JPH05273066A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH05273066A
JPH05273066A JP7123692A JP7123692A JPH05273066A JP H05273066 A JPH05273066 A JP H05273066A JP 7123692 A JP7123692 A JP 7123692A JP 7123692 A JP7123692 A JP 7123692A JP H05273066 A JPH05273066 A JP H05273066A
Authority
JP
Japan
Prior art keywords
film
magneto
pressure
magnetization
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7123692A
Other languages
Japanese (ja)
Inventor
Kazushi Fukuniwa
一志 福庭
Seiji Okada
誠二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP7123692A priority Critical patent/JPH05273066A/en
Publication of JPH05273066A publication Critical patent/JPH05273066A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve detection sensitivity and mechanical strength by providing a member which is deformed due to pressure, a magnetic optical film which is deformed due to deformation of the member, and a detection means for detecting the deformation as a polarization surface rotation of straight line polarization. CONSTITUTION:When no pressure is applied to a pressure sensor 12, the direction of axis of easy magnetization of a magnetic optical film 16 crosses the direction of magnetic field. In this state, when light of straight line polarization from an irradiation device 18 is transmitted through the film 16, a rotary angle theta of a polarization surface of light is small since magnetization of a magnetic optical element in incidence direction of light is small. When a pressure P is applied to the sensor 12, a base member 14 is deformed and a compression stress is applied to the film 16. When the pressure exceeds a constant threshold stress, the axis of easy magnetization of the film 16 faces toward the direction of inside of surface of the film 16 since Dy3Fe5O12 constituting the film 16 has a negative magnetostriction constant. Therefore, it becomes parallel to the direction of magnetic field and magnetization in the direction of inside of surface of the film 16 increases, thus increasing rotary angle phi of the polarization surface of light which is transmitted through the film 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液体または気体の圧力
変化を直線偏光の偏光面回転として検出する圧力センサ
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor for detecting a pressure change of a liquid or a gas as rotation of a plane of polarization of linearly polarized light.

【0002】[0002]

【従来の技術】従来より、光を用いて圧力を測定する方
法としては、以下の様なものが知られている。まず1つ
の方法は、圧力が加わると複屈折が変化する光弾性素子
と光フアイバによる伝送路を組み合わせたものであり、
圧力が加わることによる光の偏光状態の変化によって圧
力を検出するものである。また、もう1つの方法は、特
開昭63−205534号公報に開示されている様に、
圧力によって永久磁石などの磁気源を変位させ、この変
位により生ずる磁界の変化を磁気光学素子でピックアッ
プし、磁気光学素子を通る光の直線偏光面の回転に変換
するものである。また、更に別の方法は、磁気光学素子
の磁化状態が歪みによって変化する性質、すなわち磁歪
の逆効果を利用して圧力を段階的に測定するものであ
る。
2. Description of the Related Art Conventionally, the following methods have been known as methods for measuring pressure using light. First, one method is a combination of a photoelastic element whose birefringence changes when pressure is applied and a transmission line using an optical fiber,
The pressure is detected by the change of the polarization state of light due to the application of pressure. Another method is disclosed in JP-A-63-205534,
A magnetic source such as a permanent magnet is displaced by pressure, and a change in magnetic field caused by this displacement is picked up by a magneto-optical element and converted into rotation of a linear polarization plane of light passing through the magneto-optical element. Still another method is to measure the pressure stepwise by utilizing the property that the magnetization state of the magneto-optical element changes due to strain, that is, the inverse effect of magnetostriction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来の方法のうち、複屈折の変化を用いる方法と、磁歪
の逆効果を用いる方法においては、結晶の機械的歪みを
介して光弾性素子の複屈折を変化させたり、磁気光学素
子の磁化状態を変化させたりしているため、感度と機械
的強度の両立が困難であるという問題点がある。
However, among the above-mentioned conventional methods, in the method using the change of birefringence and the method using the inverse effect of magnetostriction, the photoelastic element of the photoelastic element is mediated by the mechanical strain of the crystal. Since the birefringence is changed or the magnetization state of the magneto-optical element is changed, it is difficult to achieve both sensitivity and mechanical strength.

【0004】また、永久磁石を変位させる方法において
は、この永久磁石を変位させるための機械的な構造が必
要となるため、圧力の検出装置の構成が複雑化するとい
う問題点がある。従って、本発明は上述した課題に鑑み
てなされたものであり、その目的とするところは、簡単
な構成で、検出感度の向上と機械的強度の向上が図れる
様な圧力センサを提供することにある。
Further, in the method of displacing the permanent magnet, a mechanical structure for displacing the permanent magnet is required, which causes a problem that the structure of the pressure detecting device becomes complicated. Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a pressure sensor with a simple configuration that can improve detection sensitivity and mechanical strength. is there.

【0005】[0005]

【課題を解決するための手段】上述の課題を解決し、目
的を達成するために、本発明の圧力センサは、圧力によ
り変形する部材と、該部材の変形に応じて変形する磁気
光学膜と、該磁気光学膜の変形を直線偏光の偏光面回転
として検出する検出手段とを具備することを特徴として
いる。
In order to solve the above-mentioned problems and to achieve the object, a pressure sensor of the present invention comprises a member which is deformed by pressure and a magneto-optical film which is deformed according to the deformation of the member. And a detection means for detecting the deformation of the magneto-optical film as rotation of the polarization plane of linearly polarized light.

【0006】また、この発明に係わる圧力センサにおい
て、前記磁気光学膜は、ダイアフラム状に形成された前
記部材上に配設されており、前記検出手段は、前記磁気
光学膜を透過した光の偏光面の回転角を検出することを
特徴としている。
Further, in the pressure sensor according to the present invention, the magneto-optical film is disposed on the member formed in a diaphragm shape, and the detecting means polarizes the light transmitted through the magneto-optical film. The feature is that the rotation angle of the surface is detected.

【0007】[0007]

【作用】以上の様に、この発明に係わる圧力センサは構
成されているので、圧力により変形し易い部分と機械的
強度の高い部分を合わせ持つダイアフラム状に形成され
た部材の表面に、磁気光学素子の薄膜を形成し、ダイア
フラムの膜部分の変形を磁気光学素子の膜で検出するこ
とにより、簡単な構成で、検出感度の向上と機械的強度
の向上を両立させた圧力センサを実現することができ
る。
As described above, since the pressure sensor according to the present invention is constructed, the magneto-optical element is formed on the surface of the member formed in the shape of a diaphragm having both a portion easily deformed by pressure and a portion having high mechanical strength. By forming a thin film of the element and detecting the deformation of the diaphragm film portion with the film of the magneto-optical element, it is possible to realize a pressure sensor that has both a simple structure and improved detection sensitivity and mechanical strength. You can

【0008】[0008]

【実施例】以下、本発明の好適な一実施例について、添
付図面を参照して詳細に説明する。まず、一実施例の圧
力センサについて説明する前に、磁歪を用いて圧力を検
出する方法について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. First, before describing the pressure sensor of one embodiment, a method of detecting pressure using magnetostriction will be described.

【0009】この磁歪を用いて圧力を検出する方法は、
磁気光学素子の磁化状態が加えられた応力によって変化
する性質を用いるものである。一般的に磁気光学素子
は、磁化することにより磁化方向に伸び縮みし、逆に伸
び縮みさせる(応力を加える)ことにより磁化の方向が
変化する性質を有している。磁化した時に、磁化方向に
伸びるものが、磁歪定数が正のものであり、逆に磁化方
向に縮むものが磁歪定数が負のものである。
The method of detecting pressure using this magnetostriction is as follows:
It uses the property that the magnetized state of the magneto-optical element changes depending on the applied stress. In general, a magneto-optical element has a property that when magnetized, it expands and contracts in the direction of magnetization, and conversely, when it expands and contracts (applies stress), the direction of magnetization changes. When magnetized, those that extend in the magnetization direction have a positive magnetostriction constant, and those that contract in the magnetization direction conversely have a negative magnetostriction constant.

【0010】例えば、磁歪定数が正の磁気光学素子に、
図1(a)に示した方向に圧縮応力を加えた場合、磁化
容易軸は図1(a)に示した様な応力と平行な方向から
図1(b)に示した様な応力と垂直な方向に変化する。
ただし、どの程度の圧縮応力を加えた時に磁化容易軸の
方向が変化するかという応力の閾値は、磁気光学素子の
種類により異なる。また、逆に引っ張り応力を加えた場
合には、磁化容易軸は図1(a)に示した状態から変化
しない。
For example, in a magneto-optical element having a positive magnetostriction constant,
When compressive stress is applied in the direction shown in FIG. 1 (a), the easy axis of magnetization is perpendicular to the stress shown in FIG. 1 (b) from the direction parallel to the stress shown in FIG. 1 (a). Change in the right direction.
However, the threshold value of the stress, which is how much compressive stress is applied to change the direction of the easy axis of magnetization, differs depending on the type of the magneto-optical element. On the contrary, when a tensile stress is applied, the easy axis of magnetization does not change from the state shown in FIG.

【0011】従って、応力の働く方向に磁場をかけた場
合、その応力の大きさ(磁歪定数が正の磁気光学素子の
場合には圧縮応力の大きさであり、磁歪定数が負の磁気
光学素子の場合には引っ張り応力の大きさである)によ
って、磁気光学素子に生ずる応力方向の磁化が変化する
こととなる。ここで、磁気光学素子は、透過した光の偏
光面の角度を変化させる性質を有している。そして、偏
光面の回転角は磁化の関数であるから、磁気光学素子に
直線偏光の光を透過させ、その偏光面の回転角を測定す
ることにより、磁気光学素子の磁化の大きさを測定する
ことができる。まとめると、磁気光学素子を透過した光
の偏光面の回転角を測定することにより、磁気光学素子
の磁化の大きさを知ることができ、この磁化の大きさか
ら、更に磁気光学素子に加わっている応力の大きさを知
ることができるわけである。
Accordingly, when a magnetic field is applied in the direction in which the stress acts, the magnitude of the stress (in the case of a magneto-optical element having a positive magnetostriction constant, the magnitude of compressive stress, and the magneto-optical element having a negative magnetostriction constant). In that case, the magnitude of the tensile stress) changes the magnetization in the stress direction generated in the magneto-optical element. Here, the magneto-optical element has the property of changing the angle of the polarization plane of the transmitted light. Since the rotation angle of the plane of polarization is a function of magnetization, linearly polarized light is transmitted through the magneto-optical element, and the rotation angle of the plane of polarization is measured to measure the magnitude of magnetization of the magneto-optical element. be able to. In summary, by measuring the rotation angle of the plane of polarization of the light transmitted through the magneto-optical element, it is possible to know the magnitude of the magnetization of the magneto-optical element. It is possible to know the magnitude of the existing stress.

【0012】次に上述した原理に従って、液体あるいは
気体の圧力を測定する圧力センサについて図2を参照し
て説明する。圧力センサ12は、ダイアフラム状に形成
されたベース部材14と、このベース部材14の膜状部
分14aの表面に形成された磁気光学材料から成る薄膜
16(以下磁気光学膜と呼ぶ)と、この磁気光学膜16
に直線偏光の光を照射するための照射装置18と、磁気
光学膜16を透過した光の偏光面の回転角を測定するた
めの検出装置20とから概略構成されている。
Next, a pressure sensor for measuring the pressure of liquid or gas according to the above-mentioned principle will be described with reference to FIG. The pressure sensor 12 includes a base member 14 formed in a diaphragm shape, a thin film 16 (hereinafter referred to as a magneto-optical film) made of a magneto-optical material formed on the surface of the film-shaped portion 14a of the base member 14, and the magnetic member. Optical film 16
An irradiation device 18 for irradiating linearly polarized light and a detection device 20 for measuring the rotation angle of the polarization plane of the light transmitted through the magneto-optical film 16 are roughly configured.

【0013】ベース部材14は、測定する圧力の大きさ
に対応した大きさに形成されており、また、使用する材
料も、圧力の大きさに応じて、ステンレス、アルミニウ
ム等が用いられる。磁気光学膜16は、その磁化容易軸
がベース部材14の膜状部分14aに対して垂直方向を
向く様に形成されており、材料としては、Dy3 Fe 5
12が用いられている。なお、ベース部材14の近傍に
は、永久磁石等(不図示)が配置されており、磁気光学
膜16には、図2(a)に矢印で示した方向に磁界がか
けられている。
The base member 14 has a magnitude of pressure to be measured.
It is formed in a size corresponding to
Depending on the amount of pressure, stainless steel or aluminum
Are used. The magneto-optical film 16 has an axis of easy magnetization.
Is perpendicular to the membranous portion 14a of the base member 14.
It is formed to face, and the material is Dy3 Fe Five 
O12Is used. In the vicinity of the base member 14,
Is equipped with a permanent magnet etc. (not shown).
A magnetic field is applied to the film 16 in the direction indicated by the arrow in FIG.
It has been burned.

【0014】図2(a)に示した状態においては、圧力
センサ12には圧力が加わっておらず、磁気光学膜の磁
化容易軸の方向は磁界の方向と直交している。そのた
め、磁気光学膜16に生ずる、磁界と平行な方向の磁化
は小さい。この状態において、照射装置18から照射さ
れる直線偏光の光を、磁気光学膜16に透過させた場合
には、光の入射方向の磁気光学素子の磁化が小さいの
で、光の偏光面の回転角も図2(a)にθで示した様に
小さい。
In the state shown in FIG. 2A, no pressure is applied to the pressure sensor 12, and the direction of the easy axis of magnetization of the magneto-optical film is orthogonal to the direction of the magnetic field. Therefore, the magnetization generated in the magneto-optical film 16 in the direction parallel to the magnetic field is small. In this state, when the linearly polarized light emitted from the irradiation device 18 is transmitted through the magneto-optical film 16, since the magnetization of the magneto-optical element in the incident direction of the light is small, the rotation angle of the plane of polarization of the light. Is small as indicated by θ in FIG.

【0015】一方、図2(b)に矢印Pで示した様に、
圧力センサ12に圧力が加わった場合には、ベース部材
14は図示した様に変形し、磁気光学膜16には圧縮応
力が働く。このとき働く圧縮応力が一定の閾値応力を越
えていた場合には、磁気光学膜16を構成するDy3
512は、負の磁歪定数を持っているため、圧縮応力
により、磁気光学膜16の磁化容易軸は、磁気光学膜1
6の面内方向を向くこととなる。その結果、磁気光学膜
16の磁化容易軸と磁界の方向は平行となり、磁気光学
膜の面内方向の磁化は大きくなる。従って、磁気光学膜
16を透過する光の偏光面の回転角も、図2(b)にφ
で示した様に大きくなる。
On the other hand, as shown by an arrow P in FIG.
When pressure is applied to the pressure sensor 12, the base member 14 is deformed as shown in the drawing, and compressive stress acts on the magneto-optical film 16. If the compressive stress acting at this time exceeds a certain threshold stress, Dy 3 F forming the magneto-optical film 16 is formed.
Since e 5 O 12 has a negative magnetostriction constant, the easy axis of magnetization of the magneto-optical film 16 is compressed by the compressive stress.
6 will be directed in the in-plane direction. As a result, the easy axis of magnetization of the magneto-optical film 16 and the direction of the magnetic field become parallel, and the in-plane magnetization of the magneto-optical film becomes large. Therefore, the rotation angle of the polarization plane of the light transmitted through the magneto-optical film 16 is also φ in FIG.
It becomes large as shown in.

【0016】このように、ある一定の閾値圧力(磁気光
学膜16に閾値応力を発生させる様な圧力)を越える圧
力が圧力センサ12に加わった場合には、磁気光学膜1
6の磁化容易軸の方向が90°変化し、それに伴って磁
気光学素子を透過する光の偏光面の回転角も変化する。
そのため、この回転角の変化を測定することによって、
圧力センサ12に加わる圧力が一定の閾値圧力を越えた
か否かを検出することができる。
In this way, when a pressure exceeding a certain threshold pressure (pressure that causes threshold stress in the magneto-optical film 16) is applied to the pressure sensor 12, the magneto-optical film 1
The direction of the easy axis of magnetization 6 changes by 90 °, and the rotation angle of the plane of polarization of the light passing through the magneto-optical element also changes accordingly.
Therefore, by measuring the change in this rotation angle,
It is possible to detect whether or not the pressure applied to the pressure sensor 12 exceeds a certain threshold pressure.

【0017】磁化容易軸の方向が変化する閾値圧力は、
磁気光学膜16の磁歪定数とベース部材14の変形量で
決まる。そのため、ベース部材14の膜状部分14aの
厚さを変化させる等の操作を行って、圧力の大きさとベ
ース部材14の変形量との関係を変化させることによ
り、検出する閾値圧力の値を変化させることができる。
なお、上記の様な圧力センサ12を制作する方法として
は、以下の様な方法が考えられる。まず、ベース部材1
4としてのシリコン単結晶に膜状部分14aをマイクロ
マシニングの手法を用いて形成した後、磁気光学膜16
としてのDy3Fe512の膜をスパッタ法によって制
作する。その他の製膜法として、LEP法・CDV法を
用いても良い。この様にして制作する磁気光学膜16
は、製作条件を制御することによって、磁化容易軸の方
向を制御することができる。磁気光学膜を形成した後、
エッチング等の手法を用いて光導波路を形成する。
The threshold pressure at which the direction of the easy axis of magnetization changes is
It is determined by the magnetostriction constant of the magneto-optical film 16 and the amount of deformation of the base member 14. Therefore, the value of the threshold pressure to be detected is changed by performing an operation such as changing the thickness of the film-shaped portion 14a of the base member 14 to change the relationship between the magnitude of the pressure and the deformation amount of the base member 14. Can be made
The following method can be considered as a method of producing the pressure sensor 12 as described above. First, the base member 1
After forming the film-like portion 14a on the silicon single crystal as No. 4 by using the micromachining method, the magneto-optical film 16 is formed.
A film of Dy 3 Fe 5 O 12 is prepared by the sputtering method. As another film forming method, the LEP method / CDV method may be used. Magneto-optical film 16 produced in this way
Can control the direction of the easy axis of magnetization by controlling the manufacturing conditions. After forming the magneto-optical film,
An optical waveguide is formed using a technique such as etching.

【0018】以上説明した様に、一実施例の圧力センサ
においては、ダイアフラム構造のベース部材と、このベ
ース部材の膜状部分に形成された磁気光学膜を組み合わ
せることにより、応力に対する磁気光学膜の変形を大き
くとることが可能でありながら、機械的強度も確保する
ことが実現されている。すなわち、従来の様に、磁気光
学素子そのものに機械的強度をも受け持たせてる場合に
は、機械的強度と検出感度とを両立させることは困難で
あったが、一実施例によれば、機械的強度と検出感度と
を両立させた圧力センサを提供することができる。
As described above, in the pressure sensor of one embodiment, by combining the base member having the diaphragm structure and the magneto-optical film formed on the film-shaped portion of the base member, the magneto-optical film against the stress is formed. While it is possible to take a large amount of deformation, it has been realized that the mechanical strength is secured. That is, as in the conventional case, when the magneto-optical element itself is also responsible for mechanical strength, it was difficult to achieve both mechanical strength and detection sensitivity, but according to one embodiment, A pressure sensor having both mechanical strength and detection sensitivity can be provided.

【0019】[0019]

【発明の効果】以上説明した様に、本発明の圧力センサ
によれば、圧力により変形し易い部分と機械的強度の高
い部分を合わせ持つダイアフラム状に形成された部材の
表面に、磁気光学素子の薄膜を形成し、ダイアフラムの
膜部分の変形を磁気光学素子の膜で検出することによ
り、簡単な構成で、検出感度の向上と機械的強度の向上
を両立させた圧力センサを実現することができる。
As described above, according to the pressure sensor of the present invention, the magneto-optical element is formed on the surface of the member formed in the shape of a diaphragm having both the portion easily deformed by pressure and the portion having high mechanical strength. By forming the thin film of and the deformation of the diaphragm film part is detected by the film of the magneto-optical element, it is possible to realize a pressure sensor that has both improved detection sensitivity and improved mechanical strength with a simple configuration. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気光学素子に働く応力の方向と磁化容易軸の
方向との関係を示した図である。
FIG. 1 is a diagram showing a relationship between a direction of stress acting on a magneto-optical element and a direction of an easy axis of magnetization.

【図2】圧力センサに圧力が加わっていない状態と、圧
力が加わったときの状態の変化を示した図である。
FIG. 2 is a diagram showing a state in which pressure is not applied to the pressure sensor and a change in state when pressure is applied.

【符号の説明】[Explanation of symbols]

12 圧力センサ 14 ベース部材 16 磁気光学膜 18 照射装置 20 検出装置 12 pressure sensor 14 base member 16 magneto-optical film 18 irradiation device 20 detection device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧力により変形する部材と、 該部材の変形に応じて変形する磁気光学膜と、 該磁気光学膜の変形を直線偏光の偏光面回転として検出
する検出手段とを具備することを特徴とする圧力セン
サ。
1. A member comprising: a member that is deformed by pressure; a magneto-optical film that is deformed according to the deformation of the member; and a detection unit that detects the deformation of the magneto-optical film as a polarization plane rotation of linearly polarized light. Characteristic pressure sensor.
【請求項2】 前記磁気光学膜は、ダイアフラム状に形
成された前記部材上に配設されており、前記検出手段
は、前記磁気光学膜を透過した光の偏光面の回転角を検
出することを特徴とする請求項1に記載の圧力センサ。
2. The magneto-optical film is disposed on the member formed in a diaphragm shape, and the detection means detects a rotation angle of a polarization plane of light transmitted through the magneto-optical film. The pressure sensor according to claim 1, wherein:
JP7123692A 1992-03-27 1992-03-27 Pressure sensor Withdrawn JPH05273066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7123692A JPH05273066A (en) 1992-03-27 1992-03-27 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7123692A JPH05273066A (en) 1992-03-27 1992-03-27 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH05273066A true JPH05273066A (en) 1993-10-22

Family

ID=13454863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7123692A Withdrawn JPH05273066A (en) 1992-03-27 1992-03-27 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH05273066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062275A1 (en) * 2004-12-08 2006-06-15 Mdt Co., Ltd. Variable inductor type mems pressure sensor using magnetostrictive effect
JP2012176294A (en) * 2012-06-19 2012-09-13 Toshiba Corp Blood pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062275A1 (en) * 2004-12-08 2006-06-15 Mdt Co., Ltd. Variable inductor type mems pressure sensor using magnetostrictive effect
JP2012176294A (en) * 2012-06-19 2012-09-13 Toshiba Corp Blood pressure sensor

Similar Documents

Publication Publication Date Title
US10605788B2 (en) Saw magnetic sensor and manufacturing method for same
KR100972161B1 (en) Pressure sensor
JPS61181902A (en) Strain gage
US10352800B2 (en) Micromachined bulk acoustic wave resonator pressure sensor
JPH05273066A (en) Pressure sensor
JPH07190873A (en) Differential pressure transducer
CN103116057A (en) Garnet type photoelectric type current sensor device and preparation method
Chen et al. Design and experiment of a laterally driven micromachined resonant pressure sensor for barometers
JP2770488B2 (en) Semiconductor pressure gauge
KR20050016602A (en) Sensor
GB2229816A (en) Resonating element differential pressure sensor
JPH04118537A (en) Torque measuring method
US20220163410A1 (en) Sensor, strain detection sensor, pressure sensor, and microphone
JPH0777552A (en) Method and apparatus for measuring piezo-electricity
CN112050938A (en) Mechanical strong laser power detection device
JP2770538B2 (en) Magnetic fluid magnetic sensor
JP2002189067A (en) Method for applying bias of magnetic field sensor and strain sensor, and the magnetic field sensor and strain sensor
JPH02203235A (en) Method for detecting principal axis angle of polarization maintaining fiber
JPH07140027A (en) Semiconductor pressure sensor
Fuji et al. Highly sensitive spintronic strain-gauge sensor based on magnetic tunnel junction and its application to MEMS microphone
JPS62124416A (en) Light applied sensor
JP2004028746A (en) Pressure sensor and manufacturing method for pressure sensor
Orsier et al. Contactless actuation of giant magnetostriction thin-film alloy bimorphs for two-dimensional scanning application
CN112213378A (en) Humidity detector based on inverse magnetostriction effect
JPH09166505A (en) Manufacture of magnetostrictive torque sensor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608