JPH05273010A - Controlling device for fluidic meter - Google Patents

Controlling device for fluidic meter

Info

Publication number
JPH05273010A
JPH05273010A JP6677792A JP6677792A JPH05273010A JP H05273010 A JPH05273010 A JP H05273010A JP 6677792 A JP6677792 A JP 6677792A JP 6677792 A JP6677792 A JP 6677792A JP H05273010 A JPH05273010 A JP H05273010A
Authority
JP
Japan
Prior art keywords
flow rate
fuzzy
function
coefficient
detecting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6677792A
Other languages
Japanese (ja)
Other versions
JP3146602B2 (en
Inventor
Koichi Ueki
浩一 植木
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP06677792A priority Critical patent/JP3146602B2/en
Publication of JPH05273010A publication Critical patent/JPH05273010A/en
Application granted granted Critical
Publication of JP3146602B2 publication Critical patent/JP3146602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)

Abstract

PURPOSE:To obtain a controlling device for a fluidic meter which executes highly-precise computation of a flow rate. CONSTITUTION:A flow rate detecting means 20 an output signal of which is used for determining a flow rate is determined. Then, it is decided which of a first fuzzy function storage means 22 and a second fuzzy function storage means 23 should be selected by switching. Moreover, fuzzy inference is executed by using a detection signal and a membership function, a coefficient is determined by approximating a coefficient function of a nonlinear characteristic and an instantaneous flow rate or an integrated flow rate is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ガスやLPGガス
などの流体流量を計測するフルイディックメーターに係
わり、特に高制度の演算機能を有する制御装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidic meter for measuring the flow rate of a fluid such as city gas or LPG gas, and more particularly to a control device having a highly accurate calculation function.

【0002】[0002]

【従来の技術】従来、この種のフルイディックメーター
制御装置は、例えば特開平1−308921号公報、及
び特開平3−95420号公報に示されているように、
図4、図5に示すような構成になっていた。
2. Description of the Related Art Conventionally, this type of fluidic meter control device is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 1-308921 and 3-95420.
The configuration was as shown in FIGS. 4 and 5.

【0003】図4の従来のフルイディックメーター制御
装置において、1はフルイディックメーター、2はガス
配管、3はフルイディック発振素子で、流体のもつ運動
エネルギーを利用して流体発振を生じさせる。4は高分
子圧電膜センサーで、流体発振の周波数を検出する。5
はフローセンサーで、例えば熱線式センサー等からなり
小流量域の流量を測定する。6は遮断弁で、異常な使用
状態を検出するとガスの供給を遮断する。7は制御装置
で図5にその一例を示す。
In the conventional fluidic meter control device of FIG. 4, 1 is a fluidic meter, 2 is a gas pipe, and 3 is a fluidic oscillation element, which causes fluid oscillation by utilizing the kinetic energy of the fluid. A polymer piezoelectric film sensor 4 detects the frequency of fluid oscillation. 5
Is a flow sensor, which is composed of, for example, a heat ray sensor, and measures the flow rate in a small flow rate range. A shutoff valve 6 shuts off the gas supply when an abnormal use state is detected. Reference numeral 7 is a control device, an example of which is shown in FIG.

【0004】図5において、8は振動検出手段で、高分
子圧電膜センサー4とアナログ増幅器9と波形整形回路
10とからなる。アナログ増幅器9は高分子圧電膜セン
サー4で検出した流量信号を増幅する。波形整形回路1
0は増幅した信号をパルス信号に変換する。11は流速
検出手段(例えば、熱線式流速センサーなど)で、フロ
ーセンサー5とA/D変換器12とからなる。13は信
号判定回路で、流量を求めるのに、振動検出データ8で
検出された発振周波数の値をもとに振動検出手段8、あ
るいは流速検出手段11のどちらの出力信号を使用する
かを決定する。14はカウンタで、流速検出手段11で
検出したパルス数をカウントする。15はクロック制御
回路で、A/D変換器12に供給し流速検出手段11を
動作させる。16は電源で制御装置全体に電源供給す
る。17は電源制御回路で、流速検出手段11に供給す
る電源をon−off制御する。18はマイクロコンピ
ュータで、演算表示制御部18a、安全機能部18b、
通信機能部18cとからなる。19は表示部で、マイク
ロコンピュータ18で流量積算した積算値などを表示す
る。
In FIG. 5, reference numeral 8 is a vibration detecting means, which comprises a polymer piezoelectric film sensor 4, an analog amplifier 9 and a waveform shaping circuit 10. The analog amplifier 9 amplifies the flow rate signal detected by the polymer piezoelectric film sensor 4. Wave shaping circuit 1
0 converts the amplified signal into a pulse signal. Reference numeral 11 is a flow velocity detecting means (for example, a heat ray type flow velocity sensor), which comprises a flow sensor 5 and an A / D converter 12. A signal determination circuit 13 determines which output signal of the vibration detection means 8 or the flow velocity detection means 11 is used to obtain the flow rate based on the value of the oscillation frequency detected by the vibration detection data 8. To do. A counter 14 counts the number of pulses detected by the flow velocity detecting means 11. Reference numeral 15 is a clock control circuit, which supplies it to the A / D converter 12 to operate the flow velocity detecting means 11. A power source 16 supplies power to the entire control device. Reference numeral 17 denotes a power supply control circuit, which controls the power supply supplied to the flow velocity detecting means 11 on-off. Reference numeral 18 denotes a microcomputer, which includes a calculation display control unit 18a, a safety function unit 18b,
The communication function unit 18c. A display unit 19 displays an integrated value obtained by integrating the flow rates by the microcomputer 18.

【0005】次に、上記構成の動作を説明する。何等か
のガス器具が使用されるとガスはフルイディック発振素
子3に入り流体発振が生じ、振動検出手段8の高分子圧
電膜センサー4よりその流量変化を交流信号として検出
する。その交流信号をアナログアンプ9で増幅し波形整
形回路10でパルス信号に変換する。パルス信号は信号
判定回路13に入りその周波数が所定値より大きいかど
うかを判定する。指定値以上の場合(即ち大流量域の場
合)、振動検出手段8の信号をマイクロコンピュータ1
8に出力し、マイクロコンピュータ18で流量換算し、
更に積算流量等を求める。所定値以下の場合(即ち小流
量域)、信号判定手段13は振動検出手段8の信号をマ
イクロコンピュータ18には出力せずに、フローセンサ
ー5の出力信号をマイクロコンピュータ18に出力し、
その信号を基に流量換算し積算値を求める。即ちフロー
センサー5で検出した流速信号をA/D変換回路12で
パルス信号に変換する。A/D変換回路12では流速に
応じたパルス数を出力する。出力されたパルス数をカウ
ンタ14でカウントし、マイクロコンピュータ18に出
力する。この信号を基に流量を求める。
Next, the operation of the above configuration will be described. When some kind of gas instrument is used, the gas enters the fluidic oscillation element 3 to cause fluid oscillation, and the polymer piezoelectric film sensor 4 of the vibration detection means 8 detects the flow rate change as an AC signal. The AC signal is amplified by the analog amplifier 9 and converted into a pulse signal by the waveform shaping circuit 10. The pulse signal enters the signal determination circuit 13 and determines whether its frequency is higher than a predetermined value. When the value is equal to or larger than the specified value (that is, in the case of a large flow rate range), the signal from the vibration detecting means 8 is sent to the microcomputer 1.
8, and the flow rate is converted by the microcomputer 18,
Further, the integrated flow rate and the like are obtained. When the value is equal to or less than the predetermined value (that is, a small flow rate range), the signal determination unit 13 does not output the signal of the vibration detection unit 8 to the microcomputer 18, but outputs the output signal of the flow sensor 5 to the microcomputer 18,
The flow rate is converted based on the signal and the integrated value is obtained. That is, the flow velocity signal detected by the flow sensor 5 is converted into a pulse signal by the A / D conversion circuit 12. The A / D conversion circuit 12 outputs the number of pulses according to the flow velocity. The number of output pulses is counted by the counter 14 and output to the microcomputer 18. The flow rate is calculated based on this signal.

【0006】クロック制御回路15はA/D変換回路1
2を動作させるためにクロックパルスとして供給され
る。また流速検出手段11は測定時、電源制御回路17
によって電源16が制御される。まずマイクロコンピュ
ータ18からの制御信号が電源制御回路17に入力さ
れ、電源制御回路17は流速検出手段11を5秒間オフ
し、40msec間オンする。
The clock control circuit 15 is the A / D conversion circuit 1
2 is supplied as a clock pulse for operating the 2. Further, the flow velocity detecting means 11 is used for the power supply control circuit 17 during measurement.
The power source 16 is controlled by. First, a control signal from the microcomputer 18 is input to the power supply control circuit 17, and the power supply control circuit 17 turns off the flow velocity detection means 11 for 5 seconds and turns on for 40 msec.

【0007】次に振動検出手段8、及び流速検出手段1
1の測定範囲を図6より説明する。図6に示すように流
量Qが増加し、Q1(L/H)以上に達すると振動検出
手段8(フルイディック発振素子3で生じた流体の発振
周波数を検出)からの信号を基にマイクロコンピュータ
18で流量を求める。それ以下では流速検出手段11の
信号で流量を求める。逆に流量が低下してきた場合、Q
0(L/H)より低下すると流速検出手段11の信号を
基に流量を求める。次に振動検出手段8から出力された
パルス信号の周波数から流量に換算する方法、及び流速
検出手段11から出力されたパルス数から流量を換算す
る方法を図7、図8を用いて説明する。
Next, the vibration detecting means 8 and the flow velocity detecting means 1
The measurement range of No. 1 will be described with reference to FIG. As shown in FIG. 6, when the flow rate Q increases and reaches Q1 (L / H) or more, the microcomputer based on the signal from the vibration detecting means 8 (detects the oscillation frequency of the fluid generated in the fluidic oscillation element 3). The flow rate is calculated at 18. Below that, the flow rate is obtained from the signal of the flow velocity detecting means 11. On the contrary, if the flow rate decreases, Q
When it becomes lower than 0 (L / H), the flow rate is obtained based on the signal of the flow velocity detecting means 11. Next, a method of converting the frequency of the pulse signal output from the vibration detecting means 8 into a flow rate and a method of converting the flow rate from the number of pulses output from the flow velocity detecting means 11 will be described with reference to FIGS. 7 and 8.

【0008】流量と発振周波数の関係は一般的にQ=a
・F+bで与えられる。これを1パルス当りの流量を求
める式K=Q/F=a+b・Tに変更する。ここでKを
パルス定数といい、1パルス当りの流量値を示す。a、
bは係数を示す。パルス定数と流量あるいは振動周波数
との関係は図6に示すように非線形特性のため複数の折
れ線で近似している。流量パルスの周期が折れ線近似の
境界を越えた場合、係数を換えてパルス定数を演算す
る。従って係数を折れ線区分毎に設定されている。更に
b・Tという乗算を行わずきわめて小さい時間tが経過
したら、単位量αを加算し求める(ここで、αはα=b
・tという関係があり、パルスの周期Tという時間に達
するまでαを加算していけば、b・Tになる)。
The relationship between the flow rate and the oscillation frequency is generally Q = a
・ It is given by F + b. This is changed to the equation K = Q / F = a + b · T for obtaining the flow rate per pulse. Here, K is called a pulse constant and indicates a flow rate value per pulse. a,
b shows a coefficient. The relationship between the pulse constant and the flow rate or the vibration frequency is approximated by a plurality of broken lines due to the non-linear characteristic as shown in FIG. When the cycle of the flow rate pulse exceeds the boundary of the polygonal line approximation, the coefficient is changed to calculate the pulse constant. Therefore, the coefficient is set for each broken line segment. Further, when a very small time t has elapsed without performing the multiplication of b · T, the unit amount α is added to obtain (where α is α = b
・ There is a relation of t, and if α is added until the time of pulse period T is reached, it becomes b · T).

【0009】一方、流速検出手段11から出力されたパ
ルス数は流量に比例してA/D変換器12から出力され
る。従って流量とパルス数との関係を示す係数とパルス
数とから流量を求めることが出来る。
On the other hand, the number of pulses output from the flow velocity detecting means 11 is output from the A / D converter 12 in proportion to the flow rate. Therefore, the flow rate can be obtained from the number of pulses and the coefficient indicating the relationship between the flow rate and the number of pulses.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、流量と振動周波数(あるいは周期)の関係
を示すパルス定数を線形近似しているために特に折れ線
の境界近傍では誤差が大きくなり流量を正確に計測でき
ず、また積算流量値にも大きく影響するという課題があ
った。更に小流量域の流量を検出する流速検出手段らら
出力されるパルス数は部分には流量に比例せず非線形な
関係であり、仮に比例的に換算すると極めて誤差が大き
くなるという課題があった。
However, in the above-mentioned conventional configuration, since the pulse constant indicating the relationship between the flow rate and the vibration frequency (or period) is linearly approximated, the error becomes large especially near the boundary of the polygonal line and the flow rate is reduced. There was a problem that it could not be measured accurately and that it also had a large effect on the integrated flow rate value. Furthermore, the number of pulses output from the flow velocity detecting means for detecting the flow rate in the small flow rate region is not proportional to the flow rate but has a non-linear relationship, and if proportionally converted, there is a problem that the error becomes extremely large.

【0011】本発明は上記課題を解決するもので、正確
な流量計測をおこなえるフルイディックメーターを提供
することを目的としたものである。
The present invention is intended to solve the above problems, and an object of the present invention is to provide a fluidic meter capable of accurately measuring a flow rate.

【0012】[0012]

【課題を解決するための手段】本発明は上記目的を達成
するため、流体流量を検出する複数の流量検出手段と、
前記流量をどの前記流量検出手段で検出するかを判定す
る判定手段と、前記流体流量と前記流量検出手段の出力
信号との非線形特性を示す係数関数を近似したファジイ
関数を格納する第1のファジイ関数記憶手段と、前記流
体流量と別の前記流量検出手段の出力信号との非線形特
性を示す係数関数を近似したファジイ関数を格納する第
2のファジイ関数記憶手段と、前記判定手段の出力信号
により前記第1のファジイ関数記憶手段あるいは前記第
2のファジイ関数記憶手段に切り換える切換手段と、前
記切換手段及び前記判定手段との出力信号とから係数を
求めるファジイ推論手段と、前記推論結果及び前記判定
手段の出力信号より流量値を求める流量演算手段とを設
けたものである。
In order to achieve the above object, the present invention comprises a plurality of flow rate detecting means for detecting a fluid flow rate,
A first fuzzy storing a determining means for determining which of the flow rate detecting means detects the flow rate; and a fuzzy function approximating a coefficient function indicating a non-linear characteristic of the fluid flow rate and the output signal of the flow rate detecting means. By a function storage means, a second fuzzy function storage means for storing a fuzzy function approximating a coefficient function indicating a non-linear characteristic of the fluid flow rate and an output signal of another flow rate detection means, and an output signal of the determination means. Switching means for switching to the first fuzzy function storage means or the second fuzzy function storage means, fuzzy inference means for obtaining a coefficient from the output signals of the switching means and the determination means, the inference result and the determination Flow rate calculating means for obtaining a flow rate value from the output signal of the means.

【0013】[0013]

【作用】本発明は上記構成によって、例えば大流量域の
流体流量を複数の流量検出手段のいずれかで検出し、検
出した流量信号と第1のファジイ関数記憶手段に格納し
たメンバーシップ関数とからファジイ推論を行い流量と
発振周波数との関係を示す係数を求め、次に求めた係数
と検出信号とから瞬時流量を演算しさらに積算流量を求
める。次に流体流量が小流量域にはいると別の流量検出
手段で検出した信号と第2のファジイ関数記憶手段に格
納したメンバーシップ関数とからファジイ推論し係数を
求め、求めた係数とパルス数とから流量を演算し求め
る。
According to the present invention, the fluid flow rate in the large flow rate range is detected by any of a plurality of flow rate detecting means, and the detected flow rate signal and the membership function stored in the first fuzzy function storing means are used. Fuzzy inference is performed to find a coefficient indicating the relationship between the flow rate and the oscillation frequency, and then the instantaneous flow rate is calculated from the found coefficient and the detection signal to further find the integrated flow rate. Next, when the fluid flow rate is in the small flow rate region, fuzzy inference is performed from the signal detected by another flow rate detection means and the membership function stored in the second fuzzy function storage means to obtain a coefficient, and the obtained coefficient and pulse number Calculate the flow rate from

【0014】このように小流量域あるいは大流量域の流
量を求めるために、流体流量とある流量検出手段の出力
信号との非線形関係を示す係数関数を近似したメンバー
シップ関数を記憶する第1のファジイ関数記憶手段、あ
るいは流量と別の流量検出手段との非線形関係を示す係
数関数を近似したメンバーシップ関数を記憶する第2の
ファジイ関数記憶手段を切り換えて求めるので、流体流
量の誤差を極めて小さく、且つ高精度にもとめることが
できる。その結果例えばガスの使用量である積算値も正
確に計測できる。
In order to obtain the flow rate in the small flow rate range or the large flow rate range in this way, a first membership function is stored which approximates a coefficient function indicating a non-linear relationship between the fluid flow rate and the output signal of a certain flow rate detecting means. Since the fuzzy function storage means or the second fuzzy function storage means for storing the membership function that approximates the coefficient function indicating the nonlinear relationship between the flow rate and another flow rate detection means is obtained by switching, the error of the fluid flow rate is extremely small. Moreover, it can be achieved with high accuracy. As a result, for example, the integrated value, which is the amount of gas used, can be accurately measured.

【0015】[0015]

【実施例】以下、本発明の実施例を図1、図2及び図3
を参照して説明する。なお、図1において、図4、図5
と同一構成要素には同一番号を付した。
Embodiments of the present invention will now be described with reference to FIGS. 1, 2 and 3
Will be described. In addition, in FIG. 1, FIG.
The same constituent elements as those of are denoted by the same reference numerals.

【0016】図1は本発明のフルイディックメーター制
御装置の制御ブロック図である。図1において、20は
流量検出手段で、例えばフルイディック発振素子3とそ
の発振周波数を検出する振動検出手段8(例えば圧電セ
ンサー、サーミスタ等を用いて圧力−電圧変化、熱−抵
抗変化として検出する)と、流速を検出する流速検出手
段11(例えば熱線式センサー等で、流量に対応したパ
ルス数を出力する)とからなる。ここでフルイディック
発振素子3及び振動検出手段8は、大流量域の流体流量
を検出する。一方流速検出手段11は、フルイディック
は発振素子3に取り付けられ小流量域の流量計測を行
う。21は判定手段で、どの流量検出手段20で流量を
検出するかを判定する。例えばフルイディック発振素子
3での発振周波数を検出した振動検出手段8の出力信号
で、振動検出手段8、あるいは流速検出手段11のどち
らの出力信号で流量を求めるかを判断し出力する。
FIG. 1 is a control block diagram of the fluidic meter controller of the present invention. In FIG. 1, reference numeral 20 denotes a flow rate detection means, for example, a fluidic oscillation element 3 and a vibration detection means 8 for detecting the oscillation frequency (for example, a piezoelectric sensor, a thermistor or the like is used to detect pressure-voltage change or heat-resistance change). ) And a flow velocity detecting means 11 for detecting the flow velocity (for example, a hot wire type sensor or the like outputs the number of pulses corresponding to the flow amount). Here, the fluidic oscillation element 3 and the vibration detecting means 8 detect the fluid flow rate in the large flow rate range. On the other hand, the flow velocity detecting means 11 is attached to the oscillating element 3 for fluidics and measures the flow rate in a small flow rate range. Reference numeral 21 denotes a determination means, which determines which flow rate detection means 20 should detect the flow rate. For example, the output signal of the vibration detection means 8 which detects the oscillation frequency of the fluidic oscillation element 3 is used to determine which of the output signal of the vibration detection means 8 or the flow velocity detection means 11 is to be used to obtain the flow rate, and then output.

【0017】22は第1のファジイ関数記憶手段で、あ
る流量検出手段20の出力信号と流量との非線形な関係
を近似するメンバーシップ関数を格納する。23は第2
のファジイ関数記憶手段で、別の流量検出手段20の検
出信号と流量との非線形関係を近似するメンバーシップ
関数を格納する。この場合一例として、第1のファジイ
関数記憶手段22はフルイディック発振素子3を流れる
流体流量と発振周波数との関係を示す係数関数を非線形
近似したメンバーシップ関数を格納する。一方、第2の
ファジイ関数記憶手段23は、流体流量と流速検出手段
11から出力されるパルス数との関係を示す係数関数を
非線形近似するメンバーシップ関数を格納している。2
4は切換手段で、判定手段21の出力信号によって第1
のファジイ関数記憶手段22あるいは第2のファジイ関
数記憶手段23のいずれかに切り換える。25はファジ
イ推論手段で、検出した流量検出手段20の出力信号と
第1あるいは第2のファジイ関数記憶手段22、23に
格納したメンバーシップ関数とからファジイ推論し、係
数を求める。25は流量演算手段で、検出した流量検出
手段20の出力信号と決定した係数とからそのときの流
量を演算し求める。27は流量積算手段で、求めた流量
を積算し積算値を求める。
Reference numeral 22 denotes a first fuzzy function storage means, which stores a membership function approximating a non-linear relationship between an output signal of a certain flow rate detection means 20 and the flow rate. 23 is the second
The fuzzy function storing means stores the membership function approximating the non-linear relationship between the detection signal of another flow rate detecting means 20 and the flow rate. In this case, as an example, the first fuzzy function storage unit 22 stores a membership function that is a nonlinear approximation of a coefficient function indicating the relationship between the fluid flow rate flowing through the fluidic oscillator 3 and the oscillation frequency. On the other hand, the second fuzzy function storage means 23 stores a membership function that nonlinearly approximates a coefficient function indicating the relationship between the fluid flow rate and the pulse number output from the flow velocity detection means 11. Two
Reference numeral 4 is a switching means, which is set to the first by the output signal of the judging means 21.
The fuzzy function storing means 22 or the second fuzzy function storing means 23 is switched to. Reference numeral 25 is a fuzzy inference means, which performs fuzzy inference from the detected output signal of the flow rate detection means 20 and the membership functions stored in the first or second fuzzy function storage means 22 and 23 to obtain a coefficient. Reference numeral 25 is a flow rate calculation means, which calculates and obtains the flow rate at that time from the detected output signal of the flow rate detection means 20 and the determined coefficient. Reference numeral 27 is a flow rate integrating means, which integrates the obtained flow rates to obtain an integrated value.

【0018】次に上記構成の動作を説明する。ガスが使
用され始めると流量検出手段20で流量信号を検出し出
力する。判定手段20は、流量を求めるために流量検出
手段20で検出した信号値を基にどの流量検出手段20
の信号で演算を行うかを決定する。決定したら切換手段
24に出力する。
Next, the operation of the above configuration will be described. When the gas starts to be used, the flow rate detecting means 20 detects and outputs the flow rate signal. The determining means 20 determines which flow rate detecting means 20 based on the signal value detected by the flow rate detecting means 20 in order to obtain the flow rate.
Determine whether to perform the calculation with the signal of. When determined, it is output to the switching means 24.

【0019】切換手段24ではその信号に基づき第1の
ファジイ関数記憶手段22、あるいは第2のファジイ関
数記憶手段23に切り換えるかを決定する。判定手段2
1がある流量検出手段20(例えば振動検出手段8等)
を選択すると、第1のファジイ関数記憶手段21に切り
換える。判定手段20が別の流量検出手段20(例えば
流速検出手段11等)を選択すると切換手段24は第2
のファジイ関数記憶手段23に切り換える。
The switching means 24 determines whether to switch to the first fuzzy function storage means 22 or the second fuzzy function storage means 23 based on the signal. Judgment means 2
Flow rate detecting means 20 having 1 (for example, vibration detecting means 8 or the like)
Is selected, the first fuzzy function storage means 21 is switched to. When the determination unit 20 selects another flow rate detection unit 20 (for example, the flow velocity detection unit 11 or the like), the switching unit 24 is set to the second
The fuzzy function storage means 23 is switched to.

【0020】流量検出手段20の検出した信号と流量と
は非線形な関係を有し、その時の係数(流量と流量検出
手段の出力信号との比によって与えられる係数)と流量
検出手段20の出力信号との関係は図2に示す様に非線
形関数になる。そこで第1及び第2のファジイ関数記憶
手段22、23では、係数の非線形特性をメンバーシッ
プ関数で非線形近似している。ここで第1のファジイ関
数記憶手段22のメンバーシップ関数は例えば検出信号
がF2より大きい領域の関数を指す。また第2のファジ
イ関数記憶手段23のメンバーシップ関数は例えば検出
信号がF1より小さい領域の関数を指す。次にメンバー
シップ関数による非線形近似の内容を周波数と係数の場
合で説明する。
The signal detected by the flow rate detecting means 20 and the flow rate have a non-linear relationship, and the coefficient at that time (a coefficient given by the ratio of the flow rate and the output signal of the flow rate detecting means) and the output signal of the flow rate detecting means 20. The relationship with is a non-linear function as shown in FIG. Therefore, in the first and second fuzzy function storage means 22 and 23, the nonlinear characteristic of the coefficient is nonlinearly approximated by the membership function. Here, the membership function of the first fuzzy function storage means 22 indicates, for example, a function in a region where the detection signal is larger than F2. Further, the membership function of the second fuzzy function storage means 23 indicates, for example, a function in a region where the detection signal is smaller than F1. Next, the contents of the nonlinear approximation by the membership function will be described in the case of frequency and coefficient.

【0021】メンバーシップ関数L(F)は一例として
図3に示す様な関数を用いる。横軸は流量検出手段20
は検出信号で、縦軸はグレード(最大1.0)である。
予め流量と流量検出手段20の検出信号との関係を計測
し、次に図2に示すような係数と流量検出手段20の検
出手段との関係を求める。次に計測しようとする流量範
囲に対応した流量検出手段20の検出信号の領域を分割
する。分割点はメンバーシップ関数のピーク点に対応
し、また分割した検出信号の範囲は前述のメンバーシッ
プ関数L(F)の底辺の半分の広がりに相当する。いま
検出信号の領域をn点分割したとする。それぞれの境界
検出信号をF1 、F2 、・・・、Fn とし、その時の係
数値をg(F1 )、g(F2 )、・・、g(Fn )・L
n(F)、で与えられる。
As the membership function L (F), for example, a function as shown in FIG. 3 is used. The horizontal axis indicates the flow rate detecting means 20.
Is the detection signal, and the vertical axis is the grade (maximum 1.0).
The relationship between the flow rate and the detection signal of the flow rate detecting means 20 is measured in advance, and then the relationship between the coefficient and the detecting means of the flow rate detecting means 20 as shown in FIG. 2 is obtained. Next, the area of the detection signal of the flow rate detecting means 20 corresponding to the flow rate range to be measured is divided. The division point corresponds to the peak point of the membership function, and the range of the divided detection signal corresponds to half the spread of the bottom of the membership function L (F). It is assumed that the detection signal area is divided into n points. The boundary detection signals are F 1 , F 2 , ..., F n, and the coefficient values at that time are g (F 1 ), g (F 2 ), ..., G (F n ) .L
It is given by n (F).

【0022】よって検出信号の領域を共有するメンバー
シップ関数同士からファジイ推論によって、図2(破
線)に示す非線形な係数関数を近似する。次に推論の内
容を説明する。
Therefore, the non-linear coefficient function shown in FIG. 2 (broken line) is approximated by the fuzzy reasoning from the membership functions sharing the region of the detection signal. Next, the content of inference will be described.

【0023】ファジイ推論は、流量検出手段20で検出
した信号と前述のメンバーシップ関数とから行う。ファ
ジイ推論手段25は、適合度演算手段25aと加算手段
25bとからなる。適合度演算手段25aでは検出した
信号をメンバーシップ関数に代入し適合度を求める。求
めた適合度を加算手段25bで加算処理し周波数に対応
した係数δを求める。
Fuzzy inference is performed from the signal detected by the flow rate detecting means 20 and the above-mentioned membership function. The fuzzy inference means 25 comprises a fitness calculation means 25a and an addition means 25b. The fitness calculating means 25a substitutes the detected signal into the membership function to obtain the fitness. The calculated matching degree is added by the adding means 25b to obtain a coefficient δ corresponding to the frequency.

【0024】即ち係数関数は次式δ(F)=Σg
(Fi )・Li (F)で与えられる。一方、別の流量検
出手段20からの出力信号が判定手段21にはいると、
切換手段24では第1から第2のファジイ関数記憶手段
に、あるいは第2から第1のファジイ関数記憶手段に切
り換えてファジイ推論を行い係数を求める。
That is, the coefficient function is the following equation δ (F) = Σg
It is given by (F i ) · L i (F). On the other hand, when an output signal from another flow rate detection means 20 enters the determination means 21,
The switching means 24 switches from the first fuzzy function storage means to the second fuzzy function storage means or from the second fuzzy function storage means to fuzzy inference to obtain coefficients.

【0025】次に瞬時流量Qは流量演算手段26で、求
めた係数δと検出信号Fとから式Q=δ・Fより求め
る。積算流量演算手段27は瞬時流量Qを加算し、使用
合計の積算流量を求める。表示手段19は求めた積算値
を表示する。
Next, the instantaneous flow rate Q is calculated by the flow rate calculation means 26 from the calculated coefficient δ and the detection signal F by the formula Q = δ · F. The integrated flow rate calculation means 27 adds the instantaneous flow rate Q to obtain the total used flow rate. The display means 19 displays the calculated integrated value.

【0026】この実施例の構成によれば、流量と流量検
出手段20の出力信号との関係を示す係数を、計測する
流量域全域にわたって非線形近似したファジイ関数(メ
ンバーシップ関数)を用い、かつ切り換えることによっ
て本来有する非線形特性に近似できるので、高制度の流
量演算ができ、その結果積算流量などの流量計測を正確
に行える。
According to the configuration of this embodiment, the coefficient indicating the relationship between the flow rate and the output signal of the flow rate detecting means 20 is switched using a fuzzy function (membership function) that is nonlinearly approximated over the entire flow rate range to be measured. By doing so, it is possible to approximate the inherent non-linear characteristics, so that it is possible to perform highly accurate flow rate calculation, and as a result, it is possible to accurately measure flow rate such as integrated flow rate.

【0027】[0027]

【発明の効果】以上示したように本発明のフルイディッ
クメーター制御装置は、流体流量を検出する複数の流量
検出手段と、流体流量をどの流量検出手段で検出するか
を判定する判定手段と、流体流量と流量検出手段の出力
信号との非線形特性を示す係数関数を近似したファジイ
関数を格納する第1のファジイ関数記憶手段と、流体流
量と別の前記流量検出手段の出力信号との非線形特性を
示す係数関数を近似したファジイ関数記憶手段あるいは
第2のファジイ関数記憶手段に切り換える切換手段と、
切換手段及び判定手段との出力信号とから係数求めるフ
ァジイ推論手段と、推論結果及び判定手段の出力信号よ
り流量値を求める流量演算手段とからなり、例えばガス
を使用開始するとまず流量を求めるのにどの流量検出手
段の出力信号を用いるかを判定し、その判定信号に基づ
き第1のファジイ関数記憶手段、あるいは第2のファジ
イ関数記憶手段のどちらに切り換えるかを決定し、さら
に検出信号と第1のファジイ関数記憶手段メンバーシッ
プ関数、あるいは第2のファジイ関数記憶手段のメンバ
ーシップ関数とを切り換えてファジイ推論を行い非線形
な特性を有する係数関数を近似することによって係数を
求め、次にこの得られた係数より瞬時流量や積算流量を
し求めるので、線形近似した場合に比べ誤差を極めて小
さくでき、かつ流量演算が高制度に行えるので積算流量
などの流量計測が正確に出来るという効果がある。
As described above, the fluidic meter control device of the present invention has a plurality of flow rate detecting means for detecting the fluid flow rate, and a determining means for determining which flow rate detecting means should detect the fluid flow rate. A first fuzzy function storing means for storing a fuzzy function approximating a coefficient function indicating a non-linear characteristic of the fluid flow rate and the output signal of the flow rate detecting means, and a non-linear characteristic of the fluid flow rate and an output signal of the other flow rate detecting means. Switching means for switching the coefficient function indicating the value to the approximated fuzzy function storage means or second fuzzy function storage means,
It consists of fuzzy inference means for obtaining a coefficient from the output signals of the switching means and the judging means, and a flow rate calculating means for obtaining a flow rate value from the inference result and the output signal of the judging means. For example, when the gas starts to be used, the flow rate is first obtained. It is determined which output signal of the flow rate detecting means is to be used, and based on the determination signal, it is determined whether to switch to the first fuzzy function storing means or the second fuzzy function storing means. Of the fuzzy function storage means or the membership function of the second fuzzy function storage means is switched to perform fuzzy inference to obtain a coefficient by approximating a coefficient function having a non-linear characteristic. Since the instantaneous flow rate and integrated flow rate are calculated from the coefficient, the error can be made extremely small compared to the case of linear approximation, and the flow rate can be reduced. Operation there is an effect that can be accurately flow measurement, such as integrated flow since performed to the high system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるフルイディックメー
ター制御装置のブロック図
FIG. 1 is a block diagram of a fluidic meter control device according to an embodiment of the present invention.

【図2】同装置に格納される係数関数を近似するメンバ
ーシップ関数図
FIG. 2 is a membership function diagram approximating a coefficient function stored in the device.

【図3】同装置に格納されるメンバーシップ関数図FIG. 3 is a membership function diagram stored in the device.

【図4】従来のフルイディックメーター制御装置のシス
テム図
[Fig. 4] System diagram of a conventional fluidic meter controller

【図5】同装置の回路ブロック図FIG. 5 is a circuit block diagram of the device.

【図6】同装置におけるセンサー使用範囲の特性図FIG. 6 is a characteristic diagram of a sensor use range in the device.

【図7】同装置の特性図FIG. 7 is a characteristic diagram of the device.

【図8】同装置の詳細図FIG. 8 is a detailed view of the device.

【符号の説明】[Explanation of symbols]

20 流量検出手段 21 判定手段 22 第1のファジイ関数記憶手段 23 第1のファジイ関数記憶手段 24 切換手段 25 ファジイ推論手段 26 流量演算手段 20 flow rate detection means 21 determination means 22 first fuzzy function storage means 23 first fuzzy function storage means 24 switching means 25 fuzzy inference means 26 flow rate calculation means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体流量を検出する複数の流量検出手段
と、前記流体流量をどの前記流量検出手段で検出するか
を判定する判定手段と、前記流体流量と前記流量検出手
段の出力信号との非線形特性を示す係数関数を近似した
ファジイ関数を格納する第1のファジイ関数記憶手段
と、前記流体流量と別の前記流量検出手段の出力信号と
の非線形特性を示す係数関数を近似したファジイ関数を
格納する第2のファジイ関数記憶手段と、前記判定手段
の出力信号により前記第1のファジイ関数記憶手段ある
いは前記第2のファジイ関数記憶手段に切り換える切換
手段と、前記切換手段及び前記判定手段との出力信号と
から係数を求めるファジイ推論手段と、前記推論結果及
び前記判定手段の出力信号より流量値を求める流量演算
手段とからなるフルイディックメーター制御装置。
1. A plurality of flow rate detecting means for detecting a fluid flow rate, a determining means for determining which of the flow rate detecting means detects the fluid flow rate, and an output signal of the fluid flow rate and the flow rate detecting means. A first fuzzy function storing means for storing a fuzzy function approximating a coefficient function showing a non-linear characteristic, and a fuzzy function approximating a coefficient function showing a non-linear characteristic of the fluid flow rate and an output signal of another flow rate detecting means A second fuzzy function storing means for storing, a switching means for switching to the first fuzzy function storing means or the second fuzzy function storing means according to an output signal of the judging means, and the switching means and the judging means. A fuzzy inference means for obtaining a coefficient from an output signal and a flow rate calculating means for obtaining a flow rate value from the inference result and the output signal of the judging means. Ikkumeta control device.
JP06677792A 1992-03-25 1992-03-25 Fluidic meter controller Expired - Fee Related JP3146602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06677792A JP3146602B2 (en) 1992-03-25 1992-03-25 Fluidic meter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06677792A JP3146602B2 (en) 1992-03-25 1992-03-25 Fluidic meter controller

Publications (2)

Publication Number Publication Date
JPH05273010A true JPH05273010A (en) 1993-10-22
JP3146602B2 JP3146602B2 (en) 2001-03-19

Family

ID=13325639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06677792A Expired - Fee Related JP3146602B2 (en) 1992-03-25 1992-03-25 Fluidic meter controller

Country Status (1)

Country Link
JP (1) JP3146602B2 (en)

Also Published As

Publication number Publication date
JP3146602B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
JP3146602B2 (en) Fluidic meter controller
JP3640334B2 (en) Flow meter and gas meter
JP3036218B2 (en) Flowmeter
JP3502115B2 (en) Flowmeter
JP3103700B2 (en) Flowmeter
JP3344847B2 (en) Fluidic gas meter
JP3057949B2 (en) Flowmeter
JP3036217B2 (en) Flowmeter
JPH074995A (en) Method of flow rate measurement and acoustic-displacement type flowmeter
JPH05273011A (en) Controlling device for fluidic meter
JP3146601B2 (en) Fluidic meter controller
JPH08145741A (en) Flowmeter
JPS635218A (en) Ultrasonic flowmeter
JP3206211B2 (en) Flowmeter
JPH05273007A (en) Flowmeter
JPH05273003A (en) Controlling device for fluidic meter
JPH06221884A (en) Flowmeter
JP3008692B2 (en) Flowmeter
JP3093500B2 (en) Flowmeter
JP3039114B2 (en) Flowmeter
RU2003048C1 (en) Counter of mass flow rate of gas
JPH06137910A (en) Flowmeter
JP3170335B2 (en) Gas flow meter
JP3169116B2 (en) Gas flow meter and composite gas flow meter
JPH1082672A (en) Flowmeter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080112

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees