JPH05273124A - Spectroscopic continusou measuring emthod for acidity in fermented milk and near infrared absorption spectrum detecting terminal - Google Patents

Spectroscopic continusou measuring emthod for acidity in fermented milk and near infrared absorption spectrum detecting terminal

Info

Publication number
JPH05273124A
JPH05273124A JP10056392A JP10056392A JPH05273124A JP H05273124 A JPH05273124 A JP H05273124A JP 10056392 A JP10056392 A JP 10056392A JP 10056392 A JP10056392 A JP 10056392A JP H05273124 A JPH05273124 A JP H05273124A
Authority
JP
Japan
Prior art keywords
acidity
fermented milk
near infrared
wavelength
absorption spectrum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10056392A
Other languages
Japanese (ja)
Other versions
JP3234273B2 (en
Inventor
Ryoichi Sueyasu
亮一 末安
Katsushi Kitamura
勝士 北村
Hidehiko Kashiwa
英彦 栢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Snow Brand Milk Products Co Ltd
Original Assignee
Snow Brand Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snow Brand Milk Products Co Ltd filed Critical Snow Brand Milk Products Co Ltd
Priority to JP10056392A priority Critical patent/JP3234273B2/en
Publication of JPH05273124A publication Critical patent/JPH05273124A/en
Application granted granted Critical
Publication of JP3234273B2 publication Critical patent/JP3234273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To continuously measure oxygen by radiating near infrared rays with the specific wavelength to obtain the spectral spectrum, content in a specimen by the multi-variate analysis method, and calculating oxygen. CONSTITUTION:Optical fibers 3, 4 connected with the outside 3 to a light source l and connected with the inside 4 to a detector are fitted to a sensor section. Near infrared rays with the wavelength 700-1200nm are radiated to the fermented milk in the fermentation process to obtain the spectral spectrum. The near infrared absorption spectrum is measured on multiple specimens, preferably 30 specimens or more, and the wavelength suitable for the acidity measurement by the multi-variate analysis method and the constituent conversion factor value are obtained by the multiple regression analysis with a computer based on the measured values to generate a calibration curve. After the calibration curve is generated, the near infrared absorption spectrum is measured at the optimum wavelength for obtaining the acidity in the fermented milk by the same method as that for generating the calibration curve, and the measured value is compared with the calibration line to obtain the acidity in the fermented milk.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発酵工程中にある発酵乳
の酸度の経時変化を近赤外線を用いて非破壊的にかつ迅
速に測定する発酵乳中の酸度の分光学的連続測定方法及
びそれに用いる近赤外線吸収スペクトル検出端子に関す
るものである。
FIELD OF THE INVENTION The present invention relates to a spectroscopic continuous measurement method of acidity in fermented milk for nondestructively and rapidly measuring the time-dependent change in acidity of fermented milk in a fermentation process by using near infrared rays. The present invention relates to a near infrared absorption spectrum detection terminal used for it.

【0002】[0002]

【従来の技術】従来発酵乳のような乳酸菌により乳酸発
酵を行わせて製造を行う食品の工程管理においては、発
酵工程中の酸度を工程指標として用いることが多い。酸
度の測定は1%フェノールフタレインを指示薬として0
・1規定水酸化ナトリゥム溶液で適定し、その滴定量か
ら100g当たりの乳酸のパーセント量を求めて表す、
いわゆる滴定酸度測定法によつている。
2. Description of the Related Art Conventionally, in the process control of foods produced by lactic acid fermentation using lactic acid bacteria such as fermented milk, the acidity during the fermentation process is often used as a process index. The acidity was measured with 1% phenolphthalein as an indicator and 0
-Titrated with 1N sodium hydroxide solution, and calculate the percent amount of lactic acid per 100g from the titration amount.
This is based on the so-called titratable acidity measurement method.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、酸度が
経時的に変化する発酵工程中では発酵タンク内より度々
サンプリングを行わなければならず、また、滴定の終末
点の判断が作業者個人の感覚によって判断されるため滴
定値のばらつきを生じやすい。また、発酵工程をpHに
て管理するため発酵タンク内にpH電極を取付け連続的
にpHを測定することが行われているが、これでもpH
電極の取付け、洗浄、殺菌などが必要となり、これらが
不十分であると破損や微生物による二次汚染の原因とな
るなど問題があった。上記のような問題点を解決するた
めに特公平2ー9780号に示されているように発酵中
の導電率を測定し発酵を終了させる時点を知る方法が提
案されているが、この方法では発酵乳中に検出端を挿入
して発酵乳に接触させなければならず、その検出端の洗
浄が十分にできないなどの問題がある。このため完全な
非破壊、非接触によるリモート計測技術が求められる
が、これらを光学的方法により行う方法は確立されてい
ない。近年、近赤外線を用いて成分分析を迅速に、かっ
非破壊的に測定を行う方法が実用化されつつあるが、発
酵乳の発酵工程において連続的に酸度を測定することに
関しては全く報告されていない。
However, during the fermentation process in which the acidity changes with time, it is necessary to frequently sample from inside the fermentation tank, and the end point of the titration can be judged by the operator's sense. Since it is judged, the titration value tends to vary. In addition, in order to control the fermentation process with pH, a pH electrode is installed inside the fermentation tank to continuously measure the pH.
Electrodes need to be attached, washed, sterilized, etc., and if they are insufficient, there is a problem such as damage or secondary contamination by microorganisms. In order to solve the above problems, there is proposed a method of measuring the electric conductivity during fermentation and knowing the time when the fermentation is finished, as shown in Japanese Patent Publication No. 2-9780. It is necessary to insert the detection end into the fermented milk to bring it into contact with the fermented milk, and there is a problem that the detection end cannot be sufficiently washed. For this reason, complete non-destructive and non-contact remote measurement technology is required, but a method for performing these by an optical method has not been established. In recent years, a method for measuring components rapidly using near-infrared rays and non-destructively measuring is being put to practical use, but it has been reported at all about measuring the acidity continuously in the fermentation process of fermented milk. Absent.

【0004】[0004]

【課題を解決するための手段】本発明者等は発酵工程中
の酸度を近赤外線を用いて非破壊的に、かつ、連続的に
迅速に酸度を測定する方法について検討した結果、多変
量解析手法により検量線を作成して利用することで目的
を達成することがわかり、本発明を完成した。すなわ
ち、発酵工程中にある発酵乳に波長700〜1200n
mまでの近赤外線を照射して分光スペクトルを得、得ら
れた分光スペクトルから多変量解析手法により対象物中
の酸度と相関のある成分含量を推定するに適した波長を
求め、該波長から酸度を算出することを特徴とする近赤
外線を使った発酵乳の酸度の分光学的連続測定方法であ
り、発酵タンクの対象物に近赤外線を照射する装置と該
近赤外線が照射された対象物内部の透光量を測定し、分
光スペクトルをうることのできる検出装置とに光ファイ
バーで接続された発酵タンク中に露出し、かつ外部光線
遮断体で覆われた透光体からなる近赤外線吸収スペクト
ル検出端子である。
Means for Solving the Problems The present inventors have investigated a method for rapidly and continuously measuring the acidity of a fermentation process non-destructively using near infrared rays, and as a result, multivariate analysis was carried out. It was found that the object can be achieved by creating and using a calibration curve by the method, and the present invention has been completed. That is, the fermented milk in the fermentation process has a wavelength of 700 to 1200 n.
A spectral spectrum is obtained by irradiating near-infrared rays up to m, and from the obtained spectral spectrum, a wavelength suitable for estimating the content of a component that correlates with the acidity in the object is obtained by a multivariate analysis method, and the acidity is calculated from the wavelength. Is a spectroscopic continuous measurement method of the acidity of fermented milk using near-infrared rays, characterized in that the apparatus for irradiating the near-infrared rays to the object of the fermentation tank and the inside of the object irradiated with the near-infrared rays Near infrared absorption spectrum detection consisting of a translucent body that is exposed in a fermentation tank that is connected with an optical fiber to a detector that can measure the amount of transmitted light of the It is a terminal.

【0005】[0005]

【作用】光ファイバーケーブルと発酵タンク中に露出す
る外部光線遮断体で覆われた透光体を介して近赤外線を
対象物に照射し対象物内部の透過光量を検出器で測定し
て分光スペクトルを得、得られた分光スペクトルから多
変量解析手法により酸度を測定するのに適した2つ以上
の特定波長を演算で求め、該波長から酸度を測定するも
のである。
[Operation] Near infrared rays are radiated to the target object through the optical fiber cable and the light-transmitting body covered with the external light-shielding member exposed in the fermentation tank, and the amount of transmitted light inside the target object is measured by the detector to obtain the spectral spectrum. From the obtained spectroscopic spectrum, two or more specific wavelengths suitable for measuring the acidity are calculated by a multivariate analysis method, and the acidity is measured from the wavelengths.

【0006】[0006]

【実施例】本発明は発酵乳に波長700〜1200nm
までの特定の近赤外線を照射する。図1、2、3に示し
たように外側3が光源1につながり、内側4が検出器に
つながつた同軸状の光ファイバー3、4をセンサー部分
に取り付ける。そして、光ファイバー3、4に外部の光
が入らないようにセンサー部分を外部光線遮断体である
暗箱5で覆いをして少くとも発酵タンク7内の発酵乳上
面より下に端子の上端がくるような場所に設置する。タ
ンク下部にとりつけることもできるが、通常は側面にと
りつけるとよい。このようにして設置したセンサーの透
光体すなわち、ガラス6越しに発酵過程中の対象物に近
赤外線を照射し、近赤外線スペクトルを経時的に測定す
る。図1は透光体6がタンク7側壁に直接取り付けられ
たものを示し、図2は暗箱5がタンク内まで突出したも
のを示している。図3は透光体6がタンク7側壁から離
れたものを示している。透光体6としてガラスに限定す
る必要はないが実施例のものはガラスを用いている。ガ
ラスの材質としては不純物によるスペクトルへの影響を
排除するため石英ガラスが望ましくまたガラスの厚みと
しては5〜10mmが望ましい。そして、測定するとき
には検量線を作成したときと同じ材質及び同じ厚さのガ
ラスを使用する。
EXAMPLES The present invention applies to fermented milk having a wavelength of 700 to 1200 nm.
Irradiate up to certain near infrared rays. As shown in FIGS. 1, 2, and 3, coaxial optical fibers 3 and 4 connected to the light source 1 at the outer side 3 and connected to the detector at the inner side 4 are attached to the sensor portion. Then, the sensor part is covered with a dark box 5 which is an external light blocker so that external light does not enter the optical fibers 3 and 4, and the upper end of the terminal is at least below the upper surface of the fermented milk in the fermentation tank 7. Install it in a safe place. It can be attached to the bottom of the tank, but it is usually recommended to attach it to the side. The near-infrared spectrum is measured with time by irradiating the object in the fermentation process with near-infrared light through the light-transmitting body of the sensor thus installed, that is, the glass 6. 1 shows the translucent body 6 directly attached to the side wall of the tank 7, and FIG. 2 shows the dark box 5 protruding into the tank. FIG. 3 shows the translucent body 6 separated from the side wall of the tank 7. Although it is not necessary to limit the light-transmitting body 6 to glass, glass is used in the embodiment. Quartz glass is preferable as the material of the glass in order to eliminate the influence of impurities on the spectrum, and the thickness of the glass is preferably 5 to 10 mm. Then, at the time of measurement, glass of the same material and the same thickness as those used when the calibration curve was created is used.

【0007】さて本発明では、先ず上記方法にて複数検
体、好ましくは30検体以上について近赤外線吸収スペ
クトルを測定し、得られた測定値をコンピューターを用
いて多変量解析手法により酸度測定を行うのに適した波
長及び成分換算係数値を重回帰分析にて求め、検量線を
作成する。例えば牛乳中の酸度(C%)の検量線は次の
式で近似することが出来る。 C%=K0+K1λ1+K2 λ2+・・・+Knλn ・・・・・(1) ここで、λ1、λ2は酸度に相関のある特異的な波長にお
ける吸収の強さであり、サンプル及び成分ごとに定まる
値である。Kは成分換算係数値であり、サンプル及び成
分ごとに定まる比例定数である。ここでは前記した滴定
酸度測定法により酸度と(1)式で推定した値の相関係
数が最も高くなるように多変量解析手法を用いてKの値
を決定する。検量線を作成した後は、検量線作成時と同
様な方法により発酵乳中の酸度を求める最適の波長で近
赤外線吸収スペクトルを測定し、得られた測定値を検量
線と照らし合わせて発酵乳中の酸度を求めれば良い。次
に具体的な実施例により本発明を説明する。
In the present invention, first, the near-infrared absorption spectrum of a plurality of samples, preferably 30 or more samples, is measured by the above method, and the obtained measured value is used to measure the acidity by a multivariate analysis method using a computer. The wavelength and component conversion coefficient values suitable for are obtained by multiple regression analysis, and a calibration curve is created. For example, the calibration curve of acidity (C%) in milk can be approximated by the following formula. C% = K 0 + K 1 λ 1 + K 2 λ 2 + ... + Kn λn (1) where λ 1 and λ 2 are absorption strengths at specific wavelengths correlated with acidity, It is a value determined for each sample and each component. K is a component conversion coefficient value, which is a proportional constant determined for each sample and each component. Here, the value of K is determined using a multivariate analysis method so that the correlation coefficient between the acidity and the value estimated by the equation (1) by the titratable acidity measurement method described above becomes the highest. After creating the calibration curve, measure the near-infrared absorption spectrum at the optimum wavelength to determine the acidity in fermented milk by the same method as when creating the calibration curve, and compare the obtained measurement value with the calibration curve to fermented milk. You just have to find the acidity in it. The present invention will be described below with reference to specific examples.

【0008】12%還元脱脂乳を98℃にて30分間殺
菌後42℃に冷却する。冷却後スターターとしてst.the
rmophilus 及びL.bulgaricusをそれぞれ1.5%添加し
て42℃にて培養した。スターター添加直後を0分後と
し、15分おきに近赤外線吸収スペクトルを測定しなが
ら6時間培養を行った。近赤外線吸収スペクトルを測定
すると同時に1%フェノールフタレインを指示薬として
0.1規定水酸化ナトリウム溶液で滴定して滴定酸度を
求めた。測定した近赤外線吸収スペクトルから重回帰分
析により酸度を推定するのに適した波長を決定し、検量
線を作成した。対象とする発酵乳の全固形分や脂肪分に
などの成分がほぼ一定している品種ごとに検量線を作成
すると一層精度よく測定できる。したがって、発酵乳の
成分がかなり異なる品種をすべて測定するときは変動を
あたえる全固形分や脂肪分になどの成分などをすべてふ
くめてしまえるほどの大きなサンプル数のキャリブレー
ション(校正)を行うことで解決できる。この場合、た
とえば100検体以上のサンプルにて校正を行うとよ
い。第1表に選択された波長とその波長を用いて酸度を
推定した場合の測定精度を示す。また、図4に発酵中の
滴定酸度と近赤外線にて求めた酸度の経時変化を示す。
算出した近似式はY=3.190 −93.992 ・
[902]+192.292 [870]である。 Y=乳酸酸度(%) [λ]:λnmにおける吸光度 次いで、第1表に示した波長を用いて作成した検量線を
使って、新たに調製した発酵乳の発酵乳中の近赤外線吸
収スペクトルを経時的に測定し、測定値から酸度を求め
た。この時の実際の酸度(滴定酸度)と近赤外線にて求
めた酸度の結果の測定の精度を第2表に、その時の経時
的測定値を第5図に示す。 第3表に本方法により求める乳酸酸度と従来法による乳
酸酸度を求めるための1検体当たりの算出時間の比較を
示す。 以上のような結果から本発明が効果のあることが実証さ
れた。
12% reduced skim milk is sterilized at 98 ° C for 30 minutes and then cooled to 42 ° C. St.the as starter after cooling
1.5% each of rmophilus and L. bulgaricus was added, and the cells were cultured at 42 ° C. Immediately after the starter was added, it was set as 0 minute, and culture was performed for 6 hours while measuring the near infrared absorption spectrum every 15 minutes. The near-infrared absorption spectrum was measured, and at the same time, titrated acidity was determined by titrating with 0.1N sodium hydroxide solution using 1% phenolphthalein as an indicator. A wavelength suitable for estimating the acidity was determined from the measured near-infrared absorption spectrum by multiple regression analysis, and a calibration curve was prepared. If a calibration curve is created for each cultivar in which the components such as the total solid content and fat content of the target fermented milk are almost constant, more accurate measurement can be performed. Therefore, when measuring all varieties with significantly different fermented milk components, perform a calibration with a large number of samples to include all components such as total solid content and fat content that give fluctuations. Can be solved with. In this case, it is advisable to perform calibration with 100 or more samples, for example. Table 1 shows the selected wavelengths and the measurement accuracy when the acidity is estimated using the wavelengths. Further, FIG. 4 shows the time-dependent changes in titratable acidity during fermentation and acidity determined by near-infrared radiation.
The calculated approximate expression is Y = 3.190-93.992.
It is [902] +192.292 [870]. Y = lactic acid degree (%) [λ]: absorbance at λ nm Then, using a calibration curve prepared using the wavelengths shown in Table 1, the near-infrared absorption spectrum in the fermented milk of the newly prepared fermented milk was measured with time, and the acidity was determined from the measured value. The accuracy of measurement of the actual acidity (titrated acidity) at this time and the result of acidity obtained by near-infrared rays is shown in Table 2, and the measured values over time at that time are shown in FIG. Table 3 shows a comparison of the calculation time per sample for determining the lactic acid acidity obtained by this method and the conventional method. From the above results, it was proved that the present invention is effective.

【0009】[0009]

【発明の効果】本発明によれば、発酵乳の発酵中の経時
的な酸度変化を迅速にかつ薬品処理のような前処理を全
く必要とせず、破壊することなく連続的に測定をするこ
とができる。また、対象物に対してセンサーが接触しな
いため、センサーの洗浄、殺菌を必要とせず、微生物的
に高度の無菌状態を必要とする発酵乳などの製造ライン
に対して、微生物学的汚染を防止することができる。
EFFECTS OF THE INVENTION According to the present invention, the change in acidity with time during fermentation of fermented milk can be measured rapidly and without any pretreatment such as chemical treatment, and continuously without destruction. You can In addition, since the sensor does not come into contact with the target object, it does not require cleaning or sterilization of the sensor, and prevents microbiological contamination of the production line of fermented milk that requires a high degree of sterility in terms of microorganisms. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】発酵乳の近赤外線吸収スペクトル検出端子を構
成する透光体がタンク側壁にあるものの説明図である。
FIG. 1 is an explanatory view of a translucent body forming a near-infrared absorption spectrum detection terminal of fermented milk on a side wall of a tank.

【図2】同上の透光体がタンク内にあるものの説明図で
ある。
FIG. 2 is an explanatory view of the translucent body of the above in a tank.

【図3】同上の透光体がタンク外にあるものの説明図で
ある。
FIG. 3 is an explanatory view of the above-mentioned translucent body outside the tank.

【図4】発酵乳中の酸度の経時変化を示す図である。FIG. 4 is a view showing a change with time of acidity in fermented milk.

【図5】作成した検量線を使って求めた発酵乳中の酸度
の経時変化図である。
FIG. 5 is a time-dependent change diagram of acidity in fermented milk obtained using a prepared calibration curve.

【符号の説明】[Explanation of symbols]

1 光源 2 検出器 3 光ファイバー 4 光ファイバー 5 外部光線遮断体 6 透光体 7 タンク 1 Light source 2 Detector 3 Optical fiber 4 Optical fiber 5 External light blocking body 6 Light transmitting body 7 Tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発酵工程中にある発酵乳に波長700〜
1200nmまでの近赤外線を照射して分光スペクトル
を得、得られた分光スペクトルから多変量解析手法によ
り対象物中の酸度と相関のある成分含量を推定するに適
した波長を求め、該波長から酸度を算出することを特徴
とする近赤外線を使った発酵乳の酸度の分光学的連続測
定方法。
1. Fermented milk in the fermentation step has a wavelength of 700-
A spectral spectrum is obtained by irradiating near infrared rays up to 1200 nm, and a wavelength suitable for estimating the content of a component that correlates with the acidity in the object is obtained from the obtained spectral spectrum by the multivariate analysis method, and the acidity is calculated from the wavelength. A method for continuous spectroscopic measurement of acidity of fermented milk using near-infrared rays, characterized by calculating.
【請求項2】 発酵タンクの対象物に近赤外線を照射す
る装置と該近赤外線が照射された対象物内部の透光量を
測定し、分光スペクトルをうることのできる検出装置と
に光ファイバーで接続された発酵タンク中に露出し、か
つ外部光線遮断体で覆われた透光体からなる近赤外線吸
収スペクトル検出端子
2. An optical fiber is connected to a device for irradiating an object in a fermentation tank with near infrared light and a detection device for measuring the amount of light transmission inside the object irradiated with the near infrared light and obtaining a spectral spectrum. Near-infrared absorption spectrum detection terminal consisting of a translucent body exposed in the fermentation tank and covered with an external light blocker
JP10056392A 1992-03-26 1992-03-26 Method for continuous spectroscopic measurement of acidity in fermented milk and fermentation tank with near-infrared absorption spectrum detection terminal used for the method Expired - Fee Related JP3234273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10056392A JP3234273B2 (en) 1992-03-26 1992-03-26 Method for continuous spectroscopic measurement of acidity in fermented milk and fermentation tank with near-infrared absorption spectrum detection terminal used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10056392A JP3234273B2 (en) 1992-03-26 1992-03-26 Method for continuous spectroscopic measurement of acidity in fermented milk and fermentation tank with near-infrared absorption spectrum detection terminal used for the method

Publications (2)

Publication Number Publication Date
JPH05273124A true JPH05273124A (en) 1993-10-22
JP3234273B2 JP3234273B2 (en) 2001-12-04

Family

ID=14277391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10056392A Expired - Fee Related JP3234273B2 (en) 1992-03-26 1992-03-26 Method for continuous spectroscopic measurement of acidity in fermented milk and fermentation tank with near-infrared absorption spectrum detection terminal used for the method

Country Status (1)

Country Link
JP (1) JP3234273B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017611A1 (en) * 1998-09-18 2000-03-30 Foss Electric A/S Method and apparatus for process control
KR100859131B1 (en) * 2006-05-04 2008-09-23 대한민국 Analyzer for estimating milk freshness by using NIR
WO2009065988A1 (en) * 2007-11-20 2009-05-28 Universidad De Oviedo In-line sensor and system for obtaining the fat content of milk
US7676346B2 (en) 2002-08-16 2010-03-09 Lattec I/S System and a method for observing and predicting a physiological state of an animal
CN103487398A (en) * 2013-09-30 2014-01-01 中粮生物化学(安徽)股份有限公司 Analysis method of lysine fermentation liquid
US8629399B2 (en) 2009-09-22 2014-01-14 Bp Corporation North America Inc. Methods and apparatuses for measuring biological processes using mid-infrared spectroscopy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017611A1 (en) * 1998-09-18 2000-03-30 Foss Electric A/S Method and apparatus for process control
US7676346B2 (en) 2002-08-16 2010-03-09 Lattec I/S System and a method for observing and predicting a physiological state of an animal
KR100859131B1 (en) * 2006-05-04 2008-09-23 대한민국 Analyzer for estimating milk freshness by using NIR
WO2009065988A1 (en) * 2007-11-20 2009-05-28 Universidad De Oviedo In-line sensor and system for obtaining the fat content of milk
ES2346494A1 (en) * 2007-11-20 2010-10-15 Universidad De Oviedo In-line sensor and system for obtaining the fat content of milk
US8629399B2 (en) 2009-09-22 2014-01-14 Bp Corporation North America Inc. Methods and apparatuses for measuring biological processes using mid-infrared spectroscopy
CN103487398A (en) * 2013-09-30 2014-01-01 中粮生物化学(安徽)股份有限公司 Analysis method of lysine fermentation liquid
CN103487398B (en) * 2013-09-30 2016-05-25 中粮生物化学(安徽)股份有限公司 A kind of analytical method of lysine fermentation liquor

Also Published As

Publication number Publication date
JP3234273B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US7663738B2 (en) Method for automatically detecting factors that disturb analysis by a photometer
Peuchant et al. Determination of serum cholesterol by near-infrared reflectance spectrometry
SE503101C2 (en) Ways of determining the wet strength of paper and process control means using the method
JP2001505303A (en) Scanning device for assessment of cleanliness and integrity of medical and dental instruments
JP4904446B2 (en) Prediction method and prediction apparatus for fruit component information
KR20220038602A (en) Methods and systems for identifying microorganisms
JPH0759594A (en) Measuring humor sample
TW201243312A (en) Sludge analysis element quantity measurement method and sludge analysis element quantity measurement device
DE102017126612A1 (en) Measuring device for analyzing a measuring medium
JPH05273124A (en) Spectroscopic continusou measuring emthod for acidity in fermented milk and near infrared absorption spectrum detecting terminal
JP4131744B2 (en) Discrimination of bacterial infections of platelet preparations using difference spectra
US8679739B2 (en) Method and apparatus for diagnostic analyses
JP2021004877A (en) Online grade selection for weight measurements of composite sheets
JP2002538432A (en) Method for spectroscopically measuring the concentration of an alcohol having 1 to 5 carbon atoms
CN110865046A (en) Method for rapidly detecting content of trans-fatty acid isomer of edible oil
CN106644964A (en) Online monitoring system and method for quality of culture medium in culture vessel
CN110672547B (en) Method for measuring content of ethylbenzene hydroperoxide
Millington et al. Measuring colour and photostability of small fleece wool samples
JPS59189828A (en) Subcateneous measuring sensor and apparatus of blood coloring matter
KR100859131B1 (en) Analyzer for estimating milk freshness by using NIR
EP0187675B1 (en) Method of detection and quantitative determination of sulfur and sulfur monitor using the method
Zhang et al. Transmission versus reflection spectroscopy for discrimination of human and nonhuman blood
JPH05273125A (en) Nondestructive measuring method for maturing degree of natural cheese by near infrared ray
Hocde et al. Remote analysis using IR glass fibers
JPH0763616A (en) Measuring method for temperature of inner section of fruit or vegetable

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

LAPS Cancellation because of no payment of annual fees