵抗回路1は、例えば、
従来例の説明において述べたのと同じように、周囲の磁
界が位置によって周期的に変化するような環境におか
れ、差動磁気抵抗回路1の位置の変化は、出力端子6か
ら得られる出力の変動として検出される。ここで、端子
4および5の間には一定の基準電圧VC C が与えられ、
差動磁気抵抗回路1の出力電圧としてはこの基準電圧V
C C を磁気抵抗素子2と抵抗体7とからなる並列回路と
磁気抵抗素子3と抵抗体8により分圧した中点電圧の値
が取り出される。
The differential magnetoresistive circuit 1 of the present invention is, for example,
In the same manner as described in the description of the conventional example, the position of the differential magnetoresistive circuit 1 changes in the environment in which the surrounding magnetic field changes periodically depending on the position. Is detected as a fluctuation of. Here, between the terminals 4 and 5 is given a constant reference voltage V C C,
The output voltage of the differential magnetoresistive circuit 1 is the reference voltage V
The value of the midpoint voltage obtained by dividing C C by the parallel circuit including the magnetoresistive element 2 and the resistor 7, the magnetoresistive element 3 and the resistor 8 is taken out.

【0031】このとき、例えば差動磁気抵抗回路1の位
置の変化等により、磁気抵抗素子2および3の周囲の磁
界が異なって変化すれば、これらの磁気抵抗素子2、3
の抵抗値も、この磁界の異なった変動に対応して異なっ
た変化を示す。この結果、これらの磁気抵抗素子2、3
により基準電圧VC C を分圧した結果得られる出力電圧
は変動し、差動磁気抵抗回路1の位置の変化等が、差動
磁気抵抗回路1の周囲の磁界の変化に対応するものとし
て検出される。
At this time, if the magnetic fields around the magnetoresistive elements 2 and 3 change differently due to, for example, changes in the position of the differential magnetoresistive circuit 1, these magnetoresistive elements 2 and 3 are changed.
The resistance value of γ also shows different changes corresponding to different variations of this magnetic field. As a result, these magnetoresistive elements 2, 3
The reference voltage V C C dividing the resulting output voltage varies by, detected as changes in the position of the differential magnetoresistive circuit 1 corresponds to a change in the ambient magnetic field of the differential magnetoresistive circuit 1 To be done.

【0032】さて、この差動磁気抵抗回路1の使用中に
周辺温度が変化すると、磁気抵抗素子2および3は、そ
れぞれの素子に固有の抵抗温度係数にしたがって、その
抵抗値を変化させるが、磁気抵抗素子2および3の抵抗
温度係数は必ずしも等しくないので、これらの磁気抵抗
素子2、3の抵抗値はそれぞれ異なった割合で変化す
る。
When the ambient temperature changes during use of the differential magnetoresistive circuit 1, the magnetoresistive elements 2 and 3 change their resistance values according to the temperature coefficient of resistance peculiar to each element. Since the resistance temperature coefficients of the magnetoresistive elements 2 and 3 are not necessarily equal, the resistance values of these magnetoresistive elements 2 and 3 change at different rates.

【0033】ところが、本発明においては、磁気抵抗素
子2には適切な値の抵抗体7および8が接続されている
ので、磁気抵抗素子3の抵抗値の変化率が、磁気抵抗素
子2と抵抗体7および8の回路の抵抗値の変化率によっ
てほぼ近似され、磁気抵抗素子3とこの回路の抵抗値は
温度変化に対してはほぼ同様の割合で変化し、これらの
抵抗値変動の温度変化による部分はお互いに打ち消し合
うこととなる。したがって、これらの抵抗値の比として
出力される出力電圧は、温度変化によっては変動するこ
とはない。
However, in the present invention, since the resistors 7 and 8 having appropriate values are connected to the magnetoresistive element 2, the change rate of the resistance value of the magnetoresistive element 3 is equal to that of the magnetoresistive element 2. The resistance values of the circuits of the bodies 7 and 8 are approximated to each other, and the resistance values of the magnetoresistive element 3 and this circuit change at almost the same rate with respect to temperature changes. The parts due to will cancel each other out. Therefore, the output voltage output as the ratio of these resistance values does not change depending on the temperature change.

【0034】さらに、本発明では、差動磁気抵抗回路1
には適切な抵抗値βを有する抵抗体8が直列に接続され
ているので、個々の差動磁気抵抗回路1によって異なる
温度補償用の抵抗体7の存在にもかかわらず、任意に選
ばれたχにしたがって複数の差動磁気抵抗回路1に共通
のオフセット電圧V0 =χVC C を設定することができ
る。
Further, in the present invention, the differential magnetoresistive circuit 1
Since a resistor 8 having an appropriate resistance value β is connected in series with, is selected arbitrarily regardless of the presence of the temperature compensating resistor 7 which differs depending on each differential magnetoresistive circuit 1. An offset voltage V 0 = χV C C common to the plurality of differential magnetoresistive circuits 1 can be set according to χ.

【0035】また、これらの差動磁気抵抗回路1により
磁界の状態を検出するに当たっても、オフセット電圧V
0 が共通である以上、同様の磁界変化に対しては総ての
差動磁気抵抗回路1が共通の出力電圧を出力することと
なり、結局、総ての差動磁気抵抗回路1において磁界変
化に対してあらかじめ設定された適切な出力電圧を出力
するように構成することが可能となる。
Further, even when the magnetic field state is detected by the differential magnetoresistive circuit 1, the offset voltage V
Since 0 is common, all differential magnetoresistive circuits 1 output a common output voltage in response to similar magnetic field changes. On the other hand, it can be configured to output an appropriate output voltage set in advance.

【0036】このように、本発明は、特に高温での使用
に際し、差動磁気抵抗回路1の出力の温度ドリフトを低
減する手段として有効であると同時に、差動磁気抵抗回
路1のオフセット電圧を任意に設定することができ、ま
た、複数の差動磁気抵抗回路1について、同一の磁界変
化に対しては同一の出力電圧を出力するように設定する
ことができるので、これらの差動磁気抵抗回路1を種々
の機械に組み込む場合等にオフセット電圧の調整の必要
がなくなる等の利点がある。
As described above, the present invention is effective as a means for reducing the temperature drift of the output of the differential magnetoresistive circuit 1, especially when it is used at a high temperature, and at the same time, the offset voltage of the differential magnetoresistive circuit 1 is reduced. It can be set arbitrarily, and the plurality of differential magnetoresistive circuits 1 can be set to output the same output voltage with respect to the same magnetic field change. There is an advantage that the offset voltage need not be adjusted when the circuit 1 is incorporated in various machines.

【0037】[0037]

【発明の効果】第1の発明では、並列および直列に接続
された第1および第2の抵抗体により、出力電圧の温度
ドリフトが補償されると同時に、差動磁気抵抗回路に直
列に接続された第2の抵抗体により、差動磁気抵抗回路
のオフセット電圧を任意に設定でき、また、複数の差動
磁気抵抗回路について出力電圧を共通の任意の値に設定
し得る。
According to the first aspect of the present invention, the temperature drift of the output voltage is compensated by the first and second resistors connected in parallel and in series, and at the same time, it is connected in series to the differential magnetoresistive circuit. With the second resistor, the offset voltage of the differential magnetoresistive circuit can be arbitrarily set, and the output voltage can be set to a common arbitrary value for the plurality of differential magnetoresistive circuits.

【0038】第2の発明では、設定されたオフセット電
圧に対して、差動磁気抵抗回路の第1の抵抗体を並列に
接続した磁気抵抗素子の側に直列に接続された第2の抵
抗体の抵抗値が適切に設定されるので、複数の差動磁気
抵抗回路について共通のあらかじめ設定された適切なオ
フセット電圧および出力電圧が出力できる。
In the second invention, the second resistor connected in series to the side of the magnetoresistive element in which the first resistor of the differential magnetoresistive circuit is connected in parallel with respect to the set offset voltage. Since the resistance value of is properly set, a preset proper offset voltage and output voltage common to a plurality of differential magnetoresistive circuits can be output.

【0039】第3の発明では、設定されたオフセット電
圧に対して、差動磁気抵抗回路の第1の抵抗体を並列に
接続した磁気抵抗素子と反対側に直列に接続された第2
の抵抗体の抵抗値が適切に設定されるので、複数の差動
磁気抵抗回路について共通のあらかじめ設定された適切
なオフセット電圧および出力電圧が出力される。
According to the third aspect of the invention, with respect to the set offset voltage, the magnetic resistance element in which the first resistor of the differential magnetoresistive circuit is connected in parallel is connected to the second side connected in series on the opposite side.
Since the resistance value of the resistor is appropriately set, a preset appropriate offset voltage and output voltage common to the plurality of differential magnetoresistive circuits are output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の回路構成を示す構成図で
ある。
FIG. 1 is a configuration diagram showing a circuit configuration according to an embodiment of the present invention.

【図2】従来例の回路構成を示す構成図である。FIG. 2 is a configuration diagram showing a circuit configuration of a conventional example.

【図3】従来例の使用状況を示す説明図である。FIG. 3 is an explanatory diagram showing a usage situation of a conventional example.

【図4】他の従来例の回路構成を示す構成図である。FIG. 4 is a configuration diagram showing a circuit configuration of another conventional example.

【符号の説明】[Explanation of symbols]

1 差動磁気抵抗回路 2 磁気抵抗素子 3 磁気抵抗素子 7 抵抗体 8 抵抗体 1 Differential magnetoresistive circuit 2 Magnetoresistive element 3 Magnetoresistive element 7 resistor 8 resistor

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−317637(JP,A) 特開 平6−207974(JP,A) 実開 平6−2116(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01R 33/02 - 33/10 G01D 5/12 - 5/252 G01B 7/00 - 7/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-317637 (JP, A) JP-A-6-207974 (JP, A) Fukuihei 6-2116 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) G01R 33/02-33/10 G01D 5/12-5/252 G01B 7 /00-7/34

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2個の磁気抵抗素子を直列に連結し、その
中点電圧を出力電圧とする差動磁気抵抗回路において、
これらの磁気抵抗素子に比べて抵抗温度係数の著しく小
さな第1の抵抗体を前記磁気抵抗素子のいずれか一方に
並列に接続するとともに、これらの磁気抵抗素子に比べ
て抵抗温度係数の著しく小さな第2の抵抗体を前記2個
の磁気抵抗素子に直列に接続し、所定の温度範囲で、前
記一方の磁気抵抗素子、前記第1の抵抗体及び前記第2
の抵抗体からなる回路の抵抗温度係数と、もう一方の前
記磁気抵抗素子の抵抗温度係数とをほぼ等しくするとと
もに、中点電圧を補正するようにしたことを特徴とする
差動磁気抵抗回路。
1. A differential magnetoresistive circuit in which two magnetoresistive elements are connected in series and a midpoint voltage thereof is used as an output voltage.
A first resistor having a remarkably small resistance temperature coefficient as compared with these magnetoresistive elements is connected in parallel to one of the magnetoresistive elements, and a first resistance body having a remarkably small resistance temperature coefficient as compared with these magnetoresistive elements. Two resistors are connected in series to the two magnetoresistive elements, and the
The one magnetoresistive element, the first resistor and the second resistor
The temperature coefficient of resistance of the circuit consisting of
A differential magnetoresistive circuit characterized in that the temperature coefficient of resistance of the magnetoresistive element is made substantially equal and the midpoint voltage is corrected.
【請求項2】 前記第2の抵抗体を、前記2個の磁気抵
抗素子の中点よりも第1の抵抗体を並列に接続した磁気
抵抗素子の側に直列に接続し、この第2の抵抗体の抵抗
値βを β={(a1 +α)b1 −(a11 +b1 α+αa
1 )χ}/(a1 +α)χ (ただし、a1 は所定の磁界内での所定の温度t1 にお
ける第1の抵抗体を並列に接続した方の磁気抵抗素子の
抵抗値、b1 は所定の磁界内での所定の温度t1 におけ
るもう一方の磁気抵抗素子の抵抗値、αは第1の抵抗体
の抵抗値、χは差動磁気抵抗回路にかけられる基準電圧
C C に対してオフセット電圧V0 をχVC C と定めた
ときの値χ)を満たすように設定したことを特徴とする
請求項1に記載の差動磁気抵抗回路。
2. The second resistor is connected in series to the side of the magnetoresistive element in which the first resistor is connected in parallel with respect to the midpoint of the two magnetoresistive elements, and the second resistor is connected in series. The resistance value β of the resistor is β = {(a 1 + α) b 1 − (a 1 b 1 + b 1 α + αa
1 ) χ} / (a 1 + α) χ (where a 1 is the resistance value of the magnetoresistive element in which the first resistor is connected in parallel at a predetermined temperature t 1 in a predetermined magnetic field, b 1 Is the resistance value of the other magnetoresistive element at a predetermined temperature t 1 in a predetermined magnetic field, α is the resistance value of the first resistor, and χ is the reference voltage V C C applied to the differential magnetoresistive circuit. 2. The differential magnetoresistive circuit according to claim 1, wherein the offset voltage V 0 is set so as to satisfy a value χ) when the offset voltage V 0 is defined as χV C C.
【請求項3】 前記第2の抵抗体を、前記2個の磁気抵
抗素子の中点よりも第1の抵抗体を並列に接続した磁気
抵抗素子と反対側に直列に接続し、この第2の抵抗体の
抵抗値βを β={(a1 +α)b1 −(a11 +b1 α+αa
1 )χ}/(a1 +α)(χ−1)} (ただし、a1 は所定の磁界内での所定の温度t1 にお
ける第1の抵抗体を並列に接続した方の磁気抵抗素子の
抵抗値、b1 は所定の磁界内での所定の温度t1 におけ
るもう一方の磁気抵抗素子の抵抗値、αは第2の抵抗体
の抵抗値、χは差動磁気抵抗回路にかけられる基準電圧
C C に対してオフセット電圧V0 をχVC C と定めた
ときの値χ)を満たすように設定したことを特徴とする
請求項1に記載の差動磁気抵抗回路。
3. The second resistor is connected in series on the side opposite to the magnetoresistive element in which the first resistor is connected in parallel with respect to the midpoint of the two magnetoresistive elements, and the second resistor is connected in series. The resistance value β of the resistor is β = {(a 1 + α) b 1 − (a 1 b 1 + b 1 α + αa
1 ) χ} / (a 1 + α) (χ-1)} (where a 1 is the magnetoresistive element of the one in which the first resistors are connected in parallel at a predetermined temperature t 1 in a predetermined magnetic field) A resistance value, b 1 is a resistance value of the other magnetoresistive element at a predetermined temperature t 1 in a predetermined magnetic field, α is a resistance value of the second resistor, and χ is a reference voltage applied to the differential magnetoresistive circuit. differential magnetoresistive circuit according to claim 1, characterized in that setting the offset voltage V 0 with respect to V C C so as to satisfy the values chi) when determined as χV C C.
JP23422295A 1995-09-12 1995-09-12 Differential magnetic resistance circuit Expired - Fee Related JP3515248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23422295A JP3515248B2 (en) 1995-09-12 1995-09-12 Differential magnetic resistance circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23422295A JP3515248B2 (en) 1995-09-12 1995-09-12 Differential magnetic resistance circuit

Publications (2)

Publication Number Publication Date
JPH0980139A JPH0980139A (en) 1997-03-28
JP3515248B2 true JP3515248B2 (en) 2004-04-05

Family

ID=16967617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23422295A Expired - Fee Related JP3515248B2 (en) 1995-09-12 1995-09-12 Differential magnetic resistance circuit

Country Status (1)

Country Link
JP (1) JP3515248B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6756782B2 (en) * 2001-06-01 2004-06-29 Koninklijke Philips Electronics N.V. Magnetic field measuring sensor having a shunt resistor and method of regulating the sensor

Also Published As

Publication number Publication date
JPH0980139A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
EP0300635B1 (en) Current detecting device using ferromagnetic magnetoresistance element
KR101352249B1 (en) Sensor circuit
US7053600B2 (en) Current sensor
EP0725923B1 (en) Two terminal temperature transducer having circuitry which controls the entire operating current to be linearly proportional with temperature
EP0450910B1 (en) Temperature compensation circuit for hall effect element
US6756782B2 (en) Magnetic field measuring sensor having a shunt resistor and method of regulating the sensor
EP0382217B1 (en) Power source circuit and bridge type measuring device with output compensating circuit utilizing the same
JPH08242027A (en) Magnetic resistor circuit
JP2002365350A (en) Magnetic detector
US9000824B2 (en) Offset cancel circuit
US6469497B2 (en) Magnetic position sensor system composed of two reference magnetoresistors and a linear displacement sensing magnetoresistor
JP3515248B2 (en) Differential magnetic resistance circuit
JP7119633B2 (en) magnetic sensor
JP3507216B2 (en) Differential magnetic resistance circuit
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JP7225694B2 (en) magnetic sensor
JPH0534182A (en) Strain/temperature composite sensor
JPH0814616B2 (en) Hall element device
JPH05273320A (en) Magnetic sensor
JPS6336447B2 (en)
JPH05326986A (en) Sensor output stabilization circuit
JPH0720155A (en) Temperature coefficient measuring method for hall element and temperature compensation method for current detector
JP2518566Y2 (en) Current detection circuit
JP3442092B2 (en) Integrated circuit
JPS62203390A (en) Temperature compensating circuit for magnetic semiconductor element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090123

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100123

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110123

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees