JP2010029399A - Noninvasive blood glucose level measuring method - Google Patents

Noninvasive blood glucose level measuring method Download PDF

Info

Publication number
JP2010029399A
JP2010029399A JP2008194240A JP2008194240A JP2010029399A JP 2010029399 A JP2010029399 A JP 2010029399A JP 2008194240 A JP2008194240 A JP 2008194240A JP 2008194240 A JP2008194240 A JP 2008194240A JP 2010029399 A JP2010029399 A JP 2010029399A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
measuring
blood
glucose
spectrum
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008194240A
Other languages
Japanese (ja)
Inventor
Sumio Kono
Saranwong Sirinnapa
シリンナパー サランウォング
澄夫 河野
Original Assignee
National Agriculture & Food Research Organization
独立行政法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a noninvasive blood glucose level measuring method capable of simply, periodically measuring or sequentially measuring the blood glucose level of a person without collecting blood.
SOLUTION: This noninvasive blood glucose level measuring method includes: illuminating a near-infrared light to a person's palm whose temperature is previously retained to a certain degree, measuring the near-infrared spectrum of the palm, when applying it to a previously created calibration model, defining a hypothenar whose temperature measurement is relatively easy and whose tissue is relatively uniform, as a spectrum measuring portion, and enlarging a distance between a light source side and a detection side of an interactance type measurement terminal for use in a spectrum measurement so as to expand a view field for measuring the spectrum.
COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、近赤外分光法によりヒトの血糖値を非侵襲的に測定する方法に関する。 The present invention relates to a method for noninvasively measuring the blood sugar level of a human by near infrared spectroscopy.

ヒトの血糖値の非侵襲測定法としては、特許文献1及び特許文献2に開示される方法がある。 Non-invasive measurement of blood glucose levels in humans, there is a method disclosed in US Pat.
特許文献1には、鼓膜の血管を対象として血中グルコースを測定する装置として、装置末端部に耳道に挿入される鏡を備え、この鏡内の光源が発生する近赤外光または赤外光を被試験成分(血中グルコース)に吸収させることで血中グルコース濃度を測定する内容が開示されている。 Patent Document 1, as an apparatus for measuring blood glucose as a target vascular eardrum, comprising a mirror which is inserted into the ear canal to the device end, the near-infrared light or infrared light source within the mirror occurs the contents measuring blood glucose concentration by which absorb light under test component (blood glucose) is disclosed.
また特許文献2には、指、耳たぶなどに広範囲のスペクトルの光を照射し、透過若しくは反射した光をプリズムによって種々の成分に分離し、これら成分の光透過率および吸収率を算出し、血液中のグルコース、コレステロール、血液ガスなどの濃度を検出する内容が開示されている。 Further, Patent Document 2, the finger is irradiated with a wide range of light spectrum, such as ear lobe, the transmission or reflected light is separated into various components by a prism, and calculates the light transmittance and absorptance of these components, the blood glucose, cholesterol, the content to detect the concentration, such as blood gases is disclosed in.

また、先行論文としては、Maruoらの論文がある。 Further, as prior papers, there is Maruo et al. この論文には、近赤外分光法を用い、インタラクタンス型の光ファイバーバンドル先端(光源側と検出器側の距離:0.65mm)を前腕部に垂直にあて、1200nm〜1900nmの長波長域のスペクトルを測定し、得られたスペクトルを予め作成した検量モデルに適用することにより非侵襲的に血糖値を求める方法が開示されている。 This paper, using near-infrared spectroscopy, interactance type optical fiber bundle tip (distance between the light source side detector-side: 0.65 mm) and addressed perpendicular to the forearm, the long wavelength region of 1200nm~1900nm the spectra were measured non-invasively method for obtaining the blood sugar level by applying the calibration model created the obtained spectrum in advance is disclosed.

特表平5−506171号公報 Hei 5-506171 JP 特表平7−503863号公報 Hei 7-503863 JP

近赤外分光法を用いて、非侵襲的にヒトの血糖値を測定する試みは特許文献1、特許文献2および非特許文献に開示されているが、測定精度が不十分である。 Using near-infrared spectroscopy, noninvasively attempt to measure the glucose level in humans Patent Document 1, it is disclosed in Patent Document 2 and Non-patent literature is insufficient measuring accuracy. 比較的精度の高い丸尾らの方法においても、測定精度は誤差の標準偏差(SEP)で23.7mg/dLであり、実用の精度には達していない。 Also in the method of relatively accurate Maruo et al, measurement accuracy is 23.7 mg / dL in the standard deviation of error (SEP), it does not reach the practical precision. また、個人差による測定誤差が大きく実用化の障害となっている。 Also, measurement error due to individual differences is an obstacle to greater commercialization.

本発明は、近赤外分光法によりヒトの血糖値を非侵襲的に測定する方法において、測定精度をより向上させ、個人差の影響を少なくするスペクトル測定方法を提供する。 The present invention provides a method for noninvasively measuring the blood sugar level of a human by near infrared spectroscopy, and more improve the measuring accuracy, to provide a spectrum measuring method to reduce the influence of individual differences.

上記の目的を達成するため、本発明は、予め温度を一定にしたヒトの手の平に近赤外光を照射し、手の平の近赤外スペクトルを測定し、予め作成した検量モデルに適用することにより、採血することなくヒトの血糖値を求めることを特徴とする血糖値非侵襲測定法において、スペクトルの測定部位を温度調整が比較的容易でかつ組織が比較的均一な小指球とし、またスペクトル測定に用いるインタラクタンス方式の測定端子の光源側と検出側の距離を大きくすることによりスペクトルを測定する視野を拡大した。 To achieve the above object, the present invention is irradiated with near-infrared light to the palm of the person who previously temperature constant, by measuring the near infrared spectrum of the palm is applied to a calibration model previously prepared in the blood glucose level non-invasive measurement method and obtains the blood glucose level of human without blood, and the temperature adjusted to the measurement site of the spectrum relatively easy and tissue is relatively uniform hypothenar, also spectrometry an enlarged field of view to measure the spectrum by increasing the distance between the light source side and the detection side of the measuring terminal of interactance scheme to be used for.

近赤外スペクトルは測定試料の温度の影響を強く受けるため、スペクトル測定前に試料温度を一定に調整することが重要である。 Since near infrared spectra undergo strong effect of temperature of the measurement sample, it is important to adjust the sample temperature constant before spectral measurement. 手の平の場合、温度が一定になった伝導性の高い物質に接触させ、あるいは恒温水槽の水に漬けることによりその温度を比較的容易にしかも精度よく制御することが可能である。 For palm, it is possible to relatively easily and accurately control the temperature by the temperature in contact with the substance with a high conductivity that became constant, or immersed in water of a constant temperature water bath.

ヒトの手などの生体組織は水分が多く光を通しにくいため、通常用いる長波長域(1100〜2500nm)の近赤外線を用いるとノイズが大きく測定誤差が生じやすい。 For biological tissue such as the human hand it is difficult through the juicy light, typically using a near-infrared when noise is large measurement error of the long wavelength region (1100~2500nm) is likely to be used. そこで、通常用いる長波長域の10〜100倍の透過力を有する700nm〜1100nmの短波長域の近赤外光を用いることが好ましい。 Therefore, it is preferable to use a near-infrared light in the short wavelength range of 700nm~1100nm having 10 to 100 times the transmission power of the long wavelength region used normally. 短波長域の近赤外光を用いることにより、測定部位に接触する測定端子の光源部と検出部の距離を拡大することが可能になり、測定する視野を拡大することにより測定部位における測定端子の多少のズレによるスペクトルの乱れを軽減し、そのことによる測定誤差の低減が期待できる。 The use of near-infrared light in the short wavelength region, it is possible to enlarge the distance detection unit and the light source of the measuring terminals in contact with the measurement site, measurement terminals in the measurement site by enlarging a field of view measuring some to reduce the disturbance of the spectrum due to the deviation, can be expected reduction of the measurement error due to the fact that the.

本発明によれば、採血することなくヒトの血糖値を簡便に定時測定あるいは連続測定することが可能となる。 According to the present invention, it becomes possible to simply be scheduled measurement or continuous measurement of the blood sugar level of a human without blood sampling. 合併症予防のために定時的に血糖値を測定する必要がある糖尿病患者は指先などを針で穿刺して採血しなければならず、精神的ストレスと苦痛を余儀なくされている。 Diabetic patients who need to measure scheduled in glucose levels for complications prevention must bled by puncturing the fingertip with a needle, it has been forced to mental stress and pain. また、食品分野では、摂取後の血糖値の上昇程度を示すグリセミックインデックス(GI値)が健康管理の観点から注目されているが、前記GI値を求めるためには対象とする食品を実際に摂取し、摂取後の血糖値の変化を実測する必要があり、その測定は容易ではない。 Further, in the food sector, but glycemic index indicating the degree of increase in blood glucose level after ingestion (GI value) has attracted attention in terms of health care, actually ingested food of interest to determine the GI value and, it is necessary to actually measure the change in blood glucose level after ingestion, the measurement is not easy. 今回の発明によりこれらの問題は解決でき、その波及効果は大きい。 These problems by this invention can be resolved, the ripple effect is large.

以下に本発明実施の最良の形態を説明する。 Describing the best mode of the present invention carried out the following. この検査方法は、(1)予め検量モデルを作成する過程と、(2)作成した検量モデルを用いてルーチン分析する過程とに大別される。 This test method is roughly divided into a step of the routine analysis using the process of creating (1) pre-calibration model, the calibration model created (2). 前者は(a)スペクトルの測定、(b)従来法による血糖値の測定、(c)スペクトル解析による血糖値測定用検量モデルの作成から構成され、後者は (d)スペクトルの測定、(e)作成した検量モデルによる血糖値の算出から構成される。 The former (a) Measurement of the spectrum, (b) measurement of the blood glucose level by conventional methods, consist created calibration model for blood glucose measurement by (c) spectral analysis, the latter (d) In the measurement of the spectrum, (e) composed of the calculation of the blood sugar level by calibration model created.

スペクトル測定(a)の過程では、温度を31℃に一定にしたアルミニウム製ブロックに約30秒間接触させることにより手の平の温度を一定にした後、研究用分散型近赤外装置に接続されたインタラクタンス型光ファイバープローブ3の先端を図1に示すように手の平1の小指球2に接触させてスペクトルを測定する。 In the course of the spectrum measurement (a), after the temperature of the palm constant by contacting approximately 30 seconds the aluminum blocks a constant temperature 31 ° C., which is connected to the research dispersive infrared device InteracTV the tip of the chest type optical fiber probe 3 is brought into contact with the hypothenar 2 palm 1 as shown in FIG. 1 for measuring the spectrum. すなわち、分光した光が入射光用光ファイバーバンドル4を介して小指球2に照射され、小指球およびその周辺の生体組織で拡散反射された光は検出用光ファイバーバンドル5を介して検出器で検出される。 That is, the dispersed light is irradiated to the hypothenar 2 through the incident Hikari Mitsumochi fiber bundle 4, the light diffused and reflected by the hypothenar and around the living tissue is detected by the detector through the detection optical fiber bundle 5 that.

現場で利用する実用装置の開発の場合、回折格子が可動する研究用分散型近赤外装置に換えて回折格子が固定された簡易型のリニアアレイ型装置を用いることが可能である。 For development of a practical device for use in the field, the diffraction grating can be used a simple form of linear array type device which is a diffraction grating in place of the research for distributed near infrared device for movable fixed.
また、前記入射光用光ファイバーバンドル4に換えて光源ランプを内蔵した光源部の開口部を複数個配置してもよい。 Further, the opening of the light source unit with a built-in light source lamp instead of the incident Hikari Mitsumochi fiber bundle 4 may be plural arrangement.

従来法による血糖値の測定(b)の過程では、スペクトル測定後直ちに針を用いて指先に穿刺して採血、従来の測定装置(例えば、富士フイルムメデカル株式会社製、富士ドライケム300G)により血糖値を測定する。 In the course of the measurement of the blood glucose level according to the conventional method (b), blood collection puncture the fingertip with the immediately needle after spectrum measurement, the conventional measuring device (e.g., FUJIFILM Medeka le Ltd., Fuji Dry Chem 300G) by the blood glucose level to measure. スペクトル測定(a)および従来法による血糖値の測定(b)の操作を血糖値の異なる条件下で必要な回数繰り返す。 Repeated as many times as necessary in different conditions of blood glucose level operation of the measurement of blood glucose level (b) by spectral measurement (a) and the conventional method. 1人の被験者あるいは複数の被験者を用いることが可能である。 It is possible to use one subject or a plurality of subjects.

スペクトル解析による血糖値測定用検量モデルの作成(c)の過程では、前記小指球の光散乱状態の違いによるスペクトルの上下変動を除去するため、二次微分スペクトルを算出する。 In the course of creation of the calibration model for blood glucose measurement by spectral analysis (c), for removing vertical fluctuations of the spectrum due to the difference of the light scattering state of the hypothenar, and calculates the second derivative spectrum. 図2に前記小指球の二次微分スペクトルの例を示す。 An example of a second derivative spectrum of the hypothenar in FIG. 970nmの近傍に観察される強い吸収は水によるものである。 Strong absorption observed in the vicinity of 970nm is due to water. スペクトルの二次微分値と前記従来法による血糖値の測定(b)で得られた血糖値を基にクロスバリデーション法によりPLS回帰を行い血糖値用の検量モデルを作成する。 Preparing a calibration model for glucose levels perform PLS regression by cross-validation method based on the blood glucose level obtained by the measurement of the blood glucose level by the secondary differential value as the conventional method of spectrum (b). 被験者が1人の場合の血糖値推定値の散布図および作成した血糖値用検量モデルの回帰係数のプロットを図3および図4に示す。 Subjects 3 and 4 a plot of the regression coefficients of the calibration model for glucose value created scatter plot and the blood glucose level estimation value when the one person. クロスバリデーション時の誤差の標準偏差(SECV)は10.1mg/dLであり、これまでの測定誤差の約1/2となった。 The standard deviation of the error at the time of cross-validation (SECV) is 10.1mg / dL, it was about 1/2 of the measurement errors of the past. 前記回帰係数は次式により説明される。 The regression coefficient is described by the following equation.

G = K 0 + K 1 A 700 + K 2 A 702 + K 3 A 704 +・・・+ K i A j +・・・+ K n A m (1) G = K 0 + K 1 A 700 + K 2 A 702 + K 3 A 704 + ··· + K i A j + ··· + K n A m (1)
ここで、 here,
Gはグルコース含量(mg/dL) G is the glucose content (mg / dL)
K iは波長 j nm における回帰係数 Regression coefficient at K i is the wavelength j nm
A jは波長 j nm における吸光度、その一次微分値、又は二次微分値 A j is the absorbance at a wavelength j nm, the primary differential value thereof, or the secondary differential value

回帰係数のプロットは式(1)のK iの値を700nm〜1100nmの波長域でプロッタした図で、K iの値は各波長のA jに加わる荷重である。 Plot of the regression coefficients in the drawing that the plotter in a wavelength range of 700nm~1100nm the value K i of the equation (1), the value K i of is load applied to A j of each wavelength. すなわち、図4に示されるピークはその波長の重要度を示している。 That is, the peak shown in FIG. 4 shows the importance of that wavelength. 図4の場合、重要度の高い波長の中に920nmのグルコースの吸収バンド、978nmの水の吸収バンドが含まれている。 For Figure 4, the absorption bands of glucose 920nm in high importance wavelengths includes the absorption band of water 978 nm.

図5は被験者が多数の場合の血糖値推定値の散布図である。 Figure 5 is a scatter plot of the blood glucose level estimation value when subject many. 複数の被験者のスペクトルを基に、すなわち個人差のあるスペクトルを基にスペクトル解析を行っても被験者が1人の場合とほぼ同等の測定結果が得られ、SECVは13.4mg/dLであった。 Based on the spectrum of a plurality of subjects, i.e. almost the same measurement result as even analyzes the spectrum subject of one based on a spectrum of individual differences are obtained, SECV was 13.4 mg / dL .

前記作成した検量モデルを用いてルーチン分析する過程(2)では、前記スペクトル測定(a)と同様な方法により小指球のスペクトルが測定される。 In step (2) for routine analysis by using a calibration model wherein the created spectrum hypothenar is measured by the same method as spectrum measurement (a). すなわち、手の平の温度を31℃に調整し、インタラクタンス型光ファイバープローブ3の先端を図1のように手の平1の小指球2に接触させてスペクトルを測定する。 That is, by adjusting the temperature of the palm 31 ° C., the tip of the interactance type optical fiber probe 3 is brought into contact with the hypothenar 2 palm 1 as shown in FIG. 1 for measuring the spectrum. 得られたスペクトルを前記開発した検量モデルに適用し、血糖値が算出される。 The resulting spectrum is applied to a calibration model wherein the developed, the blood glucose level is calculated. ルーチン分析ではこの操作が繰り返され、ヒト血糖値の非侵襲測定が可能となる。 This operation is repeated in the routine analysis, it is possible to non-invasively measure the human blood sugar level.

本発明による血糖値非侵襲測定法は、安価でかつ操作が簡単な簡易型装置を作ることにより、糖尿病患者の健康管理、および食品のGI値の測定などに活用することを可能にする。 Blood glucose non-invasively measuring method according to the present invention, by making inexpensive and easy-to-use simplified device makes it possible to utilize such health care of diabetics, and measurement of GI values ​​of foods.

インタラクタンス法による小指球のスペクトル測定 Spectrum measurement of hypothenar by interactance method 小指球の二次微分スペクトルを示す図 Shows the second derivative spectra of hypothenar 被験者が1人の場合の血糖値推定値の散布図 Scatter plot of the blood glucose level estimation value when subject to one 作成した血糖値用検量モデルの回帰係数を示す図 It shows the regression coefficients of the calibration model for glucose value created 被験者が多数の場合の血糖値推定値の散布図 Scatter plot of the blood glucose level estimation value when subject many

符号の説明 DESCRIPTION OF SYMBOLS

1・・・手の平2・・・小指球3・・・インタラクタンス型光ファイバーのプローブ4・・・入射光用光ファイバーバンドル5・・・検出用光ファイバーバンドル6・・・3のプローブ先端の断面 1 ... palm 2 ... hypothenar 3 ... interactance type optical fiber probe 4 ... incident Hikari Mitsumochi fiber bundle 5 ... cross-section of the probe tip of the detection optical fiber bundle 6 ... 3

Claims (6)

  1. 予め温度を一定にしたヒトの手の平に近赤外光を照射し、手の平の近赤外スペクトルを測定し、予め作成した検量モデルに適用することにより、採血することなくヒトの血糖値を求めることを特徴とする血糖値非侵襲測定法。 Irradiating near-infrared light in advance temperature in the palm of the person you constant, to measure the near-infrared spectrum of the palm, by applying a calibration model prepared in advance, to obtain the blood sugar level of a human without blood blood glucose non-invasively measuring method according to claim.
  2. 請求項1に記載の血糖値非侵襲測定法において、前記ヒトの手の平に光を照射する方法は、光源ランプを内蔵した光源部の開口部を、あるいは光源部の開口部に接続された光ファイバーバンドルの接続部と反対側の先端部を手の平にそれぞれ接触させて導光することを特徴とする血糖値非侵襲測定法。 The blood sugar level noninvasive measuring method according to claim 1, a method of irradiating light to the palm of the human, the opening of the light source unit with a built-in light source lamp or an optical fiber bundle that is connected to the opening of the light source unit, blood glucose non-invasively measuring method characterized by contacting each light guide in that the palm of the opposite side of the distal end portion and the connecting portion of the.
  3. 請求項1に記載の血糖値非侵襲測定法において、前記近赤外光を照射するヒトの手の平の部分は、手の平の小指側の小指球とすることを特徴とする血糖値非侵襲測定法。 The blood sugar level noninvasive measuring method according to claim 1, wherein the portion of the palm of the person to be irradiated with near-infrared light, the blood glucose level non-invasive measurement method is characterized in that the little finger side of the hypothenar palm.
  4. 請求項1に記載の血糖値非侵襲測定法において、スペクトルを測定する装置は、回折格子が可動する分散型装置あるいは回折格子が固定されたリニアアレイ型装置を用いることを特徴とする血糖値非侵襲測定法。 The blood sugar level noninvasive measuring method according to claim 1, an apparatus for measuring the spectrum, the blood glucose level non-dispersion type device or a diffraction grating in which the diffraction grating is movable, characterized by using a linear array type device which is fixed invasive measurement method.
  5. 請求項1に記載の血糖値非侵襲測定法において、測定するスペクトルの波長は、700nm〜1100nmの範囲とすることを特徴とする血糖値非侵襲測定法。 The blood sugar level noninvasive measuring method according to claim 1, wavelength of the spectrum to be measured is blood glucose level non-invasive measurement method is characterized in that the range of 700Nm~1100nm.
  6. 請求項1に記載の血糖値非侵襲測定法において、前記手の平の温度は、予め一定の温度に保持されたブロックに手の平を接触することで、夏場の外気温あるいは体温より少なくとも5℃以上高い温度とすることを特徴とする血糖値非侵襲測定法。 The blood sugar level noninvasive measuring method according to claim 1, the temperature of the palm, by contacting the palm block held beforehand at a constant temperature, at least 5 ° C. or more higher temperatures than the outside air temperature or body temperature in summer blood glucose noninvasive measurement method which is characterized in that a.
JP2008194240A 2008-07-29 2008-07-29 Noninvasive blood glucose level measuring method Pending JP2010029399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008194240A JP2010029399A (en) 2008-07-29 2008-07-29 Noninvasive blood glucose level measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008194240A JP2010029399A (en) 2008-07-29 2008-07-29 Noninvasive blood glucose level measuring method

Publications (1)

Publication Number Publication Date
JP2010029399A true true JP2010029399A (en) 2010-02-12

Family

ID=41734601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008194240A Pending JP2010029399A (en) 2008-07-29 2008-07-29 Noninvasive blood glucose level measuring method

Country Status (1)

Country Link
JP (1) JP2010029399A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503863A (en) * 1992-02-28 1995-04-27
JP2004500155A (en) * 1999-06-30 2004-01-08 リオ グランデ メディカル テクノロジーズ インコーポレイテッドRio Grande Medical Technologies,Inc. Method and apparatus for non-invasive blood analyte measurement
JP2004321368A (en) * 2003-04-23 2004-11-18 Biox Kk Apparatus for measuring glucose concentration
JP2007532183A (en) * 2004-04-07 2007-11-15 センシス メディカル インク Compact device for non-invasive measurement of glucose by near-infrared spectroscopy
JP4020251B2 (en) * 2001-04-11 2007-12-12 ルミディグム インコーポレイテッドLumidigm, Inc. Apparatus and method of biometric specific identification or verification of individuals using optical wave spectroscopy
JP4054853B2 (en) * 2000-10-17 2008-03-05 独立行政法人農業・食品産業技術総合研究機構 Blood analysis method using near-infrared spectroscopy
JP2008134217A (en) * 2006-10-30 2008-06-12 National Agriculture & Food Research Organization Identification of bacteria-infected platelet preparation using differential spectrum, and platelet preparation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07503863A (en) * 1992-02-28 1995-04-27
JP2004500155A (en) * 1999-06-30 2004-01-08 リオ グランデ メディカル テクノロジーズ インコーポレイテッドRio Grande Medical Technologies,Inc. Method and apparatus for non-invasive blood analyte measurement
JP4054853B2 (en) * 2000-10-17 2008-03-05 独立行政法人農業・食品産業技術総合研究機構 Blood analysis method using near-infrared spectroscopy
JP4020251B2 (en) * 2001-04-11 2007-12-12 ルミディグム インコーポレイテッドLumidigm, Inc. Apparatus and method of biometric specific identification or verification of individuals using optical wave spectroscopy
JP2004321368A (en) * 2003-04-23 2004-11-18 Biox Kk Apparatus for measuring glucose concentration
JP2007532183A (en) * 2004-04-07 2007-11-15 センシス メディカル インク Compact device for non-invasive measurement of glucose by near-infrared spectroscopy
JP2008134217A (en) * 2006-10-30 2008-06-12 National Agriculture & Food Research Organization Identification of bacteria-infected platelet preparation using differential spectrum, and platelet preparation

Similar Documents

Publication Publication Date Title
US5070874A (en) Non-invasive determination of glucose concentration in body of patients
US6442408B1 (en) Method for quantification of stratum corneum hydration using diffuse reflectance spectroscopy
US6587702B1 (en) Classification and characterization of tissue through features related to adipose tissue
US5666956A (en) Instrument and method for non-invasive monitoring of human tissue analyte by measuring the body's infrared radiation
Dam et al. Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths
US5553613A (en) Non invasive blood analyte sensor
US7254432B2 (en) Method and device for non-invasive measurements of blood parameters
US6898451B2 (en) Non-invasive blood analyte measuring system and method utilizing optical absorption
US6064898A (en) Non-invasive blood component analyzer
Gabriely et al. Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia.
US6675029B2 (en) Apparatus and method for quantification of tissue hydration using diffuse reflectance spectroscopy
US5747806A (en) Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US6456862B2 (en) Method for non-invasive spectrophotometric blood oxygenation monitoring
US20040242977A1 (en) Non-invasive methods of detecting analyte concentrations using hyperosmotic fluids
US6990365B1 (en) Apparatus for measurement of blood analytes
US20040127777A1 (en) Indirect measurement of tissue analytes through tissue properties
US6236047B1 (en) Method for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US20080097173A1 (en) Measuring Tissue Oxygenation
US20070049809A1 (en) Intrinsic Raman spectroscopy
US6968221B2 (en) Low-cost method and apparatus for non-invasively measuring blood glucose levels
Malin et al. Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy
US7328052B2 (en) Near infrared risk assessment of diseases
US20060276697A1 (en) Non-invasive biochemical analysis
US20090281403A1 (en) Method for spectrophotometric blood oxygenation monitoring
US6958039B2 (en) Method and instruments for non-invasive analyte measurement

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110707

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20130109

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20130115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20130227

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20131001

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610