JPH05272934A - Shape measuring method - Google Patents

Shape measuring method

Info

Publication number
JPH05272934A
JPH05272934A JP4070892A JP7089292A JPH05272934A JP H05272934 A JPH05272934 A JP H05272934A JP 4070892 A JP4070892 A JP 4070892A JP 7089292 A JP7089292 A JP 7089292A JP H05272934 A JPH05272934 A JP H05272934A
Authority
JP
Japan
Prior art keywords
measurement
measured
measuring
spot
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4070892A
Other languages
Japanese (ja)
Inventor
Yasuharu Jin
康晴 神
Akashi Yamaguchi
証 山口
Koji Okuma
康治 大熊
Yoshiro Nishimoto
善郎 西元
Taizo Yoshida
泰三 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Original Assignee
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO PLANT KENSETSU KK, Kobe Steel Ltd filed Critical SHINKO PLANT KENSETSU KK
Priority to JP4070892A priority Critical patent/JPH05272934A/en
Publication of JPH05272934A publication Critical patent/JPH05272934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To display the measured data, which are measured at each measuring position on the single three-dimensional coordinate-axis system, wherein the measured data are integrated with the measured data, which are measured at a plurality of other measuring positions, even if a measuring device is moved and the shape of a material to be measured is measured at a plurality of measuring positions with regard to the shape measuring method with the three- dimensional shape measuring device using a spot projection method. CONSTITUTION:With regard to, e.g. first and second measuring positions, which are appropriately selected, at least three common measuring points (e.g. the apexes of a defined triangle) are provided on a material to be measured. The laser light is individually projected from each of measuring devices, which are provided at the first measuring positions (a) and the second measuring position (b), respectively, to the measuring points. The position coordinates associated with the measuring point in the coordinate system at each measuring position are operated. The function associated with coordinate conversion is computed. The data of the position coordinates, e.g. at the second measuring position, are converted into the data of the position coordinates at the first measuring position.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,例えばビル構造物,車
体,船体,圧力容器などの大型の被測定物の3次元形状
などを計測する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the three-dimensional shape of a large object to be measured such as a building structure, car body, hull, pressure vessel and the like.

【0002】[0002]

【従来の技術】従来,被測定物の3次元形状を非接触で
計測する方法として,AM光位相差計測法やスポット光
投影法などの各種計測方法が提案されている。そのう
ち,以下に述べるように被測定物にスポット光を投光す
るスポット光投影法は三角測量の原理を用いており,一
般的に信頼性が高く高精度の測定ができることで知られ
ている。図6は,上記スポット光投影法を用いた3次元
形状計測装置の一例を示している。この3次元形状計測
装置51は,被測定物52にスポット光(例えばレーザ
光)53を投光角可変に投光するセオドライト54と,
上記被測定物52上に投射されたスポット像55を撮像
するTVカメラ56とを具備している。上記セオドライ
ト54と上記TVカメラ56とは,図7に模式的に示さ
れるように所定距離(例えばL)隔てて配置されてい
る。上記セオドライト54から投光されたレーザ光53
により形成されたスポット像55が上記TVカメラ56
により撮像され,このTVカメラ56の撮像面上の所定
点(例えば中心点)にくるように画像処理装置57の画
像処理情報に基づいてTVカメラ56が回転制御され,
スポット像55が追尾される。そして,撮像された上記
スポット像がTVカメラ56の中心点にきた時のレーザ
光53の投光角度(例えば図7に示すθ1 ,φ1 ),T
Vカメラ56により撮像されたスポット像の撮像角度
(同図に示すθ2 ,φ2 ),及び距離Lの値からこの距
離Lの中点58を原点とする被測定物52上のスポット
像55の位置座標(X,Y,Z)が三角測量の原理に基
づき例えば次式に従って求められ,この被測定物52の
3次元形状が計測される。 X=(L・(tan θ2 +tan θ1 ))/(2・(tan θ2 −tan θ1 )) Y=(L・tan θ2 ・tan θ1 )/(tan θ2 −tan θ1 ) Z=(L・tan θ2 ・tan θ1 ・tan φ1 )/((tan θ2 −tan θ1 ) ・sin θ1 ) =(L・tan θ2 ・tan θ1 ・tan φ2 )/((tan θ2 −tan θ1 ) ・sin θ2 ) 尚,この場合の上記被測定物52の3次元形状は,当該
装置が設置された測定位置を原点とした座標系での位置
座標に基づいて与えられる。上述した3次元形状計測装
置51は,例えばSICE′89,第28回学術講演会
予稿集,JS7−1,P69に開示されている。
2. Description of the Related Art Conventionally, various measuring methods such as an AM optical phase difference measuring method and a spot light projecting method have been proposed as a method for measuring a three-dimensional shape of an object to be measured without contact. Among them, as described below, the spot light projection method, which projects spot light onto the object to be measured, uses the principle of triangulation, and is generally known to be highly reliable and highly accurate. FIG. 6 shows an example of a three-dimensional shape measuring apparatus using the spot light projection method. The three-dimensional shape measuring apparatus 51 includes a theodolite 54 that projects a spot light (for example, a laser light) 53 on a measured object 52 with a variable projection angle.
A TV camera 56 for picking up a spot image 55 projected on the object to be measured 52 is provided. The theodolite 54 and the TV camera 56 are arranged at a predetermined distance (for example, L) from each other as schematically shown in FIG. Laser light 53 emitted from the theodolite 54
The spot image 55 formed by the TV camera 56
The TV camera 56 is rotated and controlled based on the image processing information of the image processing device 57 so as to come to a predetermined point (for example, the center point) on the image pickup surface of the TV camera 56.
The spot image 55 is tracked. The projection angle of the laser light 53 when the imaged spot image reaches the center point of the TV camera 56 (eg, θ 1 and φ 1 shown in FIG. 7), T
A spot image 55 on the object to be measured 52 having the midpoint 58 of the distance L as the origin, based on the image pickup angle (θ 2 , φ 2 shown in the figure) of the spot image picked up by the V camera 56 and the value of the distance L. The position coordinates (X, Y, Z) of are measured in accordance with the following formula, for example, based on the principle of triangulation, and the three-dimensional shape of the measured object 52 is measured. X = (L · (tan θ 2 + tan θ 1 )) / (2 · (tan θ 2 −tan θ 1 )) Y = (L · tan θ 2 · tan θ 1 ) / (tan θ 2 −tan θ 1 ) Z = (L ・ tan θ 2・ tan θ 1・ tan φ 1 ) / ((tan θ 2 −tan θ 1 ) ・ sin θ 1 ) = (L ・ tan θ 2・ tan θ 1・ tan φ 2 ) / ((Tan θ 2 −tan θ 1 ) · sin θ 2 ) The three-dimensional shape of the object to be measured 52 in this case is the position coordinate in a coordinate system with the measurement position where the device is installed as the origin. Given based on. The above-described three-dimensional shape measuring apparatus 51 is disclosed, for example, in SICE'89, Proceedings of 28th Academic Lecture Meeting, JS7-1, P69.

【0003】[0003]

【発明が解決しようとする課題】ところで,対象となる
被測定物の形状が大型で,単一の測定位置のみからはそ
の形状計測を行い得ない場合は,当該3次元形状計測装
置51による測定位置を変えて更に形状計測を行わなけ
ればならない。このように2ヶ所以上の複数の測定位置
で形状計測を行った場合,一つの測定位置に関してはそ
の位置独自の座標軸を保有していることから,例えば図
8に示す第1の測定位置に関する座標値○印と○印との
間,第2の測定位置に関する座標値●印と●印との間に
おけるそれぞれの距離の算出などは可能であるが,座標
値○印と●印との間ではそれぞれの3次元座標値を与え
る基となる3次元座標軸が異なり,その間の距離の算出
やその他数値解析による3次元座標値の有効的な利用を
図り得ない。その結果,大型の被測定物に対する形状計
測を迅速且つ簡便に実施することができないという不具
合を生じる。そこで,本発明は,上記事情に鑑みて創案
されたものであり,計測装置を移動させて複数の測定位
置から被測定物の形状計測を行った場合でも,各測定位
置で計測した計測データを他の複数の計測位置で計測し
た計測データと統一した一つの3次元座標軸上に表示し
得るようにしてより有効な形状計測を行うことのできる
形状計測方法の提供を目的とするものである。
By the way, when the shape of the object to be measured is large and the shape cannot be measured from only a single measuring position, the measurement by the three-dimensional shape measuring device 51 is performed. It is necessary to change the position and perform shape measurement. When shape measurement is performed at two or more measurement positions in this way, one measurement position has its own coordinate axis. Therefore, for example, the coordinates for the first measurement position shown in FIG. It is possible to calculate the respective distances between the values ○ and ○ and the coordinate values ● and ● related to the second measurement position, but between the coordinate values ○ and ●. The three-dimensional coordinate axes on which each three-dimensional coordinate value is given are different, and it is impossible to effectively use the three-dimensional coordinate values by calculating the distance between them and other numerical analysis. As a result, there is a problem in that it is impossible to quickly and easily perform shape measurement on a large object to be measured. Therefore, the present invention was devised in view of the above circumstances, and even when the measurement device is moved to measure the shape of the object to be measured from a plurality of measurement positions, the measurement data measured at each measurement position is obtained. It is an object of the present invention to provide a shape measuring method capable of performing more effective shape measurement so that it can be displayed on one three-dimensional coordinate axis unified with measurement data measured at a plurality of other measurement positions.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する為
に,本発明が採用する主たる手段は,その要旨とすると
ころが,所定の測定位置から被測定物に向けてスポット
光を投光して上記被測定物上に投射されたスポット像を
撮像面で撮像し,上記スポット光の投光角度,上記スポ
ット像の撮像角度及び上記スポット光を投光した点と上
記撮像面との間の距離から被測定物上のスポット像のこ
の測定位置を原点とした座標系での位置座標を演算する
形状計測方法において,適宜選択された複数の測定位置
に関して上記被測定物上に共通する少なくとも3点の測
定点を設定し,この測定点に向けて一の測定位置と他の
測定位置から各別にスポット光を投光して各測定位置で
の座標系で上記測定点に係る位置座標を演算すると共に
座標変換に係る関数を算出し,上記関数に基づいて他の
測定位置に於ける位置座標のデータを一の測定位置にお
ける位置座標のデータに変換するようにした点に係る形
状計測方法である。
In order to achieve the above-mentioned object, the main means adopted by the present invention is to provide a spot light from a predetermined measuring position toward an object to be measured. The spot image projected on the object to be measured is imaged on the imaging surface, the projection angle of the spot light, the imaging angle of the spot image, and the distance between the spot where the spot light is projected and the imaging surface. In the shape measuring method for calculating the position coordinates of the spot image on the measured object in the coordinate system with this measured position as the origin, at least three points common to the measured object with respect to a plurality of appropriately selected measuring positions. The measurement point is set, and spot light is separately projected toward the measurement point from one measurement position and the other measurement position, and the position coordinates related to the measurement point are calculated in the coordinate system at each measurement position. And functions related to coordinate transformation Calculated, a shape measuring method according to the points to convert the data in the position coordinate data of the position coordinates in one measurement position to another measurement position based on the function.

【0005】[0005]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る形状計測方法を適用
することができる3次元形状計測装置を示すブロック
図,図2は上記形状計測方法を実施する場合の手法を示
す説明図,図3は上記形状計測方法による計測状況を示
す説明図,図4は上記3次元形状計測装置に移動機能を
付加した一例のブロック図,図5は上記各3次元形状計
測装置に用いることのできる四分割光学センサを模式的
に示す説明図である。先ず,当該形状計測方法の一例を
適用することのできる3次元形状計測装置1を図1に示
す。この3次元形状計測装置1は,図1に示す如く,ス
ポット光(例えばレーザ光)2を投光するレンズ(不図
示)などからなる光源3を具備し,上記光源3は上記3
次元形状計測装置1を構成する回転構造部9aに取付ら
れている。上記回転構造部9a内の上記光源3と一体的
に上記レーザ光2の光軸2a上にこの光軸2aと直交す
る軸芯4aを中心として回転自在に第1ミラー4が取付
られている。又,上記光源3を挟んで上記第1ミラー4
の反対側に,上記回転構造部9a内の光源と一体的に上
記第1ミラー4の軸芯4aと平行の軸芯5aを中心とし
て回転自在に第2ミラー5が取付られている。上記光源
3,第1ミラー4,第2ミラー5などを一体的に収納す
る上記回転構造部9aは,当該3次元形状計測装置1の
支持構造部9b上に矢印Dに示すように回転自在に取付
られている。上記光源3からレーザ光2が投光される
と,このレーザ光2は上記第1ミラー4により反射さ
れ,被測定物6上にスポット像7が形成される。上記ス
ポット像7は上記第2ミラー5により反射され,上記回
転構造部9内に光源3と一体的に取付られたレンズ等か
らなる集光部8に集光される。上記集光部8により集光
されたスポット像は,この集光部8に設けられた光学セ
ンサ8a上に撮像される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. Here, FIG. 1 is a block diagram showing a three-dimensional shape measuring apparatus to which a shape measuring method according to an embodiment of the present invention can be applied, and FIG. 2 is an explanatory diagram showing a method for implementing the shape measuring method. , FIG. 3 is an explanatory view showing a measurement situation by the shape measuring method, FIG. 4 is a block diagram of an example in which a moving function is added to the three-dimensional shape measuring apparatus, and FIG. 5 is used in each of the three-dimensional shape measuring apparatus. It is explanatory drawing which shows the possible four-division optical sensor typically. First, FIG. 1 shows a three-dimensional shape measuring apparatus 1 to which an example of the shape measuring method can be applied. As shown in FIG. 1, the three-dimensional shape measuring apparatus 1 includes a light source 3 including a lens (not shown) that projects a spot light (for example, a laser beam) 2, and the light source 3 is the above-mentioned three.
It is attached to the rotary structure portion 9a that constitutes the three-dimensional shape measuring apparatus 1. A first mirror 4 is mounted on the optical axis 2a of the laser beam 2 integrally with the light source 3 in the rotary structure 9a so as to be rotatable around an axis 4a orthogonal to the optical axis 2a. In addition, the first mirror 4 with the light source 3 interposed therebetween.
A second mirror 5 is attached to the opposite side of the above so as to be rotatable around an axis 5a parallel to the axis 4a of the first mirror 4 integrally with the light source in the rotary structure 9a. The rotating structure 9a, which integrally houses the light source 3, the first mirror 4, the second mirror 5, etc., is rotatable on the supporting structure 9b of the three-dimensional shape measuring apparatus 1 as shown by an arrow D. It is installed. When the laser light 2 is projected from the light source 3, the laser light 2 is reflected by the first mirror 4 and a spot image 7 is formed on the DUT 6. The spot image 7 is reflected by the second mirror 5 and is condensed on a condensing unit 8 including a lens or the like mounted integrally with the light source 3 in the rotating structure 9. The spot image collected by the light collecting unit 8 is imaged on the optical sensor 8 a provided in the light collecting unit 8.

【0006】上記光学センサ8aは,撮像された上記ス
ポット像の位置を検出できる例えばPSD(ポジション
センシティブデテクタ)などからなる。当該3次元形状
計測装置1の制御回路は,マイクロコンピュータCPU
などからなる制御部10を中枢として構成され,この制
御部10に,上記第1ミラー4を回転駆動する第1駆動
部11,第2ミラー5を回転駆動する第2駆動部12,
上記光学センサ8aからの出力信号を処理する像位置検
出部13,上記回転構造部9aを回転駆動する第3駆動
部14及び当該3次元形状計測装置1に各種指令を与え
る操作部15などが接続されている。上記第1ミラー4
の回転角度及び第2ミラー5の回転角度は,それぞれ上
記第1駆動部11及び第2駆動部12に内蔵された第1
エンコーダ16及び第2エンコーダ17により検出さ
れ,制御部10に入力される。又,上記回転構造部9a
の回転角度は,上記第3駆動部14に内蔵された第3エ
ンコーダ18により検出され,上記制御部10に入力さ
れる。当該3次元形状計測装置1の三角測量の基準距離
Lは,上記第1ミラー4の軸芯4aと上記第2ミラー5
の軸芯5aとの間の距離であり,この距離は常に一定で
ある。引き続き,上記構成に係る3次元形状計測装置1
における3次元形状の測定処理について説明する。上記
操作部15が所定操作されると,第3駆動部14が駆動
されて回転構造部9aが回転され,さらに第1ミラー4
が回転されて被測定物6にレーザ光2が投光される。こ
れにより,被測定物6上にはスポット像7が投射され
る。そして,第2ミラー5が回転されて上記スポット像
7がこの第2ミラー5により反射され,光学センサ8a
上に結像される。結像された上記スポット像の位置は,
上記光学センサ8aによって検出され,像位置検出部1
3を介してスポット像の結像位置情報に変換されて制御
部10に入力される。
The optical sensor 8a is composed of, for example, a PSD (position sensitive detector) capable of detecting the position of the spot image thus picked up. The control circuit of the three-dimensional shape measuring apparatus 1 is a microcomputer CPU
A control unit 10 including the above is configured as a center, and a first drive unit 11 that rotationally drives the first mirror 4 and a second drive unit 12 that rotationally drives the second mirror 5,
An image position detection unit 13 that processes an output signal from the optical sensor 8a, a third drive unit 14 that rotationally drives the rotary structure unit 9a, and an operation unit 15 that gives various commands to the three-dimensional shape measuring apparatus 1 are connected. Has been done. First mirror 4
The rotation angle of the first mirror 11 and the rotation angle of the second mirror 5 are the same as those of the first driver 11 and the second driver 12, respectively.
It is detected by the encoder 16 and the second encoder 17 and input to the control unit 10. In addition, the rotating structure portion 9a
The rotation angle is detected by the third encoder 18 incorporated in the third drive unit 14 and input to the control unit 10. The triangulation reference distance L of the three-dimensional shape measuring apparatus 1 is determined by the axial center 4a of the first mirror 4 and the second mirror 5
Is the distance from the axis 5a of the shaft, and this distance is always constant. Subsequently, the three-dimensional shape measuring apparatus 1 according to the above configuration
The three-dimensional shape measurement process in 3 will be described. When the operation section 15 is operated in a predetermined manner, the third drive section 14 is driven to rotate the rotary structure section 9a, and further the first mirror 4 is moved.
Is rotated and the laser beam 2 is projected onto the DUT 6. As a result, the spot image 7 is projected on the DUT 6. Then, the second mirror 5 is rotated, the spot image 7 is reflected by the second mirror 5, and the optical sensor 8a
Imaged above. The position of the spot image formed is
The image position detection unit 1 detected by the optical sensor 8a.
It is converted into the image forming position information of the spot image via 3 and input to the control unit 10.

【0007】上記結像位置情報に基づき,更に上記第2
ミラー5が回転制御され,上記光学センサ8a上に結像
されたスポット像が所定位置(例えば光学センサ8aの
中心点)となった時,上記第2ミラー5の回転角度及び
上記第1ミラー4の回転角度が求められる。上記光学セ
ンサ8a上に結像されたスポット像を所定位置とする撮
像処理は,上述したように第2ミラー5の1軸回転処理
のみであるので,高速処理が可能である。そして,求め
られた第1ミラー4の回転角度,第2ミラー5の回転角
度及び第1ミラー4の軸芯4aと第2ミラー5の軸芯5
aとの間の距離から被測定物6上のスポット像7の位置
座標が演算される。この場合,上記位置座標が,当該3
次元形状計測装置1が設置された測定位置を原点とした
座標系でのものである。以下,同様に回転構造部9a,
第1ミラー4,第2ミラー5が順に回転制御されて,被
測定物6全体の3次元形状が求められる。ここで,測定
対象となる上記被測定物6の形状が大きくて,単一の測
定位置からのみではその形状計測を行い得ない場合,以
下に示すような手法が実施される。即ち,適宜選択され
た例えば第1,第2の測定位置(図3参照)に関して上
記被測定物6上に共通する少なくとも3点の測定点(例
えば定義された三角形の頂点)が設定され,この測定点
に向けて第1の測定位置と第2の測定位置からそれぞれ
に設置される上記3次元形状計測装置1より各別にレー
ザ光2が投光され,各測定位置での座標系で上記測定点
に係る位置座標が演算されると共に,座標変換に係る関
数が算出される。そして,上記関数に基づいて,例えば
第2の測定位置における位置座標のデータが第1の測定
位置における位置座標のデータに変換される。
Based on the image formation position information, the second
When the mirror 5 is rotationally controlled and the spot image formed on the optical sensor 8a reaches a predetermined position (for example, the center point of the optical sensor 8a), the rotation angle of the second mirror 5 and the first mirror 4 The rotation angle of is calculated. Since the image pickup processing in which the spot image formed on the optical sensor 8a is at a predetermined position is only the uniaxial rotation processing of the second mirror 5 as described above, high speed processing is possible. Then, the determined rotation angle of the first mirror 4, the rotation angle of the second mirror 5, the axis 4a of the first mirror 4 and the axis 5 of the second mirror 5 are obtained.
The position coordinates of the spot image 7 on the object 6 to be measured are calculated from the distance to the object a. In this case, the above position coordinates are
This is in a coordinate system whose origin is the measurement position where the three-dimensional shape measuring apparatus 1 is installed. Hereinafter, similarly, the rotating structure 9a,
The first mirror 4 and the second mirror 5 are sequentially rotated and controlled, and the three-dimensional shape of the entire DUT 6 is obtained. Here, when the shape of the measured object 6 to be measured is large and the shape cannot be measured only from a single measurement position, the following method is performed. That is, at least three measurement points (for example, defined triangular vertices) common to the DUT 6 are set with respect to appropriately selected, for example, first and second measurement positions (see FIG. 3). The laser beam 2 is separately projected from the three-dimensional shape measuring device 1 installed at the first measurement position and the second measurement position toward the measurement point, and the measurement is performed in the coordinate system at each measurement position. The position coordinates related to the point are calculated, and the function related to the coordinate conversion is calculated. Then, based on the above-mentioned function, for example, the data of the position coordinates at the second measurement position is converted into the data of the position coordinates at the first measurement position.

【0008】この場合,上記各測定位置からみた二つの
三角形は,元来同一の三角形であるが,計測誤差のため
に見掛け上多少ずれる可能性がある。そこで,以下に示
すような手法を用いることにより,その誤差の修正が図
られる。図2に示すように,例えば第1の測定位置で測
定されたX1 ,Y1 ,Z1 3次元座標軸上の共通測定点
A,B,Cと,第2の測定位置で測定されたX2
2,Z2 3次元座標軸上の共通測定点a,b,cのそ
れぞれの3点を頂点とした三角形を考える時,座標系統
一の為の座標変換は,この二つの三角形が実質同一であ
るという条件から得ることができる。そこで,点A,
B,Cを含む平面F1 と,点a,b,cを含む平面F2
の二面が設定され,辺ABと辺abの長さからその平均
値L1 が算出される。同様に辺BCと辺bcからその平
均値L2 ,辺ACと辺acからその平均値L3 がそれぞ
れ算出される。そして,点A,B,Cの内,2ヶ所の測
定位置からの距離が近く,最も測定誤差が小さいと予想
される点(例えばA)が選択される。引き続き,平面F
1 上で点AからL1 だけ離れて線分ABの延長上の点を
点B′とされる。同様に,平面F2 上で点aからL1
け離れて線分abの延長上の点を点b′とされる。更
に,平面F1 上で点AからL3 だけ離れて点B′からL
2 だけ離れた点を点C′とされ,平面F2 上で点aから
3 だけ離れて点b′からL2 だけ離れた点を点c′と
される。上記のようにして得られた平面F1 上の三角形
AB′C′と,平面F2 上の三角形ab′c′とは幾何
学的に合同である。よって,X2 ,Y2 ,Z2 3次元座
標軸上の座標点a,b′c′の各点がX1,Y1 ,Z1
3次元座標軸上の座標点A,B′,C′のそれぞれの点
に対応する関係を用いた座標変換を行うことにより,X
2 ,Y2 ,Z2 3次元座標軸上の任意の点をX1
1 ,Z1 3次元座標軸上の点として変換される。
In this case, the two
Triangles are originally the same triangle, but due to measurement error
There is a possibility that the appearance may be slightly off. Therefore,
The error can be corrected by using such a method.
Be done. As shown in Fig. 2, for example, the measurement is performed at the first measurement position.
Specified X1, Y1, Z1Common measurement points on three-dimensional coordinate axes
A, B, C and X measured at the second measurement position2
Y2, Z2The common measurement points a, b, and c on the three-dimensional coordinate axes
When considering a triangle with three points as vertices, coordinate system
The coordinate transformation for one is that the two triangles are substantially the same.
Can be obtained from the condition that So point A,
Plane F including B and C1And a plane F including points a, b and c2
The two sides are set, and the average is calculated from the lengths of side AB and side ab.
Value L1Is calculated. Similarly, from side BC and side bc to the flat
Average L2, The average value L from the side AC and the side ac3Is that
Is calculated. And, of the points A, B, C
Expected to have the smallest measurement error due to the short distance from the fixed position
The point (eg, A) to be selected is selected. Continuing, plane F
1Points A to L above1Away from the point on the extension of line segment AB
It is designated as point B '. Similarly, plane F2Points a to L above1Is
A point on the extension of the line segment ab away from each other is defined as a point b ′. Change
On the plane F1Points A to L above3Away from point B '
2Is defined as a point C ', and the plane F2From point a above
L3Away from point b '2Point apart by point c '
To be done. Plane F obtained as described above1Upper triangle
AB'C 'and plane F2The upper triangle ab'c 'is geometric
Is logically congruent. Therefore, X2, Y2, Z2Three-dimensional seat
Each point of coordinate points a and b'c 'on the standard axis is X.1, Y1, Z1
Coordinate points A, B ', C'on the three-dimensional coordinate axes
By performing coordinate transformation using the relationship corresponding to
2, Y2, Z2X on any point on the 3D coordinate axis1
Y1, Z1It is converted as a point on the three-dimensional coordinate axis.

【0009】上記したような手法を用いることにより,
例えばプラントの建設現場において,各機器や設備が入
り込んで1ヶ所の測定位置からではレーザ光が直接当た
らない所が生じたりしてその測定を網羅できない場合で
も,共通測定点を三点設けることにより,複数の測定位
置より得られたデータを座標軸統一により単一の測定位
置で測定した場合と同等の座標値として得ることができ
る。更に,広い測定エリアにおいてその形状計測を行う
場合,単一の測定位置からでは計測装置の保証する測定
可能範囲を越えてしまうような場合でも,共通測定点を
設定して順次その測定エリアを増加させて単一の座標軸
上でのデータとして得ることができる。尚,上記したよ
うに被測定物が大型化して3次元形状計測装置1と被測
定物6との間の距離が長くなってスポット像7の光が弱
くなると,前記実施例における光学センサ8aとして用
いたPSDでは,その出力電流値が小さくなり,位置検
出分解能が低下する。従って,このPSDを例えば図5
に模式的に示す4分割光学センサ19に置き換えてもよ
い。この4分割光学センサ19は,例えばシリコンフォ
トダイオードなどからなり,その検出面が同図に示すよ
うに独立の4面19a,19b,19c,19dに分割
されており,各々の面の受光強度が検出できる。従っ
て,上記4分割光学センサ19の面上に結像されたスポ
ット像の位置は,X,Y軸方向の2値情報として処理す
ることができ,4分割光学センサ19の各面からの出力
信号が所定のバランス状態(例えば全て均等)となるよ
うに制御することができる。その結果,上記4分割光学
センサ19を用いると,スポット像の光強度が弱い場合
でも,一定の分解能でスポット像の位置検出をすること
ができる。又,図4は前記3次元形状計測装置1を,車
輪20,21などを有する移動機構部22に搭載して3
次元形状計測装置1aを構成したところを示している。
このようにすれば,当該計測装置の移動が容易となり,
前記した形状計測方法をより実施しやすくなる。
By using the above method,
For example, at a plant construction site, even if it is not possible to cover all of the measurement because there is a place where the laser light does not hit directly from one measurement position due to the entry of each equipment or facility, by providing three common measurement points The data obtained from multiple measurement positions can be obtained as coordinate values equivalent to those obtained when measuring at a single measurement position by unifying the coordinate axes. Furthermore, when measuring the shape in a wide measurement area, even if the single measurement position exceeds the measurable range guaranteed by the measuring device, common measurement points are set and the measurement area is gradually increased. And can be obtained as data on a single coordinate axis. As described above, when the object to be measured becomes large and the distance between the three-dimensional shape measuring apparatus 1 and the object to be measured 6 becomes long and the light of the spot image 7 becomes weak, the optical sensor 8a in the above embodiment is used. In the PSD used, the output current value becomes small and the position detection resolution decreases. Therefore, this PSD is shown in FIG.
It may be replaced with the four-division optical sensor 19 schematically shown in FIG. The four-division optical sensor 19 is composed of, for example, a silicon photodiode, and its detection surface is divided into four independent surfaces 19a, 19b, 19c, and 19d as shown in FIG. Can be detected. Therefore, the position of the spot image formed on the surface of the four-division optical sensor 19 can be processed as binary information in the X and Y axis directions, and the output signal from each surface of the four-division optical sensor 19 can be processed. Can be controlled to be in a predetermined balance state (for example, all are equal). As a result, by using the four-division optical sensor 19, even if the light intensity of the spot image is weak, the position of the spot image can be detected with a constant resolution. In addition, FIG. 4 shows that the three-dimensional shape measuring apparatus 1 is mounted on a moving mechanism section 22 having wheels 20, 21 and the like.
The figure shows a configuration of the three-dimensional shape measuring apparatus 1a.
This makes it easy to move the measuring device,
It becomes easier to carry out the above-described shape measuring method.

【0010】[0010]

【発明の効果】本発明は,上記したように,所定の測定
位置から被測定物に向けてスポット光を投光して上記被
測定物上に投射されたスポット像を撮像面で撮像し,上
記スポット光の投光角度,上記スポット像の撮像角度及
び上記スポット光を投光した点と上記撮像面との間の距
離から被測定物上のスポット像のこの測定位置を原点と
した座標系での位置座標を演算する形状計測方法におい
て,適宜選択された複数の測定位置に関して上記被測定
物上に共通する少なくとも3点の測定点を設定し,この
測定点に向けて一の測定位置と他の測定位置から各別に
スポット光を投光して各測定位置での座標系で上記測定
点に係る位置座標を演算すると共に座標変換に係る関数
を算出し,上記関数に基づいて他の測定位置に於ける位
置座標のデータを一の測定位置における位置座標のデー
タに変換するようにしたことを特徴とする形状計測方法
であるから,計測装置を移動させて複数の測定位置から
被測定物の形状計測を行った場合でも,各測定位置で計
測した計測データを他の複数の測定位置で計測した計測
データと統一した単一の3次元座標軸上に表示すること
ができ,より有効な形状計測を簡単に行うことができ
る。
As described above, according to the present invention, spot light is projected from a predetermined measurement position toward an object to be measured, and a spot image projected on the object to be measured is imaged on an image pickup surface. From the projection angle of the spot light, the imaging angle of the spot image, and the distance between the point where the spot light is projected and the imaging surface, a coordinate system having this measurement position of the spot image on the object to be measured as the origin. In the shape measuring method for calculating the position coordinate in, at least three measurement points common to the object to be measured are set for a plurality of appropriately selected measurement positions, and one measurement position is set toward this measurement point. Spot light is separately projected from other measurement positions to calculate the position coordinates related to the above measurement points in the coordinate system at each measurement position, and the function related to coordinate conversion is calculated, and other measurement is performed based on the above function. The position coordinate data at the position Since the shape measurement method is characterized by converting the position coordinate data at the measurement positions, even if the measurement device is moved to measure the shape of the measured object from a plurality of measurement positions, The measurement data measured at the measurement position can be displayed on a single three-dimensional coordinate axis that is unified with the measurement data measured at other measurement positions, and more effective shape measurement can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る形状計測方法を適用
することができる3次元形状計測装置を示すブロック
図。
FIG. 1 is a block diagram showing a three-dimensional shape measuring apparatus to which a shape measuring method according to an embodiment of the present invention can be applied.

【図2】 上記形状計測方法を実施する場合の手法を示
す説明図。
FIG. 2 is an explanatory diagram showing a method for carrying out the shape measuring method.

【図3】 上記形状計測方法による計測状況を示す説明
図。
FIG. 3 is an explanatory view showing a measurement situation by the shape measuring method.

【図4】 上記3次元形状計測装置に移動機能を付加し
た一例のブロック図。
FIG. 4 is a block diagram of an example in which a moving function is added to the three-dimensional shape measuring apparatus.

【図5】 上記各3次元形状計測装置に用いることので
きる四分割光学センサを模式的に示す説明図。
FIG. 5 is an explanatory diagram schematically showing a four-division optical sensor that can be used in each of the three-dimensional shape measuring devices.

【図6】 従来の3次元形状計測装置の一例を示すブロ
ック図。
FIG. 6 is a block diagram showing an example of a conventional three-dimensional shape measuring apparatus.

【図7】 上記従来の3次元形状計測装置のセオドライ
トとTVカメラ等の位置関係を示す説明図。
FIG. 7 is an explanatory diagram showing a positional relationship between a theodolite and a TV camera of the conventional three-dimensional shape measuring apparatus.

【図8】 従来の形状計測方法による計測状況を示す説
明図。
FIG. 8 is an explanatory diagram showing a measurement situation by a conventional shape measuring method.

【符号の説明】[Explanation of symbols]

1,1a…3次元形状計測装置 2…レーザ光(スポット光) 6…被測定物 7…スポット像 8a…光学センサ 10…制御部 1, 1a ... Three-dimensional shape measuring device 2 ... Laser light (spot light) 6 ... Object to be measured 7 ... Spot image 8a ... Optical sensor 10 ... Control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西元 善郎 神戸市西区竹の台5−18−7 (72)発明者 吉田 泰三 明石市藤江983−1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiro Nishimoto 5-18-7 Takenodai, Nishi-ku, Kobe (72) Inventor Taizo Yoshida 983-1 Fujie, Akashi-shi

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定の測定位置から被測定物に向けてス
ポット光を投光して上記被測定物上に投射されたスポッ
ト像を撮像面で撮像し,上記スポット光の投光角度,上
記スポット像の撮像角度及び上記スポット光を投光した
点と上記撮像面との間の距離から被測定物上のスポット
像のこの測定位置を原点とした座標系での位置座標を演
算する形状計測方法において, 適宜選択された複数の測定位置に関して上記被測定物上
に共通する少なくとも3点の測定点を設定し,この測定
点に向けて一の測定位置と他の測定位置から各別にスポ
ット光を投光して各測定位置での座標系で上記測定点に
係る位置座標を演算すると共に座標変換に係る関数を算
出し,上記関数に基づいて他の測定位置に於ける位置座
標のデータを一の測定位置における位置座標のデータに
変換するようにしたことを特徴とする形状計測方法。
1. A spot light is projected from a predetermined measurement position toward an object to be measured, and a spot image projected on the object to be measured is imaged on an image pickup surface. Shape measurement that calculates the position coordinates in the coordinate system with this measurement position of the spot image on the DUT as the origin from the imaging angle of the spot image and the distance between the point where the spot light is projected and the imaging surface. In the method, at least three common measurement points are set on the object to be measured with respect to a plurality of appropriately selected measurement positions, and spot lights are separately directed toward the measurement points from one measurement position and another measurement position. By projecting light, the position coordinate related to the above measurement point is calculated in the coordinate system at each measurement position, and the function related to coordinate conversion is calculated, and the data of the position coordinates at other measurement positions is calculated based on the above function. Position seat at one measurement position Shape measurement method is characterized in that so as to convert the data.
JP4070892A 1992-03-27 1992-03-27 Shape measuring method Pending JPH05272934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4070892A JPH05272934A (en) 1992-03-27 1992-03-27 Shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4070892A JPH05272934A (en) 1992-03-27 1992-03-27 Shape measuring method

Publications (1)

Publication Number Publication Date
JPH05272934A true JPH05272934A (en) 1993-10-22

Family

ID=13444638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4070892A Pending JPH05272934A (en) 1992-03-27 1992-03-27 Shape measuring method

Country Status (1)

Country Link
JP (1) JPH05272934A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225434A (en) * 2006-02-23 2007-09-06 Yaskawa Electric Corp Three-dimensional measuring device
JP2011209815A (en) * 2010-03-29 2011-10-20 Casio Computer Co Ltd 3d modeling device, 3d modeling method, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225434A (en) * 2006-02-23 2007-09-06 Yaskawa Electric Corp Three-dimensional measuring device
JP2011209815A (en) * 2010-03-29 2011-10-20 Casio Computer Co Ltd 3d modeling device, 3d modeling method, and program

Similar Documents

Publication Publication Date Title
US7312862B2 (en) Measurement system for determining six degrees of freedom of an object
US5051906A (en) Mobile robot navigation employing retroreflective ceiling features
US6031606A (en) Process and device for rapid detection of the position of a target marking
JPH02143309A (en) Operation method and apparatus
JP2004170412A (en) Method and system for calibrating measuring system
JPH08500460A (en) Method and apparatus for determining the three-dimensional position of a movable object such as a sensor or tool carried by a robot
EP1421409A1 (en) Six dimensional laser tracking system and method
JP2004050356A (en) Position and attitude sensor of movable structure
JP2956657B2 (en) Distance measuring device
JPH0755439A (en) Three-dimensional shape measuring equipment
JPH05272934A (en) Shape measuring method
JPS63225109A (en) Distance and inclination measuring instrument
JP3600763B2 (en) Method and apparatus for controlling irradiation position of wedge prism
JPH05333152A (en) Inclination measuring device
JPH06167316A (en) Measuring method for shape
JPH0259931B2 (en)
JPH05272935A (en) Shape measuring method
JP7050342B2 (en) Calibration method of optical comb coordinate measuring device, automatic tracking device, automatic tracking optical comb positioning device, and optical comb coordinate measuring device
JP2738964B2 (en) Dimension measurement device for structural members
JP3239682B2 (en) Segment position measurement method
JPH03226617A (en) Measuring apparatus of three dimensional form
JP3068325B2 (en) 3D position measuring device
JP2931770B2 (en) Three-dimensional position detection method using laser displacement sensor
JPH07122667B2 (en) Surveyor using laser light
JPS63252204A (en) Distance and angle-of-inclination measuring device