JP4131744B2 - Discrimination of bacterial infections of platelet preparations using difference spectra - Google Patents

Discrimination of bacterial infections of platelet preparations using difference spectra Download PDF

Info

Publication number
JP4131744B2
JP4131744B2 JP2007106632A JP2007106632A JP4131744B2 JP 4131744 B2 JP4131744 B2 JP 4131744B2 JP 2007106632 A JP2007106632 A JP 2007106632A JP 2007106632 A JP2007106632 A JP 2007106632A JP 4131744 B2 JP4131744 B2 JP 4131744B2
Authority
JP
Japan
Prior art keywords
sample
spectrum
healthy
platelet
samples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007106632A
Other languages
Japanese (ja)
Other versions
JP2008134217A (en
Inventor
澄夫 河野
サランウォング シリンナパー
斉 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2007106632A priority Critical patent/JP4131744B2/en
Publication of JP2008134217A publication Critical patent/JP2008134217A/en
Application granted granted Critical
Publication of JP4131744B2 publication Critical patent/JP4131744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、近赤外分光法により血小板製剤の細菌汚染の有無を非侵襲的に検出する血小板製剤非侵襲検査方法、及び当該方法により安全性が確認された血小板製剤に関する。   The present invention relates to a platelet preparation non-invasive test method for non-invasively detecting the presence or absence of bacterial contamination of a platelet preparation by near infrared spectroscopy, and a platelet preparation whose safety has been confirmed by the method.

血小板製剤の細菌感染の測定方法としては、細菌培養法(非特許文献1、非特許文献2)及び細菌スキャン法(非特許文献3)がある。
前者は細菌の増殖に伴いモニターの酸素圧が低下する又は炭酸ガス圧が上昇する原理を応用したものであり、後者は細菌を染色して顕微鏡でスキャンするものである。
As a method for measuring bacterial infection of a platelet preparation, there are a bacterial culture method (Non-patent document 1, Non-patent document 2) and a bacterial scan method (Non-patent document 3).
The former applies the principle that the oxygen pressure of the monitor decreases or the carbon dioxide pressure increases as the bacteria grow, and the latter stains the bacteria and scans them with a microscope.

また、血液に関する分析について関連する先行技術として特許文献1〜特許文献6が知られている。   Patent Documents 1 to 6 are known as prior arts related to blood analysis.

特許文献1には、所定の温度に調整した血液試料入り採血管または採血バッグに、外側から700nm〜1100nm域の分光した近赤外光を照射して透過光強度を測定し、次いで、波長に対して吸光度をプロットした近赤外吸収スペクトルから検量線を用いて化学成分および理化学的特性に関する情報を抽出する方法が開示されている。   In Patent Document 1, a blood collection tube or blood collection bag containing a blood sample adjusted to a predetermined temperature is irradiated with near-infrared light separated in the range of 700 nm to 1100 nm from the outside to measure the transmitted light intensity, and then to the wavelength. A method of extracting information on chemical components and physicochemical properties using a calibration curve from a near-infrared absorption spectrum in which the absorbance is plotted against is disclosed.

特許文献2には、血液バッグ中の血漿を代表する血漿検体にヘモグロビン(Hb)、胆汁色素、脂質粒子のような光散乱物質干渉体が含まれているかどうかを判定する方法として、血液バッグの外側から波長475〜910nmの光を照射し、血液バッグに含まれる血漿試料の異なる波長の光の吸光度を測定し、次いでこの吸光度を、血漿試料中の干渉体に対する標準測定を用いて較正して得られた値と比較し、光散乱物質干渉体が含まれているかどうかを決定する方法が提案されている。   In Patent Document 2, as a method of determining whether or not a plasma sample representing blood plasma in a blood bag contains a light scattering substance interfering substance such as hemoglobin (Hb), bile pigment, or lipid particles, Irradiate light with a wavelength of 475-910 nm from the outside, measure the absorbance of light of different wavelengths of the plasma sample contained in the blood bag, and then calibrate this absorbance using standard measurements for interferents in the plasma sample A method for determining whether or not a light-scattering substance interferer is included by comparing with the obtained value has been proposed.

特許文献3には、血液バッグ内に保存された血小板製剤中に保存血小板の生存率を、非破壊的に測定する光学的測定方法が提案されている。具体的には、血液バッグを横向状態として、これを平板で挟むことで、所定厚さの流路である測定用血小板製剤層とし、この層を介して二つの貯溜部に区分し、血液バッグの静止状態で直交方向の光線を照射し、その測定用血小板製剤層の透過光を測知して静的光透過強度を得、当該血液バッグを所定流速による横向揺動下で、上記と同じ測定操作により、動的光透過強度を得、この動的光透過強度と静的光透過強度との相差値と静的光透過強度との比である光透過強度の変化率を演算し、当該変化率と、血液バッグ内の正常な血小板比率を示す%DISKとの相関係数から、その血小板比率を算出するようにしている。また、照射する光の波長としては950nmの近赤外光を使用したことが記載されている。   Patent Document 3 proposes an optical measurement method for nondestructively measuring the survival rate of stored platelets in a platelet preparation stored in a blood bag. Specifically, the blood bag is placed in a horizontal state and sandwiched between flat plates to form a measurement platelet preparation layer that is a flow channel having a predetermined thickness, and the blood bag is divided into two reservoirs via this layer. Irradiate orthogonal light rays in a stationary state, measure the transmitted light of the platelet preparation layer for measurement to obtain a static light transmission intensity, and perform the same blood bag swinging at a predetermined flow rate as described above. A dynamic light transmission intensity is obtained by the measurement operation, and a rate of change of the light transmission intensity, which is a ratio of the difference value between the dynamic light transmission intensity and the static light transmission intensity, and the static light transmission intensity is calculated. The platelet ratio is calculated from the correlation coefficient between the change rate and% DISK indicating the normal platelet ratio in the blood bag. In addition, it is described that near-infrared light having a wavelength of 950 nm is used as the wavelength of light to be irradiated.

特許文献4には、血液分析物の濃度を非侵襲的に決定する手法として、多重スペクトル分析を用いたケモメトリックス技術を使用し、未知の値を校正された基準値と比較する方法が提案されている。この文献では、ケモメトリックス技術として主成分分析(PCA)が挙げられ、特に測定光の波長が約2120〜2180nmの範囲では反射強度差に著しい変化があり、この反射強度差は血液グルコースレベルの増加と直線関係で増加することについて記載されている。   Patent Document 4 proposes a method for comparing an unknown value with a calibrated reference value using a chemometric technique using multispectral analysis as a method for noninvasively determining the concentration of a blood analyte. ing. In this document, principal component analysis (PCA) is mentioned as a chemometric technique, and there is a significant change in the reflection intensity difference particularly in the range of the wavelength of the measuring light from about 2120 to 2180 nm, and this difference in reflection intensity increases the blood glucose level. And increase in a linear relationship.

特許文献5には、液体と血球の混合物を含む血管中の血液の特性を非侵襲的に測定する方法として、異なる二本の光ビーム(波長770nm〜950nmと波長480nm〜590nm)を用い、反射光の検出強度の比率を分析することで、ヒトの血管に含まれる液体と血球の混合物を非侵襲的に測定することが記載されている。   In Patent Document 5, two different light beams (wavelengths of 770 nm to 950 nm and wavelengths of 480 nm to 590 nm) are used as a method for noninvasively measuring the characteristics of blood in a blood vessel containing a mixture of liquid and blood cells. It is described that a mixture of liquid and blood cells contained in a human blood vessel is noninvasively measured by analyzing the ratio of the detected intensity of light.

特許文献6には、構造のスペクトル応答に基づき、その構造の化学組成のような特性を予測するのに適したケモメトリクス法を適用した血管壁の近赤外線分光分析について記載されている。具体的には、収集したスペクトル中の不要な信号を抑制するためのケモメトリクス法として、具体的に、部分最小自乗判別分析法(PLS−DA)、マハラノビス距離および大きい残差(augmented Residual)を用いる主成分分析法(PCA/MDR)、K最近距離(K−nearest neighbor)を用いる主成分分析法,ユークリッド距離を用いる主成分分析法、シムカ(soft independent modeling by class analogy)(SIMCA)、ブートストラップ誤差調整単一サンプル法(bootstrap error-adjusted single-sample technique)(BEST)が挙げられている。   Patent Document 6 describes near-infrared spectroscopic analysis of a blood vessel wall to which a chemometric method suitable for predicting characteristics such as the chemical composition of a structure is applied based on the spectral response of the structure. Specifically, as a chemometrics method for suppressing unnecessary signals in the collected spectrum, specifically, partial least square discriminant analysis (PLS-DA), Mahalanobis distance and large residual (augmented Residual) Principal component analysis method (PCA / MDR) used, Principal component analysis method using K-nearest neighbor, Principal component analysis method using Euclidean distance, soft independent modeling by class analogy (SIMCA), boot A bootstrap error-adjusted single-sample technique (BEST) is mentioned.

特開2002−122537号公報JP 2002-122537 A 特表2001−514744号公報JP-T-2001-514744 特開平9−318624号公報JP 9-318624 A 特開2006−126219号公報JP 2006-126219 A 特表2003−508765号公報Special table 2003-508765 gazette 特表2005−534415号公報JP 2005-534415 A Ortolano J, et al. Detection of bacteria in WBC-reduced PLT concentrates using percent oxygen as a marker for bacteria growth. Transfusion43(9):1276-1285, 2003.Ortolano J, et al. Detection of bacteria in WBC-reduced PLT concentrates using percent oxygen as a marker for bacteria growth.Transfusion 43 (9): 1276-1285, 2003. Brecher M E, et al. Monitoring of apheresis platelet bacterialcontamination with an automated liquid culture system: a university experience. Transfusion 43:974-978(7), 2003.Brecher M E, et al. Monitoring of apheresis platelet bacterialcontamination with an automated liquid culture system: a university experience.Transfusion 43: 974-978 (7), 2003. Schmidt M. et al: A comparison of three rapid bacterial detection methods under simulated real-life conditions. Transfusion 46(8):1367-1373, 2006.Schmidt M. et al: A comparison of three rapid bacterial detection methods under simulated real-life conditions.Transfusion 46 (8): 1367-1373, 2006.

採血バッグに入った試料の近赤外スペクトルを非侵襲で測定することについては特許文献1〜5に開示されている。また、試料中の特定物質の濃度を測定するため基準値と比較するのは特許文献4に開示されるように公知である。更に、スペクトル分析の際にケモメトリクス法、即ち、数学的または統計学的手法を用いることも一般的に行われている。   Patent Documents 1 to 5 disclose non-invasive measurement of the near-infrared spectrum of a sample contained in a blood collection bag. Further, as disclosed in Patent Document 4, it is known to compare with a reference value in order to measure the concentration of a specific substance in a sample. In addition, chemometric methods, that is, mathematical or statistical techniques are generally used in spectrum analysis.

しかしながら、血小板の測定に関しては、上記した一般的な手法では解消できない問題がある。
つまり、製造された血小板製剤は全て同一の組成から成るわけではなく、僅かながら化学的・物理的特性の違い(個体差)がある。この僅かな差によって、血小板製剤のスペクトルは大きく変動する。このため、細菌感染の有無による血小板製剤中の成分の微少変化を捕らえるには、血小板製剤の個体差の影響を低減する必要があるが、上述した先行技術ではこの課題を解消することはできない。
However, regarding the measurement of platelets, there is a problem that cannot be solved by the general method described above.
That is, the manufactured platelet preparations do not all have the same composition, and there are slight differences in chemical and physical properties (individual differences). This slight difference greatly fluctuates the spectrum of the platelet preparation. For this reason, in order to capture minute changes in the components in the platelet preparation due to the presence or absence of bacterial infection, it is necessary to reduce the influence of individual differences in the platelet preparation, but the above-mentioned prior art cannot solve this problem.

本発明は、血小板製剤の検査用試料を採血バッグから取り出すことなく、血小板製剤の細菌感染を非侵襲で迅速に検出する血小板製剤非侵襲検査方法において、差スペクトルを用いて健全試料と細菌感染試料を明確に識別する解析手法を提供する。   The present invention relates to a platelet preparation non-invasive test method for non-invasive and rapid detection of bacterial infection of a platelet preparation without taking out a sample for examination of the platelet preparation from a blood collection bag. Analytical methods for clearly identifying

上記目的を達成するため、本発明は、採血バッグに入った血小板製剤の近赤外スペクトルを、血小板製剤を採血バッグから取り出すことなく、透過法或いはインタラクタンス法により血小板製剤製造直後から経時的に測定し、細菌感染試料と健全試料のスペクトルの経時的変化を分光学的手法により解析し、未知試料のスペクトルの経時的変化を細菌感染試料と健全試料のそれと比較することにより未知試料の細菌感染の有無を識別する血小板製剤非侵襲検査方法において、解析に用いるスペクトルは血小板製剤製造後の最初に測定したスペクトルを基準とした差スペクトルとした。   In order to achieve the above object, the present invention provides a near-infrared spectrum of a platelet preparation contained in a blood collection bag over time from immediately after production of the platelet preparation by the transmission method or interactance method without removing the platelet preparation from the blood collection bag. Measure and analyze the time course of the spectrum of the bacterially infected sample and the healthy sample by spectroscopic techniques, and compare the time course of the spectrum of the unknown sample with that of the bacterially infected sample and that of the healthy sample. In the platelet preparation non-invasive test method for identifying the presence or absence of the platelet preparation, the spectrum used for the analysis was a difference spectrum based on the spectrum first measured after the preparation of the platelet preparation.

前記未知試料の細菌感染の有無を判別する方法は、健全試料の感染度を0(零)、
細菌感染試料のそれを1とするPLS回帰によって作成される回帰モデルを、未知試料に適用することにより得られる感染度の推定値から判別する方法が挙げられる。感染度の推定値がある一定値(例えば0.4)未満の場合、未知試料は健全試料とし、前記一定値以上の場合、未知試料は細菌感染試料と判断する。
The method of determining the presence or absence of bacterial infection of the unknown sample is based on setting the degree of infection of a healthy sample to 0 (zero),
There is a method of discriminating from the estimated value of the degree of infection obtained by applying a regression model created by PLS regression with a bacterial infection sample being 1 to an unknown sample. When the estimated value of the infection level is less than a certain value (for example, 0.4), the unknown sample is determined as a healthy sample, and when the estimated value is equal to or greater than the certain value, the unknown sample is determined as a bacterial infection sample.

採血バッグは光を通しにくいため、通常用いる波長帯域(2500nm程度)の近赤外線を用いるとノイズが大きく測定誤差が生じやすい。そこで、通常用いる波長帯域の領域の10〜100倍の透過力を有する波長700nm〜1100nmの短波長域の近赤外光を用いることが好ましい。   Since the blood collection bag is difficult to transmit light, using near-infrared rays in the wavelength band normally used (about 2500 nm) causes large noise and tends to cause measurement errors. Therefore, it is preferable to use near-infrared light having a short wavelength range of 700 nm to 1100 nm having a transmission power 10 to 100 times that of a normally used wavelength band.

また、血小板製剤のスペクトルは、血小板製剤の化学的・物理的特性の違い(個体差)によって大きく変動することから、細菌感染の有無による血小板製剤中の成分の微少変化を捕らえるには、血小板製剤の個体差の影響を低減するため、解析に用いるスペクトルは血小板製剤製造後の最初に測定したスペクトルを基準とした差スペクトルとする。スペクトル解析に先立ち、前記差スペクトルには移動平均、微分、及びMSC処理などの何れか1つ或いは組み合わせによる前処理を施すことが可能である。   In addition, since the spectrum of platelet preparations varies greatly depending on the chemical and physical characteristics (individual differences) of platelet preparations, in order to capture minute changes in the components of platelet preparations due to the presence or absence of bacterial infection, In order to reduce the influence of individual differences, the spectrum used for the analysis is a difference spectrum based on the spectrum first measured after the manufacture of the platelet preparation. Prior to spectrum analysis, the difference spectrum can be preprocessed by any one or combination of moving average, differentiation, MSC processing, and the like.

本発明によれば、採血バッグに入った血小板製剤の細菌感染の有無を非侵襲的に全数検査する際に、採血バッグ毎の個体差を無くし、正確な測定を行うことができる。したがって、例えば血小板製剤の使用期間を3日間から一週間に延長可能になり、期限切れで廃棄されていた血小板製剤の有効利用を安全性を確保しながら達成できる。   According to the present invention, it is possible to eliminate an individual difference for each blood collection bag and perform an accurate measurement when non-invasively examining the presence or absence of bacterial infection of the platelet preparation contained in the blood collection bag. Therefore, for example, the period of use of the platelet preparation can be extended from 3 days to one week, and effective use of the platelet preparation that has been discarded after expiration can be achieved while ensuring safety.

以下に本発明の実施の最良の形態を説明する。この検査方法は、(1)スペクトルの測定、(2)差スペクトルの算出、(3)スペクトル解析による識別の過程から構成される。   The best mode for carrying out the present invention will be described below. This inspection method includes (1) spectrum measurement, (2) difference spectrum calculation, and (3) identification by spectrum analysis.

(1)スペクトルの測定の過程では、恒温振とう装置で揺動させながら一定温度(例えば、24℃)で保管した採血バッグに入った血小板製剤のスペクトル(試料の厚み:15mm)を図1の左側の透過法或いは右側のインタラクタンス法により測定する。   (1) In the spectrum measurement process, the spectrum (sample thickness: 15 mm) of the platelet preparation contained in the blood collection bag stored at a constant temperature (for example, 24 ° C.) while being oscillated by a constant temperature shaker is shown in FIG. It is measured by the transmission method on the left or the interactance method on the right.

すなわち、透過法においては、試料室2内において、分光した光3が入射光用光ファイバーバンドル5を介してバッグ内に入れられた血小板製剤1に照射され、血小板製剤1を透過した光4が透過光用光ファイバーバンドル6を介して検出器で検出される。   That is, in the transmission method, in the sample chamber 2, the dispersed light 3 is irradiated to the platelet preparation 1 placed in the bag through the incident light optical fiber bundle 5, and the light 4 transmitted through the platelet preparation 1 is transmitted. It is detected by a detector through the optical fiber bundle 6 for light.

インタラクタンス法においては、分光した光8がインタラクタンス用光ファイバーバンドル10を介して血小板製剤7に照射され、血小板製剤7の内部で拡散反射しれた光9がインタラクタンス用光ファイバーバンドル10を介して検出器で検出される。   In the interactance method, the dispersed light 8 is irradiated to the platelet preparation 7 via the interactance optical fiber bundle 10, and the light 9 diffusely reflected inside the platelet preparation 7 is detected via the interactance optical fiber bundle 10. Detected by the instrument.

実際の測定の場合、前記透過法及び前記インタラクタンス法の両方法によりスペクトルを測定する必要はなく、どちらかの方法により測定すればよい。   In the actual measurement, it is not necessary to measure the spectrum by both the transmission method and the interactance method, and the measurement may be performed by either method.

スペクトル測定後、試料を保管用の恒温振とう装置に戻す。この測定を一定時間間隔、例えば6時間おきに、三日間繰り返す。実際の測定の場合、一週間測定を続けることも可能である。   After the spectrum measurement, return the sample to a constant temperature shaker for storage. This measurement is repeated for 3 days at regular time intervals, for example, every 6 hours. In the case of actual measurement, it is possible to continue the measurement for one week.

(2)差スペクトルの算出の過程では、最初(製造時)の血小板製剤の化学的・物理的特性の違い(個体差)から生じる影響をスペクトルから除去するため、経時的に測定したスペクトルから最初のスペクトルを試料ごとに差し引くことにより差スペクトルを算出する。差スペクトルの算出には前処理(移動平均、微分、MSC処理など)を施したスペクトルを用いてもよい。   (2) In the process of calculating the difference spectrum, in order to remove the effects caused by the difference in chemical and physical properties (individual differences) of the initial (during manufacture) platelet product from the spectrum, The difference spectrum is calculated by subtracting the spectrum for each sample. For the calculation of the difference spectrum, a spectrum that has been preprocessed (moving average, differentiation, MSC processing, etc.) may be used.

図2に二次微分スペクトルの例を示す。970nmの近傍で観察される強い吸収は水によるもので、強度の違いは個体差等によるものである。この二次微分スペクトルを用いて主成分分析を行った結果を図3に示す。図中、◆は健全区(対象区)の試料、▲はセラチア菌感染区の試料、■は表皮ブドウ菌感染区の試料である。PC1及びPC2の軸から構成される平面において、それぞれの試料は重複しており、健全試料と感染試料は識別ができない。細菌感染によるスペクトルの変化は微少であることから、試料の個体差の中に埋もれてしまったものと考えられる。   FIG. 2 shows an example of the second derivative spectrum. The strong absorption observed in the vicinity of 970 nm is due to water, and the difference in intensity is due to individual differences. The results of principal component analysis using this second derivative spectrum are shown in FIG. In the figure, ◆ are samples from healthy areas (target areas), ▲ are samples from Serratia bacteria-infected areas, and ■ are samples from Staphylococcus epidermidis-infected areas. In the plane composed of the axes of PC1 and PC2, the respective samples overlap, and the healthy sample and the infected sample cannot be distinguished. Since the spectrum change due to bacterial infection is very small, it is considered that the spectrum was buried among individual differences in the sample.

前記未知試料の細菌感染の有無を判別する方法は、健全試料の感染度を0(零)とし、経時的に測定したスペクトルの2次微分値から最初に測定したスペクトルの2次微分値を差し引くことにより得られる差スペクトルの例を図4に示す。差スペクトルにおいては、各血小板製剤の化学的・物理的特性の違い(個体差)によるスペクトルのズレが除去され、細菌感染による微妙な成分変化が強調される。   The method of determining the presence or absence of bacterial infection in the unknown sample is to set the infection degree of the healthy sample to 0 (zero) and subtract the second derivative value of the spectrum first measured from the second derivative value of the spectrum measured over time. The example of the difference spectrum obtained by this is shown in FIG. In the difference spectrum, the shift of the spectrum due to the difference in chemical and physical characteristics (individual difference) of each platelet preparation is removed, and the subtle component change due to bacterial infection is emphasized.

この差スペクトルを用いて主成分分析した結果を図5に示す。図中、◆は健全区(対象区)の試料、▲はセラチア菌感染区の試料、■は表皮ブドウ菌感染区の試料である。PC1及びPC2軸から構成される平面において、健全区(対象区)の試料11は散布図の左側に集中し、セラチア菌感染区の試料12、表皮ブドウ菌感染区の試料13は健全区の試料の右側に広く分布した。健全区の試料の分布領域より離れた試料は細菌感染が発生したものとして排除することが可能である。   The result of principal component analysis using this difference spectrum is shown in FIG. In the figure, ◆ are samples from healthy areas (target areas), ▲ are samples from Serratia bacteria-infected areas, and ■ are samples from Staphylococcus epidermidis-infected areas. In the plane composed of the PC1 and PC2 axes, the sample 11 in the healthy area (target area) is concentrated on the left side of the scatter diagram, and the sample 12 in the Serratia bacteria-infected area and the sample 13 in the Staphylococcus epidermidis-infected area are samples in the healthy area. Widely distributed on the right side. Samples far from the distribution area of samples in the healthy area can be excluded as bacterial infections.

次に、PLS回帰を用いた解析例を示す。健全試料の感染度0(零)、細菌感染試料のそれを1とする検量モデル作成用試料において差スペクトルを基にPLS回帰を行い、感染度を推定する検量モデルを作成する。作成した検量モデルに感染度が既知の評価用試料の差スペクトルを適用しそのモデルの性能を確認する。 Next, an example of analysis using PLS regression is shown. A calibration model for estimating the degree of infection is created by performing PLS regression based on the difference spectrum in a calibration model creation sample in which the infection degree of a healthy sample is 0 (zero) and that of a bacterial infection sample is 1. Apply the difference spectrum of the sample for evaluation with known infectivity to the created calibration model and confirm the performance of the model.

図6に検量モデル評価時の散布図を示す。散布図において前記感染度の推定値が0.4未満の場合試料は健全試料とし、前記感染度の推定値が0.4以上の場合試料は細菌感染試料と判断される。   FIG. 6 shows a scatter diagram at the time of calibration model evaluation. In the scatter diagram, when the estimated value of the infection level is less than 0.4, the sample is determined to be a healthy sample, and when the estimated value of the infection level is 0.4 or more, the sample is determined to be a bacterial infection sample.

次に、SIMCAを用いた解析例を示す。健全試料の差スペクトルを基にSIMCAモデルを作製する。作製した前記SIMCAモデルを未知試料に適用し、未知試料の前記SIMCAモデル中心からの距離を求める。前記距離と健全試料の残渣標準偏差とを比較し、前記距離が前記残渣標準偏差より大きい場合は感染区と、小さい場合健全区と判断される。
Next, an analysis example using SIMCA will be shown. A SIMCA model is created based on the difference spectrum of a healthy sample. The produced SIMCA model is applied to an unknown sample, and the distance of the unknown sample from the center of the SIMCA model is obtained. The distance is compared with the residue standard deviation of the healthy sample, and when the distance is larger than the residue standard deviation, it is judged as an infected area and when it is smaller, it is judged as a healthy area.

図7にSIMCAモデルにより健全試料と感染試料(バチラス菌感染試料)を識別したCoomansプロットを示す。横軸は健全試料SIMCAモデル中心からの距離、縦軸は感染試料SIMCAモデル中心からの距離である。健全区16の試料は同図において左上に分布し、感染区の試料17は右下に分布する。すなわち、バチラス菌に感染した試料は健全区の試料集団より離れたところに分布していることが分かる。   FIG. 7 shows a Coomans plot in which a healthy sample and an infected sample (Bacillus-infected sample) are identified by the SIMCA model. The horizontal axis represents the distance from the healthy sample SIMCA model center, and the vertical axis represents the distance from the infected sample SIMCA model center. The sample in the healthy area 16 is distributed in the upper left in the figure, and the sample 17 in the infected area is distributed in the lower right. That is, it can be seen that samples infected with Bacillus bacteria are distributed at a distance from the sample group in the healthy area.

本発明による血小板製剤非侵襲検査システムは、自動化を図ることにより日本赤十字などの血液センターにおいて、血小板製剤の品質管理に活用することが可能である。   The platelet product non-invasive test system according to the present invention can be used for quality control of platelet products at blood centers such as the Japanese Red Cross by automation.

透過法(左)及びインタラクタンス法(右)によるスペクトル測定(断面図)Spectrum measurement (cross-sectional view) by transmission method (left) and interactance method (right) 二次微分スペクトルを示す図Diagram showing second derivative spectrum 二次微分スペクトルを用いた主成分分析結果を示す図The figure which shows the principal component analysis result which uses the second derivative spectrum 差スペクトルを示す図Diagram showing difference spectrum 差スペクトルを用いた主成分分析結果を示す図Diagram showing results of principal component analysis using difference spectrum PLS回帰による解析結果を示す図The figure which shows the analysis result by PLS regression SIMCAによる解析結果を示す図Diagram showing the results of SIMCA analysis

符号の説明Explanation of symbols

1・・・採血バッグに入った血小板製剤
2・・・試料室
3・・・試料への入射光
4・・・試料からの透過光
5・・・入射光用光ファイバーバンドル
6・・・透過光用光ファイバーバンドル
7・・・採血バッグに入った血小板製剤
8・・・分光した入射光
9・・・試料からの拡散反射光
10・・・インタラクタンス用光ファイバーバンドル
11・・・健全区(対象区)の試料
12・・・セラチア菌感染区の試料
13・・・表皮ブドウ菌感染区の試料
14・・・健全区
15・・・感染区
16・・・健全区
17・・・感染区
DESCRIPTION OF SYMBOLS 1 ... Platelet preparation contained in blood collection bag 2 ... Sample chamber 3 ... Incident light 4 ... Transmitted light from sample 5 ... Optical fiber bundle 6 for incident light ... Transmitted light Optical fiber bundle 7 ... Platelet preparation 8 in blood collection bag ... Spectral incident light 9 ... Diffuse reflected light 10 from sample ... Interactance optical fiber bundle 11 ... Healthy area (target area) ) Sample 12 ... Sample 13 of Serratia fungus-infected area ... Sample 14 of Staphylococcus epidermidis infected area ... Healthy area 15 ... Infectious area 16 ... Healthy area 17 ... Infectious area

Claims (1)

採血バッグに入った血小板製剤の近赤外スペクトルを、血小板製剤を採血バッグから取り出すことなく非侵襲で経時的に測定し、細菌感染試料と健全試料のスペクトルの経時的変化を解析し、未知試料のスペクトルの経時的変化を細菌感染試料と健全試料のそれと比較することにより未知試料の細菌感染の有無を判別する血小板製剤非侵襲検査方法において、
未知試料の製造時に最初の近赤外スペクトル測定を行い、この最初の測定で得られたスペクトルの2次微分値を経時的に測定した当該未知試料のスペクトルの2次微分値から差し引いて差スペクトルとし、この差スペクトルを対照値として健全試料の感染度を0(零)、細菌感染試料の感染度を1とするPLS回帰検量モデルに適用し、感染度の推定値が0.4未満では未知試料は健全試料と判別し、0.4以上では未知試料は細菌感染試料と判別することを特徴とする血小板製剤非侵襲検査方法。
The near-infrared spectrum of the platelet product in the blood collection bag is measured non-invasively over time without removing the platelet product from the blood collection bag, and the time course changes in the spectrum of bacterially infected samples and healthy samples are analyzed. In a non-invasive platelet preparation method for determining the presence or absence of bacterial infection in an unknown sample by comparing the time course of the spectrum of the sample with that of a bacterially infected sample and a healthy sample,
The first near-infrared spectrum is measured at the time of manufacture of the unknown sample, and the second derivative of the spectrum obtained by the first measurement is subtracted from the second derivative of the spectrum of the unknown sample measured over time. This difference spectrum is used as a control value and applied to a PLS regression calibration model in which the infectivity of healthy samples is 0 (zero) and the infectivity of bacterially infected samples is 1. If the estimated value of infectivity is less than 0.4, it is unknown. A platelet product non-invasive test method characterized in that a sample is discriminated as a healthy sample, and an unknown sample is discriminated as a bacterial infection sample at 0.4 or more.
JP2007106632A 2006-10-30 2007-04-16 Discrimination of bacterial infections of platelet preparations using difference spectra Expired - Fee Related JP4131744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007106632A JP4131744B2 (en) 2006-10-30 2007-04-16 Discrimination of bacterial infections of platelet preparations using difference spectra

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006294034 2006-10-30
JP2006294034 2006-10-30
JP2007106632A JP4131744B2 (en) 2006-10-30 2007-04-16 Discrimination of bacterial infections of platelet preparations using difference spectra

Publications (2)

Publication Number Publication Date
JP2008134217A JP2008134217A (en) 2008-06-12
JP4131744B2 true JP4131744B2 (en) 2008-08-13

Family

ID=39559157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007106632A Expired - Fee Related JP4131744B2 (en) 2006-10-30 2007-04-16 Discrimination of bacterial infections of platelet preparations using difference spectra

Country Status (1)

Country Link
JP (1) JP4131744B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010029399A (en) * 2008-07-29 2010-02-12 National Agriculture & Food Research Organization Noninvasive blood glucose level measuring method
JP5782340B2 (en) * 2011-09-02 2015-09-24 川澄化学工業株式会社 Plasma product testing device and blood component separation device
KR101523337B1 (en) * 2012-09-20 2015-05-28 주식회사 바이오센 Methods for Assessing Virus Infections against a Plant using Raman Spectroscopy and Chemometrics
JP6618789B2 (en) * 2015-11-27 2019-12-11 サクラ精機株式会社 Analysis method and analyzer
KR20170115907A (en) * 2016-04-08 2017-10-18 고려대학교 산학협력단 Classification of Raman signals of exosomes by pattern recognition and the method of diagnosis of cells
KR20230112886A (en) * 2022-01-21 2023-07-28 주식회사 원드롭 Test apparatus for determination of infection using ratio of reagent color changing and test method thereof

Also Published As

Publication number Publication date
JP2008134217A (en) 2008-06-12

Similar Documents

Publication Publication Date Title
JP4636762B2 (en) Method for calibrating a spectroscopic device
US7688448B2 (en) Through-container optical evaluation system
Rohleder et al. Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy
EP1250082B1 (en) Classification and characterization of tissue through features related to adipose tissue
JP4131744B2 (en) Discrimination of bacterial infections of platelet preparations using difference spectra
US7663738B2 (en) Method for automatically detecting factors that disturb analysis by a photometer
EP0317121A2 (en) Spectroscopic method and apparatus for measuring sugar concentrations
US20050243303A1 (en) Method and device for measurements in blood
JPH02191434A (en) Method and apparatus for near infrared quantitative analysis of blood sugar level
JPH06186159A (en) Non-destructive measurement method for fruits sugar degree with near-infrared transmission spectrum
KR102042864B1 (en) Method to determine the absorption coefficient in turbid media
WO2015131151A2 (en) Method and apparatus for determining markers of health by analysis of blood
US6919566B1 (en) Method of calibrating a spectroscopic device
JP2010261944A (en) Method of detecting contaminant in chemical measurement cuvette
JP2009168747A (en) Method of inspecting food and inspection apparatus implementing the same
JP4329360B2 (en) Glucose concentration determination device
Azhar et al. Hemolysis detection in sub-microliter volumes of blood plasma
KR20090036996A (en) Non-prick based glucose sensor combining transmittance and reflectance using single wavelength with diverse light sources
US11259722B2 (en) Apparatus and method for measuring the blood oxygen saturation in a subject's tissue
JPWO2007066589A1 (en) Examination and diagnosis method and apparatus for lifestyle-related diseases using near infrared spectroscopy
JP3234273B2 (en) Method for continuous spectroscopic measurement of acidity in fermented milk and fermentation tank with near-infrared absorption spectrum detection terminal used for the method
Zhang et al. Transmission versus reflection spectroscopy for discrimination of human and nonhuman blood
JPH11342123A (en) Non-invasion organic component measuring device
JPWO2006123611A1 (en) Chronic fatigue syndrome (CFS) diagnostic method and apparatus using near infrared spectroscopy
Olaetxea et al. Determination of physiological lactate and pH by Raman spectroscopy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees