JPH05273003A - Controlling device for fluidic meter - Google Patents

Controlling device for fluidic meter

Info

Publication number
JPH05273003A
JPH05273003A JP6677492A JP6677492A JPH05273003A JP H05273003 A JPH05273003 A JP H05273003A JP 6677492 A JP6677492 A JP 6677492A JP 6677492 A JP6677492 A JP 6677492A JP H05273003 A JPH05273003 A JP H05273003A
Authority
JP
Japan
Prior art keywords
flow rate
detecting means
output signal
storage means
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6677492A
Other languages
Japanese (ja)
Inventor
Koichi Ueki
浩一 植木
Koichi Takemura
晃一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6677492A priority Critical patent/JPH05273003A/en
Publication of JPH05273003A publication Critical patent/JPH05273003A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable accurate measurement of a flow rate by a method wherein a flow rate conversion value showing the relation between the flow rate and an output signal of a flow rate detecting means is stored, with its natural nonlinear characteristic unchanged, in a flow rate conversion value storage means. CONSTITUTION:When a gas is used, an oscillation frequency of a fluidic oscillation element 3 is detected by an oscillation detecting means 20. In the case of an area of a small flow rate, the number of pulses corresponding to a flow velocity is detected by a flow velocity detecting means 21. A flow rate conversion value showing the relation with an output signal of a flow rate detecting means 19 is stored, with its natural nonlinear characteristic unchanged, in a flow rate conversion value storage means 22. A flow rate setting means 23 determines a flow rate on the basis of a coefficient stored in the storage means 22 and corresponding to the output signal of the detecting means 19 and of a detection signal. In another method, a flow rate value stored in the storage means 22 is searched for on the basis of the output signal of the detecting means 19 and the flow rate corresponding to the output signal is set. Then, the determined flow rate is added up to determine an integrated flow rate in an integrated flow rate computing means 24 and the value of the integrated flow rate is displayed 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、都市ガスやLPGガス
などの流体流量を計測するフルイディックメーターに係
わり、特に高速度の演算機能を有する制御装置に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluidic meter for measuring the flow rate of a fluid such as city gas or LPG gas, and more particularly to a control device having a high speed arithmetic function.

【0002】[0002]

【従来の技術】従来、この種のフルイディックメーター
制御装置は、例えば特開平3−95420号公報に示さ
れているように、図2のような構成になっていた。
2. Description of the Related Art Conventionally, a fluidic meter control device of this type has a structure as shown in FIG. 2 as disclosed in, for example, Japanese Patent Application Laid-Open No. 3-95420.

【0003】即ち、図2の従来のフルイディックメータ
ー制御装置において、1はフルイディックメーター、2
はガス配管、3はフルイディック発振素子で、流体のも
つ運動エネルギーを利用して流体発振を生じさせる。4
はセンサーで、流体発振の周波数を検出する。5は遮断
弁で、異常な使用状態を検出するとガスの供給を遮断す
る。6は制御装置で図4にその一例を示す。
That is, in the conventional fluidic meter control device shown in FIG. 2, 1 is a fluidic meter and 2 is a fluidic meter.
Is a gas pipe, and 3 is a fluidic oscillation element, which causes fluid oscillation by utilizing the kinetic energy of the fluid. Four
Is a sensor that detects the frequency of fluid oscillation. A shutoff valve 5 shuts off the gas supply when an abnormal use state is detected. 6 is a control device, an example of which is shown in FIG.

【0004】図3で7はアナログ増幅器で、センサー4
で検出した流量信号を増幅する。8は波形整形回路で、
増幅した信号をパルス信号に変換する。9は立ち上がり
点検出回路で、流量パルス信号の立ち上がりを検出す
る。10は周期測定手段で、流量パルスの立ち上がり点
から次の立ち上がり点までの時間、即ち周期を計測す
る。11は記憶回路で、パルス定数と流量あるいは周期
の関係はn個の折れ線で近似しており、n個の折れ線の
境界の周期を記憶する手段12と、流量パルスの周期よ
り短い単位時間tを記憶する単位時間記憶手段13と、
パルス定数の補正単位量αを記憶する補正単位量手段1
4と、定数項aを記憶する定数記憶手段15とからな
る。これらの記憶手段はn個の折れ線の区分に対応して
n個ずつ設けられている。16は加算回路で、1パルス
当りの流量を示すパルス定数K=a+Σαを1周期毎求
め加算する。17は積算回路で、求めた流量を積算す
る。18は表示器で、積算した結果を表示する。
In FIG. 3, 7 is an analog amplifier, which is a sensor 4
The flow rate signal detected at is amplified. 8 is a waveform shaping circuit,
The amplified signal is converted into a pulse signal. A rising point detection circuit 9 detects the rising of the flow rate pulse signal. Reference numeral 10 denotes a cycle measuring means, which measures the time from the rising point of the flow rate pulse to the next rising point, that is, the cycle. Reference numeral 11 is a memory circuit, and the relationship between the pulse constant and the flow rate or period is approximated by n polygonal lines. Unit time storage means 13 for storing,
Correction unit amount means 1 for storing the correction unit amount α of the pulse constant
4 and constant storage means 15 for storing the constant term a. These storage means are provided in units of n corresponding to the division of n broken lines. Reference numeral 16 denotes an adder circuit which calculates and adds a pulse constant K = a + Σα indicating a flow rate per pulse for each cycle. Reference numeral 17 denotes an integrating circuit, which integrates the calculated flow rate. Reference numeral 18 denotes a display, which displays the integrated result.

【0005】次に、上記従来の構成の動作を説明する。
何等かのガス器具が使用されるとガスはフルイディック
発振素子3に入り流体発振が生じ、センサー4よりその
流量変化を検出する。その出力信号をアナログ増幅器7
で増幅し波形整形回路8でパルス信号に変換する。
Next, the operation of the above conventional configuration will be described.
When some kind of gas instrument is used, the gas enters the fluidic oscillation element 3 to cause fluid oscillation, and the sensor 4 detects a change in the flow rate. The output signal of the analog amplifier 7
And the waveform shaping circuit 8 converts it into a pulse signal.

【0006】流量と発振周波数の関係はQ=a・F+b
で与えられる。これを1パルス当りの流量を求める式K
=Q/F=a+b・Tに変更する。ここでKをパルス定
数といい、1パルス当りの流量値を示す。a、bは係数
である。パルス定数と流量あるいは振動周波数との関係
は図4に示すように一定ではないため折れ線近似してい
る。流量パルスの周期が折れ線近似の境界を越えた場
合、係数を変えてパルス定数を演算する。従って係数は
折れ線区分毎に設定されている。またここではb・Tと
いう乗算処理を行わずに加算処理で行い、且つパルス定
数Kをもとめる。
The relationship between the flow rate and the oscillation frequency is Q = a · F + b
Given in. This is the formula K for obtaining the flow rate per pulse
= Q / F = a + b · T. Here, K is called a pulse constant and indicates a flow rate value per pulse. a and b are coefficients. The relationship between the pulse constant and the flow rate or the vibration frequency is not constant as shown in FIG. When the period of the flow rate pulse exceeds the boundary of the polygonal line approximation, the coefficient is changed to calculate the pulse constant. Therefore, the coefficient is set for each broken line segment. Further, here, the multiplication process of b · T is not performed but the addition process is performed, and the pulse constant K is obtained.

【0007】この内容を説明する。まず立ち上がり点検
出回路9で波形整形回路8より出力された流量パルスの
立ち上がりを検出する。立ち上がり検出すると周期測定
手段10で流量パルスの周期を計測開始する。同時に加
算回路16で次の処理を行う。b・Tの演算を行う代わ
りに、b・Tの値よりはるかに小さい単位補正量αを加
算して求める。加算は流量パルスの周期Tより比較的短
い時間、単位補正時間t毎に行う。よってα=b・tと
いえる。従って流量パルスの1周期、立ち上がり点から
次の立ち上がり点検出するまでの間単位時間t経過する
毎に単位補正量αを加算し続ける。その結果得られたK
=a+Σαが1パルス当りの流量、即ちパルス定数にな
る。パルス定数と流量パルスの周期との関係は折れ線近
似しているので、それぞれの折れ線区分毎に係数a、単
位補正量α、単位補正時間tをもっている。従って加算
回路16では周期測定手段10によって計測した周期が
折れ線区分の境界の周期に達したかどうかを判定し、次
の折れ線区分の領域に入ったならば係数a、単位補正量
α、単位補正時間tを変更して上記処理を継続する。図
5に示すように、T1〜T2ではα1、t1、T2〜T
3ではα2、t2と切り換えて加算する。なお周期測定
手段10はパルス周期を計測すると共に、折れ線の境界
の周期に達したかどうかを判定する機能も持っている。
The contents will be described. First, the rising point detection circuit 9 detects the rising of the flow rate pulse output from the waveform shaping circuit 8. When the rising edge is detected, the cycle measuring means 10 starts measuring the cycle of the flow rate pulse. At the same time, the adder circuit 16 performs the following processing. Instead of calculating b · T, a unit correction amount α much smaller than the value of b · T is added to obtain. The addition is performed every unit correction time t, which is a time period relatively shorter than the cycle T of the flow rate pulse. Therefore, it can be said that α = b · t. Therefore, the unit correction amount α is continuously added every time the unit time t elapses from the rising point to the detection of the next rising point for one cycle of the flow rate pulse. The resulting K
= A + Σα is the flow rate per pulse, that is, the pulse constant. Since the relationship between the pulse constant and the period of the flow rate pulse is approximated by a polygonal line, each polygonal line segment has a coefficient a, a unit correction amount α, and a unit correction time t. Therefore, the adder circuit 16 determines whether the period measured by the period measuring means 10 has reached the period of the boundary of the polygonal line section, and if it enters the area of the next polygonal line section, the coefficient a, the unit correction amount α, the unit correction. The time t is changed and the above processing is continued. As shown in FIG. 5, in T1 to T2, α1, t1, T2 to T
In 3, the addition is performed by switching to α2 and t2. The period measuring means 10 has a function of measuring the pulse period and also having a function of determining whether or not the period of the boundary of the polygonal line has been reached.

【0008】このようにして求めた流量を積算回路17
で加算していくと使用積算値がもとまる。この積算値を
表示器18で表示する。
The flow rate thus obtained is used for the integrating circuit 17
The cumulative value used can be obtained by adding in. This integrated value is displayed on the display unit 18.

【0009】[0009]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、流量と振動周波数(あるいは周期)の関係
を示すパルス定数を線形近似しているために特に折れ線
の境界近傍では誤差が大きくなり流量を正確に計測でき
ず、また積算流量値にも大きく影響するという課題があ
った。
However, in the above-mentioned conventional configuration, since the pulse constant indicating the relationship between the flow rate and the vibration frequency (or period) is linearly approximated, the error becomes large especially near the boundary of the polygonal line and the flow rate is reduced. There was a problem that it could not be measured accurately and that it also had a large effect on the integrated flow rate value.

【0010】本発明は上記課題を解決するもので、正確
な流量計測をおこなえるフルイディックメーターを提供
することを目的としたものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fluidic meter capable of accurately measuring a flow rate.

【0011】[0011]

【課題を解決するための手段】本発明は上記目的を達成
するため、流体流量を検出する流量検出手段と、前記流
量検出手段の検出信号と前記流量との非線形的な関係を
示す特性値を格納した流量換算値記憶手段と、前記流量
検出手段の出力信号より前記流量換算値記憶手段に格納
された特性値を決定する流量設定手段とを設けたもので
ある。
In order to achieve the above object, the present invention provides a flow rate detecting means for detecting a fluid flow rate, and a characteristic value indicating a non-linear relation between a detection signal of the flow rate detecting means and the flow rate. A stored flow rate conversion value storage means and a flow rate setting means for determining the characteristic value stored in the flow rate conversion value storage means from the output signal of the flow rate detection means are provided.

【0012】[0012]

【作用】本発明は上記構成によって、流量検出手段で流
体流量を検出し、流量設定手段ではその検出信号をもと
に検出信号に対応した特性値を求めるために流量換算値
記憶手段に記憶された特性値から流量を設定し、更にそ
の値より積算流量を求める。特性値は非線形のまま流量
換算値記憶手段に格納されているので流量を速くもとめ
ることができる。
According to the present invention, the flow rate detecting means detects the fluid flow rate, and the flow rate setting means stores it in the flow rate conversion value storage means to obtain the characteristic value corresponding to the detection signal based on the detection signal. The flow rate is set from the characteristic value and the integrated flow rate is calculated from the value. Since the characteristic value is stored in the flow rate conversion value storage means as it is non-linear, the flow rate can be obtained quickly.

【0013】[0013]

【実施例】以下本発明の実施例を図1を参照して説明す
る。図1において、図3と同一構成要素には同一番号を
付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1, the same components as those in FIG. 3 are designated by the same reference numerals.

【0014】図1は本発明のフルイディックメーター制
御装置の制御ブロック図である。図1において、19は
流量検出手段で、例えば大流量域を計測するフルイディ
ック発振素子3とそこで発生する流体発振周波数を検出
する振動検出手段20(例えば圧電センサー、サーミス
タ等を用いて圧力−電圧変化、熱−抵抗変化として検出
する)と、さらに小流量域を計測する流速検出手段21
(熱線式センサー等)等とからなる。22は流量換算値
記憶手段で、流量と流量検出手段の出力信号との関係を
示し、且つ非線形的な特性を有する係数を予め格納した
り、あるいは流量検出手段19の出力信号に対応した流
量値を格納している。23は流量設定手段で、検出した
流量検出手段19の出力信号と流量換算値記憶手段22
に格納された係数とから流量を求めたり、あるいは検出
した流量検出手段19の出力信号をもとに流量換算値記
憶手段22に格納した流量値を探し対応した流量値を求
める。24は流量積算手段で、求めた流量を積算し積算
値を求める。18は表示手段で、積算値を表示する。
FIG. 1 is a control block diagram of a fluidic meter controller of the present invention. In FIG. 1, reference numeral 19 denotes a flow rate detecting means, for example, a fluidic oscillation element 3 for measuring a large flow rate region and a vibration detecting means 20 for detecting a fluid oscillation frequency generated therein (for example, a pressure-voltage using a piezoelectric sensor, a thermistor or the like). Change, heat-resistance change), and a flow velocity detecting means 21 for measuring a small flow rate region.
(Heat-wire type sensor, etc.) and so on. Reference numeral 22 denotes a flow rate conversion value storage means, which indicates a relationship between the flow rate and the output signal of the flow rate detection means, and stores a coefficient having a non-linear characteristic in advance, or a flow rate value corresponding to the output signal of the flow rate detection means 19. Is stored. Reference numeral 23 is a flow rate setting means, which detects the output signal of the flow rate detecting means 19 and the flow rate conversion value storage means 22.
The flow rate is obtained from the coefficient stored in the above, or the flow rate value stored in the flow rate conversion value storage means 22 is searched based on the detected output signal of the flow rate detecting means 19 to obtain the corresponding flow rate value. Reference numeral 24 is a flow rate integrating means for integrating the obtained flow rates to obtain an integrated value. A display means 18 displays the integrated value.

【0015】次に上記構成の動作を説明する。ガスが使
用され始めると流量検出手段19で流量を検出する。例
えば、ガス配管2のガスはフルイディック発振素子19
を通り供給され、このときフルイディック発振素子19
では、コアンダ効果によって流体発振を生じる。この発
振周波数を振動検出手段20で電圧信号として検出す
る。あるいは小流量域の場合流速検出手段21によって
流速に対応したパルス数が出力される。
Next, the operation of the above configuration will be described. When the gas starts to be used, the flow rate detecting means 19 detects the flow rate. For example, the gas in the gas pipe 2 is the fluidic oscillation element 19
Through the fluidic oscillation element 19
Then, fluid oscillation occurs due to the Coanda effect. The oscillation detecting means 20 detects this oscillation frequency as a voltage signal. Alternatively, in the case of a small flow rate region, the flow velocity detecting means 21 outputs the number of pulses corresponding to the flow velocity.

【0016】次に流量設定手段23では、流量検出手段
19で検出した信号をもとに、流量を求める。まず流量
換算値記憶手段22に格納した流量検出手段19の出力
信号に対応した係数と検出した信号とから流量を演算し
求める。あるいは別の方法として、流量検出手段19の
出力信号をもとに流量換算値記憶手段22に格納した流
量値をさがすことによって、出力信号に対応した流量を
設定する。このようにして求めた流量を積算流量演算手
段24で加算し積算流量を求める。そして表示手段18
は求めた積算流量値を表示する。
Next, the flow rate setting means 23 determines the flow rate based on the signal detected by the flow rate detecting means 19. First, the flow rate is calculated and obtained from the coefficient corresponding to the output signal of the flow rate detection means 19 stored in the flow rate converted value storage means 22 and the detected signal. Alternatively, as another method, the flow rate corresponding to the output signal is set by searching for the flow rate value stored in the flow rate conversion value storage means 22 based on the output signal of the flow rate detecting means 19. The flow rate thus obtained is added by the integrated flow rate calculation means 24 to obtain the integrated flow rate. And display means 18
Displays the calculated integrated flow rate value.

【0017】この実施例の構成によれば、流量と流量検
出手段の出力信号との関係を示す流量換算値を本来有す
る非線形特性のまま流量換算値記憶手段22に格納する
ので、流量を速く求めれると共に全体を駆動する電池電
源の消耗を抑えることができる。
According to the structure of this embodiment, since the flow rate conversion value indicating the relationship between the flow rate and the output signal of the flow rate detection means is stored in the flow rate conversion value storage means 22 as it is, the flow rate is obtained quickly. In addition, the consumption of the battery power source that drives the whole can be suppressed.

【0018】[0018]

【発明の効果】以上説明したように本発明のフルイディ
ックメーター制御装置は、流体の流量を検出する流量検
出手段と、流量検出手段の検出信号と流量との非線形的
な関係を示す流量換算値を格納した流量換算値記憶手段
と、流量検出手段の出力信号より流量換算値記憶手段に
格納された流量換算値を設定する流量設定手段とからな
り、流量と流量検出手段の出力信号との関係を示す流量
換算値を本来有する非線形特性のまま流量換算値記憶手
段に格納しているので、線形近似した場合に比べ流量を
速く求めれると共に全体を駆動する電池電源の消耗を抑
えることができるという効果がある。
As described above, the fluidic meter control device of the present invention has a flow rate detecting means for detecting the flow rate of a fluid, and a flow rate conversion value indicating a non-linear relationship between the detection signal of the flow rate detecting means and the flow rate. And a flow rate setting means for setting the flow rate converted value stored in the flow rate converted value storage means from the output signal of the flow rate detection means. The relationship between the flow rate and the output signal of the flow rate detection means Since the flow rate conversion value indicating the above is stored in the flow rate conversion value storage means as it is, it is possible to obtain the flow rate faster and to suppress the consumption of the battery power source that drives the whole as compared to the case of linear approximation. effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるフルイディックメー
ター制御装置のブロック図
FIG. 1 is a block diagram of a fluidic meter control device according to an embodiment of the present invention.

【図2】従来のフルイディックメーター制御装置のシス
テム構成図
[Fig. 2] System configuration diagram of a conventional fluidic meter control device

【図3】同装置の制御ブロック図FIG. 3 is a control block diagram of the device.

【図4】同装置の特性図FIG. 4 is a characteristic diagram of the device.

【図5】同装置の特性を更に詳しく説明した特性図FIG. 5 is a characteristic diagram illustrating the characteristics of the device in more detail.

【符号の説明】[Explanation of symbols]

19 流量検出手段 22 流量換算値記憶手段 23 流量設定手段 19 flow rate detection means 22 flow rate converted value storage means 23 flow rate setting means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】流体の流量を検出する流量検出手段と、前
記流量検出手段の検出信号と前記流量との非線形的な関
係を示す特性値を格納した流量換算値記憶手段と、前記
流量検出手段の出力信号より前記流量換算値記憶手段に
格納された特性値を決定する流量設定手段とからなるフ
ルイディックメーター制御装置。
1. A flow rate detecting means for detecting a flow rate of a fluid, a flow rate conversion value storing means for storing a characteristic value showing a non-linear relationship between a detection signal of the flow rate detecting means and the flow rate, and the flow rate detecting means. And a flow rate setting means for determining the characteristic value stored in the flow rate converted value storage means from the output signal of the above.
JP6677492A 1992-03-25 1992-03-25 Controlling device for fluidic meter Pending JPH05273003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6677492A JPH05273003A (en) 1992-03-25 1992-03-25 Controlling device for fluidic meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6677492A JPH05273003A (en) 1992-03-25 1992-03-25 Controlling device for fluidic meter

Publications (1)

Publication Number Publication Date
JPH05273003A true JPH05273003A (en) 1993-10-22

Family

ID=13325552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6677492A Pending JPH05273003A (en) 1992-03-25 1992-03-25 Controlling device for fluidic meter

Country Status (1)

Country Link
JP (1) JPH05273003A (en)

Similar Documents

Publication Publication Date Title
JPH05273003A (en) Controlling device for fluidic meter
JP3036218B2 (en) Flowmeter
JP3036217B2 (en) Flowmeter
JP3103700B2 (en) Flowmeter
JPH05273007A (en) Flowmeter
JP3146602B2 (en) Fluidic meter controller
JP3146601B2 (en) Fluidic meter controller
JP3146603B2 (en) Fluidic meter controller
JP3008692B2 (en) Flowmeter
JP3057949B2 (en) Flowmeter
JPH06221884A (en) Flowmeter
JP3344847B2 (en) Fluidic gas meter
JP3502115B2 (en) Flowmeter
JPH06137910A (en) Flowmeter
JP4698014B2 (en) Flow measuring device
JP2785972B2 (en) Compensation device for flow meter
JP3093500B2 (en) Flowmeter
JPH08145741A (en) Flowmeter
JP3170335B2 (en) Gas flow meter
JPH1082672A (en) Flowmeter
JP2002310739A (en) Flow rate computing unit
JP2708280B2 (en) Fluidic gas meter with micro flow sensor
JP3039114B2 (en) Flowmeter
JPH0462430A (en) Integrating flowmeter consisting of plural sensors
SU1659747A1 (en) Pickup operation register