JPH03226617A - Measuring apparatus of three dimensional form - Google Patents

Measuring apparatus of three dimensional form

Info

Publication number
JPH03226617A
JPH03226617A JP2327790A JP2327790A JPH03226617A JP H03226617 A JPH03226617 A JP H03226617A JP 2327790 A JP2327790 A JP 2327790A JP 2327790 A JP2327790 A JP 2327790A JP H03226617 A JPH03226617 A JP H03226617A
Authority
JP
Japan
Prior art keywords
mirror
spot image
spot
measured
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2327790A
Other languages
Japanese (ja)
Inventor
Yasuharu Jin
康晴 神
Yoshiro Nishimoto
善郎 西元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2327790A priority Critical patent/JPH03226617A/en
Publication of JPH03226617A publication Critical patent/JPH03226617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the photographing process of a spot image by computing the coordinates of the position of the spot image on an object to be measured from the rotary angles of a first and a second mirrors and the distance between the axial centers thereof when the spot image is formed at a predetermined position. CONSTITUTION:When an operating part 15 is manipulated, a driving part 14 is driven to rotate a rotary structural part 9a and further a mirror 4. As a result, a laser light 2 is projected to an object 6 to be measured and a spot image 7 is formed on the object 6. Then, a mirror 5 is rotated and the spot image 7 is reflected by the mirror 5. Accordingly, the spot image is formed on an optical sensor 8a. The position of the spot image is detected by the sensor 8a and converted via an image position detecting part 13 to the information of the image forming position and input to a controlling part 10. Based on the information of the image forming position, the mirror 5 is rotated and, when the spot image formed on the sensor 8a reaches the predetermined position, the rotary angle of each mirror 4, 5 is obtained. The coordinates of the position of the spot image 7 on the object 6 are operated from the rotary angles and the distance between the axial centers 4a, 5a of the mirrors 4, 5.

Description

【発明の詳細な説明】 3産業上の利用分野〕 本発明は、スポット投影法を用いた3次元形状計測装置
の改良に係り、詳しくは被測定物上に投射されたスボ7
)像の撮像処理および装マの初期設定を容易にし得る3
次元形状計測装置に関する。
Detailed Description of the Invention 3. Field of Industrial Application] The present invention relates to an improvement of a three-dimensional shape measuring device using a spot projection method, and more specifically, the present invention relates to an improvement of a three-dimensional shape measuring device using a spot projection method.
) Can facilitate image capture processing and initial setting of the mounting device 3
This invention relates to a dimensional shape measuring device.

〔従来技術] 従来、被測定物の3次元形状を非接触で計測する方法と
して、AM光位相差計測法やスポット光投影法等の各種
計測方法が提案されている。そのうち、以下に述べるよ
うに被測定物にスポット光を投光するスポット光投影法
は三角測量の原理を用いており、−i的に信転性が高く
高精度の測定ができることが知られている。
[Prior Art] Conventionally, various measurement methods such as an AM optical phase difference measurement method and a spot light projection method have been proposed as methods for non-contact measurement of the three-dimensional shape of an object to be measured. Among them, the spot light projection method, which projects a spot light onto the object to be measured, uses the principle of triangulation, as described below, and is known to be highly reliable and capable of high-precision measurements. There is.

第7図は、上記スポット光投影法を用いた3次元形状計
測装置の一例を示している。
FIG. 7 shows an example of a three-dimensional shape measuring device using the spot light projection method.

この3次元形状計測装置51は、被測定物52にスボ7
)光(例えばレーザ光)53を投光角可変に投光するセ
オトライト54と、上記被測定物52上に投射されたス
ポット像55を撮像するTVカメラ56とを具備してい
る。
This three-dimensional shape measuring device 51 has a groove 7 on an object 52 to be measured.
) A theotrite 54 that projects light (for example, laser light) 53 at a variable projection angle, and a TV camera 56 that captures a spot image 55 projected onto the object to be measured 52.

上記セオドライト54と上記TVカメラ56とは、第8
図に模式的に示すように所定距離(例えばL)隔てで配
置されている。
The theodolite 54 and the TV camera 56 are the eighth
As schematically shown in the figure, they are arranged at a predetermined distance (for example, L).

上記七オド′ライト54から投光さ力たレーザ光53に
より形成されたスポット像55が上記TVカメラ56に
より撮像され、同TVカメラ56の撮像面上の所定点(
例えば中心点)に来るように画像処理装置57の画像処
理情報に基づいてTVカメラ56が回転制御され、同ス
ポット像55が追尾される。
A spot image 55 formed by the laser beam 53 projected from the seven-dimensional light 54 is captured by the TV camera 56 at a predetermined point on the imaging surface of the TV camera 56 (
The TV camera 56 is rotationally controlled based on the image processing information of the image processing device 57 so as to come to the spot image 55 (for example, the center point), and the same spot image 55 is tracked.

そして、上記撮像されたスポット像がTVカメラ56の
中心点に来た時のレーザ光53の投光角度(例えば第8
図に示すθ1.φ+)、TVカメラ56により撮像され
たスポット像の撮像角度(同図のθ2.φ、)、および
上記距離りの値から同距離りの中点58を原点とする被
測定物52上のスポット像55の位置座標(X、Y、Z
)が三角測量の原理に基づき例えば次式に従って求めら
れ、この被測定物52の3次元形状が計測される。
Then, the projection angle of the laser beam 53 (for example, the 8th
θ1 shown in the figure. φ+), the imaging angle of the spot image captured by the TV camera 56 (θ2.φ, in the figure), and the spot on the object to be measured 52 whose origin is the midpoint 58 at the same distance from the above distance value. Position coordinates of image 55 (X, Y, Z
) is determined based on the principle of triangulation, for example, according to the following equation, and the three-dimensional shape of the object to be measured 52 is measured.

(論θ2 +麺θf ) を顛θ2 一01 (tillθ2 −tuθ1  ) sinθ2また、
上記セオド、ライト54とTVカメラ56とを据え付け
たとき、初期設定として上記距離りの校正を例えば以下
に示すように行う。即ち、正確に校正された長さし。の
基準尺を被測定物52の近くに設置し、セオドライト5
4とTVカメラ56から見たときの上記基準尺の両端点
の方位角変((θ1′、φ1′、θス′、φ2′)と(
θ1−φ八〇2″、φ2”)を測定する。
(theory θ2 + noodle θf) as a result θ2 101 (till θ2 − tuθ1) sin θ2 Also,
When the theodore, light 54, and TV camera 56 are installed, the distance is calibrated as an initial setting, for example, as shown below. i.e. accurately calibrated length. A standard standard is installed near the object to be measured 52, and the theodolite 5 is
4 and the azimuth deviation ((θ1', φ1', θs', φ2') of both end points of the standard standard when viewed from the TV camera 56, and (
θ1−φ802″, φ2″) is measured.

そして、これらの方位角度を前記X、Y、Zの式に代入
して、次式 r−o’=(xce+″、192’、+111’)  
X (19+”*θx’、d +’ )+(Y(θ、゛
、θ2゛、φ+’)、Y(θl#、θ2#、φ1”)+
(Z (θ+’、θz’、#t’)  Z (θl’、
θz”7+”)により、上記基準とする距離りを校正す
る。
Then, by substituting these azimuth angles into the equations for X, Y, and Z, the following equation is obtained: r-o'=(xce+'', 192', +111')
X (19+"*θx', d +') + (Y (θ, ゛, θ2゛, φ+'), Y (θl#, θ2#, φ1") +
(Z (θ+', θz', #t') Z (θl',
θz"7+"), the distance used as the above reference is calibrated.

上述した3次元形状計測装置51は、例えば5ICE’
 89.第28回学術講演会予稿集、 JS7−1 。
The three-dimensional shape measuring device 51 described above is, for example, 5ICE'
89. Proceedings of the 28th Academic Conference, JS7-1.

P69に開示されている。It is disclosed on page 69.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述したように従来の3次元形状計測装置51では、初
期設定のために長さLoの基準尺を準備しその基準尺の
両端点の方位角度を測定する手間がかかるので、測定作
業効率が低下すると共に、作業者も測定技術を習得した
技能者に限られる。
As described above, in the conventional three-dimensional shape measuring device 51, it takes time and effort to prepare a standard of length Lo for initial setting and measure the azimuth angle of both end points of the standard, which reduces measurement work efficiency. At the same time, the workers are also limited to skilled workers who have acquired measurement techniques.

更に、被測定物上に投射されたスポット像を撮像するT
Vカメラ56は2軸回転の自由度を有しており、同TV
カメラ560回転制御処理が複雑である。
Furthermore, T is used to capture the spot image projected onto the object to be measured.
The V camera 56 has two-axis rotational freedom, and the TV
Camera 560 rotation control processing is complicated.

従って、本発明は被測定物上に投射されたスポノド像の
撮像処理を単純化すると共に装置の初期設定を容易にし
得るようにした3次元形状計測装置を提供することを目
的としてなされたものである。
Therefore, the present invention has been made for the purpose of providing a three-dimensional shape measuring device that simplifies the imaging process of the sponode image projected onto the object to be measured and facilitates the initial setting of the device. be.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明は、被測定物にスボ7
)光を投光し、該投光点から所定距翻隔てた撮像面で上
記被測定物上に投射されたスポット像を撮像し、上記ス
ポット光の投光角度、上記スポット像の揚傷角度および
上記投光点と上記撮像面との間の距離から被測定物上の
スポット像の位置座標を/i!算する3次元形状計測装
置において、スポット光を投光する光源と、該光源から
のスポット光の光軸上に設けられ、上記スポット光の光
軸と直交する軸心を中心として回転自在Sこ取り付けら
れ、上記光源から投光されたスポット光を反射する第1
ミラーと、上記光源をはさんで上記第1ミラーとは反対
側に設けられ、上記第1ミラの軸心と平行かつ一体的二
こ構成された軸心を中心として回転自在に取り付けられ
た第2ミラーと、上記光源と一体的に設けられ、上記第
2ミラーにより反射されたスポット像を撮像し該撮像さ
れたスポット像の位置を検出する光学センサと、上記第
1ミラーを回転させて被測定物上にスポット像を投射し
、該被測定物上に投射されたスポット像を上記第2ミラ
ーを回転させて上記光学センサ上に結像させ、該結像点
が所定位置となったとき上記第1ミラーの回転角度、第
2ミラーの回転角度および上記第1ミラーの軸心と第2
ミラーの軸心との間の距離から上記被測定物上のスポッ
ト像の位置座標を演算する3次元形状!ji算手段とを
具備じでなることを特徴とする3次元形状計測装置とし
て構成されている。
In order to achieve the above-mentioned object, the present invention provides a
) Projecting light, capturing a spot image projected onto the object to be measured with an imaging surface spaced a predetermined distance from the projecting point, and determining the projecting angle of the spot light and the uplift angle of the spot image. And the position coordinates of the spot image on the object to be measured are determined from the distance between the light projection point and the imaging plane /i! In a three-dimensional shape measuring device for calculating a shape, a light source that emits a spot light, and a rotatable shaft S that is provided on the optical axis of the spot light from the light source and that is rotatable about an axis perpendicular to the optical axis of the spot light are provided. A first lamp is attached to the light source and reflects the spot light projected from the light source.
a mirror, and a second mirror, which is provided on the opposite side of the first mirror with the light source in between, and is rotatably mounted around an axis that is parallel to the axis of the first mirror and is integrally configured with two mirrors. an optical sensor that is provided integrally with the light source and that captures a spot image reflected by the second mirror and detects the position of the captured spot image; Projecting a spot image onto the object to be measured, rotating the second mirror to form the spot image onto the optical sensor, and when the image forming point is at a predetermined position. The rotation angle of the first mirror, the rotation angle of the second mirror, and the axis of the first mirror and the second mirror.
A three-dimensional shape that calculates the position coordinates of the spot image on the object to be measured from the distance between it and the axis of the mirror! The present invention is configured as a three-dimensional shape measuring device characterized by comprising a ji calculation means.

[作用じ この3次元形状計測装置は、上記のように光源をはさん
で第1ミラーと第2ミラーの軸化・が平行かつ一体的に
構成されているので、三角測量の基準距副[、を構成す
る第1ミラーの軸心と第2ミラの軸心との間の距離が常
;こ一定である。
[This three-dimensional shape measuring device is configured such that the first mirror and the second mirror are parallel and integrated with the light source in between, as described above, so that the reference distance for triangulation [ The distance between the axis of the first mirror and the axis of the second mirror constituting the mirror is always constant.

従って、この3次元形状計♂lI’装置の初期設定では
、従来なされていた基準路MLの測定校正をする手間が
省かれる。
Therefore, in the initial setting of this three-dimensional shape meter ♂lI' device, the trouble of measuring and calibrating the reference path ML, which has been conventionally performed, can be omitted.

また、この3次元形状計測装置では、第1ミラーが回転
されて被測定物上にスポット像が投射され、第2ミラー
が回転されて同スポット像が光学センサ上に結像され、
その結像点が所定位置となったとき3次元形状演算手碌
により第1ミラーの回転角度、第2ミラーの回転角度お
よび同第]ミラーの軸心と第2ミラーの軸心との間の距
離から上記被測定物上のスポット像の位置座標が演算さ
れて、この被測定物の3次元形状が求められる。
In addition, in this three-dimensional shape measuring device, the first mirror is rotated to project a spot image onto the object to be measured, and the second mirror is rotated to form the same spot image on the optical sensor.
When the image forming point is at a predetermined position, the rotation angle of the first mirror, the rotation angle of the second mirror, and the axis between the axis of the first mirror and the axis of the second mirror are determined by three-dimensional shape calculation. The position coordinates of the spot image on the object to be measured are calculated from the distance, and the three-dimensional shape of the object to be measured is determined.

上記結像点を所定位置とする結像処理は、上述したよう
に第2ミラーの1軸回転処理のみで行えるので、従来の
2軸回転処理方式に比較じて容易である。
The image forming process in which the image forming point is set at a predetermined position can be performed by only one-axis rotation process of the second mirror as described above, and is therefore easier than the conventional two-axis rotation process method.

SX施例] 以下、添付図面を参照して、本発明を具体化じた実施例
につき説明し、本発明の理解に供する。
SX Example] Hereinafter, examples embodying the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention.

尚、以下の実施例は本発明を具体化した一例であって、
本発明の技術的範囲を限定する性格のものではない。
In addition, the following example is an example embodying the present invention,
It is not intended to limit the technical scope of the present invention.

第1図は本発明の一実施例に係る3次元形状計測装置を
示すブロック図、第2圀は同3次元形状計測itに移動
機能を付加した一例のブロック図、第3図は同3次元形
状計測装!に用いることのできる4分割光学センサを模
式的に示す説明図、第4図(a)、 (b)  (C)
は同3次元形状計測装置の光源と集光部の配置の変形例
を示す模式図、第5図(a)(b)、 (C)は同3次
元形状計測装置の光源と集光部にミラーを用いた例を示
す模式図、第6図は同3次元形状計測装置の光源と第1
ミラーの機能を一体化した例を示す模式図である。
Fig. 1 is a block diagram showing a three-dimensional shape measuring device according to an embodiment of the present invention, Fig. 2 is a block diagram of an example of the same three-dimensional shape measuring IT with a movement function added, and Fig. 3 is a block diagram showing a three-dimensional shape measuring device according to an embodiment of the present invention. Shape measuring device! Explanatory diagram schematically showing a 4-split optical sensor that can be used for
5(a), 5(b), and 5(C) are schematic diagrams showing variations in the arrangement of the light source and light condensing section of the same three-dimensional shape measuring device. A schematic diagram showing an example using a mirror, Figure 6 shows the light source and first
FIG. 3 is a schematic diagram showing an example in which mirror functions are integrated.

第1図に示すようにこの3次元形状計測装置1はスポッ
ト光(例えばレーザ光)2を投光するレンズ(不図示)
等からなる光源3を具備し、開光#3は同3次元形状計
測装置1の回転構造部9゜に取り付けられている。
As shown in FIG. 1, this three-dimensional shape measuring device 1 includes a lens (not shown) that emits a spot light (for example, a laser beam) 2.
The light source #3 is attached to the rotating structure 9° of the three-dimensional shape measuring device 1.

この回転構造部9a内の上記光源3と一体的に上記レー
ザ光2の光軸2a上Sこ同光軸2.と直交する軸心4a
を中心として回転自在に第1ミラー4が取り付けられて
いる。
The light source 3 in the rotating structure 9a is integrated with the optical axis 2a of the laser beam 2. The axis 4a perpendicular to
A first mirror 4 is attached so as to be rotatable about the center.

また、上記光s3をはさんで上記第1ミラー4の反対側
に、上記回転構造部9a内の光源3と一体的に上記第1
ミラー4の軸心4.と平行の軸心5、を中心として回転
自在に第2ミラー5が取り付けられている。
Also, on the opposite side of the first mirror 4 across the light s3, the first
Axis center of mirror 4 4. A second mirror 5 is rotatably mounted about an axis 5 parallel to the second mirror 5.

上記光#3や第1ミラー4.第2ミラー5等を一体的に
収納する上記回転構造部9.二ま、この3次元形状計測
装置1の支持構造部9b上に矢印A(第1図)に示すよ
うに回転自在に取り付けられている。
The above light #3 and the first mirror 4. The above-mentioned rotating structure section 9 that integrally houses the second mirror 5 and the like. Second, it is rotatably mounted on the support structure 9b of the three-dimensional shape measuring device 1 as shown by arrow A (FIG. 1).

上記光#3からレーザ光2が投光されると、同レーザ光
2はF記第1ミラー4により反射さね、被測定物6」ニ
ジこスポ7)像7が形成される。このスポ、・1・像7
は上記第2ミラー5により反射さ机、上記回転構造部9
a内に光源3と一体的に取り付けらねたレンズ(不閃示
)等からなる集光部8に集光される。
When the laser beam 2 is projected from the light #3, the laser beam 2 is reflected by the first mirror 4, and an image 7 of the object to be measured 6 is formed. This sport,・1・image 7
is reflected by the second mirror 5, and the rotating structure 9
The light is condensed into a condensing unit 8 consisting of a lens (non-flash), etc., which is integrally attached to the light source 3 in the interior of the light source 3.

上記集光部8により集光さn、たスポ7・ト像:ま同集
光部8に設けら机た光学センサ8.上にti像される。
The light is collected by the light collecting section 8, and an optical sensor 8 is provided on the light collecting section 8. It is imaged above.

上記光学センサ8aは、上記撮像スポット像の位置を検
出できる例えばPSD (ボジシッンセンシティプデテ
クタ)等からなる。
The optical sensor 8a is composed of, for example, a PSD (Position Sensitivity Detector) or the like that can detect the position of the imaged spot image.

この3次元形状計測装置lの制御回路は、マイクロコン
ピュータCPtJ等からなる制御部10を中枢として構
成され、上記制御部10に、上記第1ミラー4を回転駆
動する第1駆動部11.第2ミラー5を回転駆動する第
2駆動部12.上記光学センサ81からの出力信号を処
理する像位置検出部13.および上記回転構造部91を
回転駆動する第3駆動部14.およびこの3次元形状計
測装置1に各種指令を与える操作部15が接続されてい
る。
The control circuit of this three-dimensional shape measuring device 1 is composed of a control section 10 consisting of a microcomputer CPtJ, etc., and is connected to a first drive section 11. A second drive unit 12 that rotationally drives the second mirror 5. Image position detection section 13 that processes the output signal from the optical sensor 81. and a third drive section 14 that rotationally drives the rotation structure section 91. An operating section 15 for issuing various commands to the three-dimensional shape measuring device 1 is also connected.

上記第1ミラー40回転角度および第2ミラー5の回転
角度;よそ机それ上記第1駆動部11および第2駆動部
12に内蔵された第1エンコーダ16および第2エンコ
ーダ17により検出され、制御部10に入力される。
The rotation angle of the first mirror 40 and the rotation angle of the second mirror 5 are detected by the first encoder 16 and second encoder 17 built in the first drive section 11 and the second drive section 12, and the control section 10 is input.

また、上記回転構造部9.の回転角度は上記第3駆動部
14に内蔵された第3エンコーダ】8により検出され、
制御部10に入力される。
In addition, the rotating structure section 9. The rotation angle is detected by the third encoder]8 built in the third drive section 14,
It is input to the control unit 10.

この3次元形状計測装置1の三角測量の基準路#しは、
上記第1ミラー4の軸心48と上記第2ミラー50軸心
5.との間の距離であり、この距離は常に一定である。
The reference path # for triangulation of this three-dimensional shape measuring device 1 is as follows:
The axis 48 of the first mirror 4 and the axis 50 of the second mirror 50. This distance is always constant.

従って、この3次元形状計測装置lの初期設定では、従
来なされていた上記基準路MLの測定校正をする必要が
ない。
Therefore, in the initial setting of this three-dimensional shape measuring device 1, there is no need to calibrate the measurement of the reference path ML, which has been done in the past.

即ち、この3次元形状計測装置Flでは、被測定物6上
にレーザ光2のスポット像7を形成できるように同3次
元形状計測装置lを設!するのみで以下に示す3次元形
状の測定を即座に開始することができる。
That is, in this three-dimensional shape measuring device Fl, the three-dimensional shape measuring device Fl is installed so that a spot image 7 of the laser beam 2 can be formed on the object to be measured 6! You can immediately start measuring the three-dimensional shape shown below just by doing this.

次↓こ、この3次元形状計測装置103次元形状測定処
理について説明する。
Next↓The three-dimensional shape measuring process of this three-dimensional shape measuring device 10 will be explained.

上記操作部15が所定操作されると、第3駆動部】4が
駆動されて回転構造部9aが回転され、更に第1ミラー
4が回転されて被測定物6にレーザ光2が投光され、同
被測定物6上にスポット像7が投射される。
When the operation section 15 is operated in a predetermined manner, the third drive section 4 is driven to rotate the rotating structure section 9a, and the first mirror 4 is further rotated to project the laser beam 2 onto the object to be measured 6. , a spot image 7 is projected onto the same object to be measured 6.

そして、第2ミラー5が回転されて上記スポット像7が
同第2ミラー5により反射され、光学センサ8□上にス
ポット像が結像される。
Then, the second mirror 5 is rotated so that the spot image 7 is reflected by the second mirror 5, and the spot image is formed on the optical sensor 8□.

上記結像されたスポット像の位置は上記光学センサ8□
によって検出され、像位置検出部13を介してスポット
像の結像位置情報に変換されて制御部10に入力される
The position of the formed spot image is determined by the optical sensor 8□
The spot image is detected by the image position detecting section 13, converted into spot image forming position information, and input to the control section 10.

上記結像位置情報に基づき、更に上記第2ミラー5が回
転制御され、上記光学センサ81上に結像されたスポッ
ト像が所定位置(例えば光学センサ81の中心点)とな
ったとき、上記第2ミラー5の回転角度および上記第1
ミラー4の回転角度が求められる。
Based on the image formation position information, the second mirror 5 is further controlled to rotate, and when the spot image formed on the optical sensor 81 is at a predetermined position (for example, the center point of the optical sensor 81), the second mirror 5 is rotated. 2 the rotation angle of the mirror 5 and the first
The rotation angle of mirror 4 is determined.

上記光学センサ81上に結像されたスポット像を所定位
置とする撮像処理は、上述したように第2ミラー5の1
軸回転処理のみであるので、従来の2軸回転処理方式に
比較して容易であり、高速処理が可能である。
The imaging process for setting the spot image formed on the optical sensor 81 at a predetermined position is carried out by one of the second mirrors 5 as described above.
Since only axis rotation processing is required, it is easier and faster processing is possible than the conventional two-axis rotation processing method.

そして、上記求められた第1ミラー4の回転角度、第2
ミラー5の回転角度、および第1ミラー4の軸心4.と
第2ミラー5の軸心5aとの間の距離から被測定物6上
のスポット像7の位1座標が演算される。
Then, the rotation angle of the first mirror 4 obtained above, the second
The rotation angle of the mirror 5 and the axis 4 of the first mirror 4. The coordinates of the spot image 7 on the object to be measured 6 are calculated from the distance between the center axis 5a of the second mirror 5 and the axis 5a of the second mirror 5.

以下、同様に回転構造部9a、第1ミラー4゜第2ミラ
ー5が順に回転制御されて被測定物6全体の3次元形状
が求められる。
Thereafter, similarly, the rotation of the rotating structure 9a, the first mirror 4, and the second mirror 5 are sequentially controlled to determine the three-dimensional shape of the entire object to be measured 6.

上述した第1ミラー4を回転させて被測定物6上Gこス
ポット像7を投射し、上記第2ミラー5を回転させて上
記スポット像を光学センサ8a上に結像させ、その結像
点が所定位置となったとき上記第1ミラー4の回転角度
、第2ミラーの回転角度および第1.第2ミラー4.5
の軸心4..5゜間の距離から上記スポット像の位置座
標を演算する機能を実現する手段が3次元形状/ji算
手段の一例である。
The above-mentioned first mirror 4 is rotated to project a spot image 7 onto the object to be measured 6, and the second mirror 5 is rotated to form the above-mentioned spot image on the optical sensor 8a. is at a predetermined position, the rotation angle of the first mirror 4, the rotation angle of the second mirror, and the first mirror 4 are changed. 2nd mirror 4.5
Axial center of 4. .. A means for realizing the function of calculating the position coordinates of the spot image from a distance of 5 degrees is an example of a three-dimensional shape/ji calculating means.

なお、上記実施例の光学センサ8.と二で用いたPSD
は、被測定物が大型であるためにこの3次元形状計測装
置1と被測定物6との間の距離か長くなって上記スポッ
ト像7の光が弱くなると、その出力電流値が小さくなり
位置検出分解能が低下する。
Note that the optical sensor 8 of the above embodiment. PSD used in
Since the object to be measured is large, the distance between the three-dimensional shape measuring device 1 and the object 6 becomes longer and the light of the spot image 7 becomes weaker, the output current value becomes smaller and the position becomes smaller. Detection resolution decreases.

従って、同PSDを例えば第30に模式的に示す4分割
光学センサ19に置き換えてもよい。
Therefore, the PSD may be replaced with, for example, a 4-split optical sensor 19 schematically shown in the 30th section.

この4分割光学センサ19は例えばシリコンフォトダイ
オード等からなり、その被検出面がこの間に示すように
独立の4面19.、+9b、19c19、Iに分割され
ており、各々の面の受光強度が検出できる。
This 4-split optical sensor 19 is composed of, for example, a silicon photodiode, and has four independent detection surfaces 19. , +9b, 19c19, and I, and the received light intensity of each surface can be detected.

従って、上記4分割光学センサ19の面上に結像された
スポット像の位置はx、Y軸方向(第13図)の2(1
情報としで処理することができ、同4分割光学センサ1
9の各面からの出力信号が所定のバランス状Q(例えば
全て均等)となるように制御することができる。
Therefore, the position of the spot image formed on the surface of the 4-split optical sensor 19 is 2 (1
The same 4-split optical sensor 1 can process information as well.
It is possible to control the output signals from each side of 9 to have a predetermined balanced Q (for example, all equal).

それゆえにこの4分割光学センサ19を用いると、被測
定物かビル構造物、車体、船体、圧力容器等の大型であ
って−F記スポ、ト像の光強度が弱い場合でも、一定の
、Iテ解能て同スポット像(−・位置検出をすることが
できる。
Therefore, when this 4-split optical sensor 19 is used, even if the object to be measured is a large object such as a building structure, a car body, a ship, a pressure vessel, etc., and the light intensity of the image is weak, a constant It is possible to detect the same spot image (- position) with high resolution.

また、第2図は上記3次元形状計測装置lを、車輪20
.21等を有する移動機構部22に搭載して3次元形状
計測装置]、を構成したところを示している。
In addition, FIG. 2 shows the three-dimensional shape measuring device l as shown in FIG.
.. 21, etc., to configure a three-dimensional shape measuring device].

このようにすれば、更に同3次元形状計測装置1、の移
動が容易となる。
In this way, the three-dimensional shape measuring device 1 can be moved even more easily.

なお、上記3次元形状計測装置1.1aは、いずれもそ
の設置スペースが小さくなるように考えられたものであ
るが、設置スペース等に余裕があれば以下に示す例のよ
うに光源3および集光部8の配置等を変更してもよい。
The three-dimensional shape measuring device 1.1a described above was designed to require a small installation space, but if there is sufficient space for installation, the light source 3 and the condenser can be The arrangement of the light section 8, etc. may be changed.

第4図(a)は上記光源3および集光部8を互い違いに
配置じで3次元形状計測装置1bを構成した例を示して
いる。また、第4図(blは上記光源3および集光部8
を並べて配置巳て3次元形状計測装置1cを構成l−た
例である。更に、第4図(C):よ上記光源3:8よび
集光部8の投光および受光方向O角変が異なる(例えば
直交する)ように二で3次元形状計測装置IJを構成二
だ例である。
FIG. 4(a) shows an example in which the three-dimensional shape measuring device 1b is constructed by alternately arranging the light sources 3 and the condensing parts 8. In addition, FIG. 4 (bl is the light source 3 and the light condensing part 8
This is an example in which a three-dimensional shape measuring device 1c is constructed by arranging the three-dimensional shape measuring apparatus 1c. Furthermore, as shown in FIG. 4(C), the three-dimensional shape measuring device IJ is configured with the two light sources 3:8 and the condenser 8 so that the light emitting and light receiving directions O angular changes are different (for example, perpendicular to each other). This is an example.

また、上記光源2皮:゛集丸部S自体りミラーを用いて
構成してもよい。
Further, the light source 2 may be constructed using a mirror itself.

例えば、第5図(a)、 (b)はそれぞれ上記光源3
および集光部8を構成するミラーがそれぞれ1枚(Ml
)である場合の3次元形状計測装置1e、I+を示して
いる。更に、第5図(C)は上記ミラーが2枚(Ml 
、M2 )である場合の3次元形状計測装置1gを示し
ている。
For example, FIGS. 5(a) and 5(b) respectively show the light source 3
and one mirror (Ml
), three-dimensional shape measuring devices 1e and I+ are shown. Furthermore, FIG. 5(C) shows that there are two mirrors (Ml
, M2), the three-dimensional shape measuring device 1g is shown.

なお、光#3および第1ミラー4の機能自体を一体化し
てもよい。この場合第1ミラー4の回転によりレーザ光
2の投光角度が変更できたと同様に、光a3も以下に示
すように回転させる必要がある。
Note that the functions of the light #3 and the first mirror 4 may be integrated. In this case, just as the projection angle of the laser beam 2 can be changed by rotating the first mirror 4, it is also necessary to rotate the light a3 as shown below.

第6図は、回転構造部9aに取り付けられた光源3かろ
のレーザ光2の投光角度を変更できるようにするために
、同回転構造部9a自体を光軸2aと直交する軸心Zを
中心として第1ミラー4と同様に矢印B、C4こ示ずよ
うに回転させて上記機能を実現できるよう↓こ構成・′
−之3次元形状計測公装ILを示している。
In FIG. 6, in order to be able to change the projection angle of the laser beam 2 from the light source 3 attached to the rotary structure 9a, the rotary structure 9a itself is arranged with an axis Z perpendicular to the optical axis 2a. ↓This configuration allows the above function to be achieved by rotating the arrows B and C4 as shown in the same way as the first mirror 4.
- This shows the 3D shape measurement official IL.

〔発明の効果〕〔Effect of the invention〕

本発明により被測定物にスポット光を投光し、該投光点
から所定距離隔てた撮像面で上記被測定物上に投射され
たスポット像を撮像し、上記スポット光の投光角度、上
記スポット像の撮像角度および上記投光点と上記撮像面
との間の距離から被測定物上のスポット像の位置座標を
演算する3次元形状計測装置において、スポット光を投
光する光源と、該光源からのスポット光の光軸上に設け
られ、上記スポット光の光軸と直交する軸心を中心とし
て回転自在に取り付けられ、上記光源から投光されたス
ポット光を反射する第1ミラーと、上記光源をはさんで
上記第1ミラーとは反対側に設けら机、上記第1ミラー
の軸心と平行かつ一体的に構成された軸心を中心として
回転自在に取り付けられた第2ミラーと、上記光源と一
体的に設けられ、上記第2ミラーにより反射されたスポ
ット像を撮像し該撮像されたスポット像の位置を検出す
る光学センサと、上記第1ミラーを回転させて被測定物
上にスポット像を投射巳、該被測定物上に投射されたス
ポット像を上記第2ミラーを回転させて上記光学センサ
上に結像させ、該結像点が所定位置となったとき上記第
1ミラーの回転角度、第2ミラーの回転角度および上記
第1ミラーの軸心と第2ミラーの軸心との間の距離から
上記被測定物上のスポット像の位置座標を演算する3次
元形状演算手段とを具備してなることを特徴とする3次
元形状計測装置が擾供される。
According to the present invention, a spot light is projected onto an object to be measured, a spot image projected onto the object to be measured is captured on an imaging surface separated by a predetermined distance from the projection point, and the projection angle of the spot light is determined as described above. A three-dimensional shape measuring device that calculates positional coordinates of a spot image on an object to be measured from an imaging angle of the spot image and a distance between the light projection point and the imaging surface, the device comprises: a light source that projects a spot light; a first mirror that is provided on the optical axis of the spot light from the light source, is rotatably attached around an axis perpendicular to the optical axis of the spot light, and reflects the spot light projected from the light source; a desk provided on the opposite side of the first mirror across the light source, and a second mirror mounted rotatably about an axis that is parallel to and integrally formed with the axis of the first mirror; an optical sensor that is provided integrally with the light source and that captures a spot image reflected by the second mirror and detects the position of the captured spot image; The spot image projected onto the object to be measured is focused on the optical sensor by rotating the second mirror, and when the image forming point is at a predetermined position, the spot image projected onto the object to be measured is focused on the optical sensor. three-dimensional shape calculation for calculating the positional coordinates of the spot image on the object to be measured from the rotation angle of the mirror, the rotation angle of the second mirror, and the distance between the axis of the first mirror and the axis of the second mirror; A three-dimensional shape measuring device is provided, characterized in that it comprises means.

従って、スポット像の撮像処理を単純化することができ
ると共に装置の初期設定が容易となる。
Therefore, the spot image capturing process can be simplified and the initial setting of the apparatus can be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る3次元形状計測装置を
示すブロック図、第2図は同3次元形状計測装置に移動
機能を付加した一例のブロック図、第3図は同3次元形
状計測装置に用いることのできる4分割光学センサを模
式的に示す説明図、第4図(a)、 (b)、 (C)
は同3次元形状計測装置の光源と集光部の配置の変形例
を示す模式図、第5図(a)(b)、 (C)は同3次
元形状計測装置の光源と集光部にミラーを用いた例を示
す模式図、第6図は同3次元形状計測装置の光源と第1
ミラーの機能を一体化した例を示す模式図、第7図は従
来の3次元形状計測装置の一例を示すブロック図、第8
図は同3次元形状計測装置の七オドライトとTVカメラ
等の位!関係を示す説明模式図である。 〔符号の説明〕 ]、11+  t、、lc、la、le、111t、I
h・・・3次元形状計測装置 2・・・レーザ光(スポット光) 3・・・光源 4・・・第1ミラー 、4.・・・第1ミラーの軸心5
・・・第2ミラー  5□・・・第2ミラーの軸心6・
・・被測定物   7・・・スポット像8・・・集光部
    8a・・・光学センサlO・・・制御部 16・・・第1エンコーダ 17・・・第2エンコーダ 18・・・第3エンコーダ 19・・・4分割光学七ンサ 第2@ 21 3 冗 第1図 7 2 第8図 ヌ 槃 % 第7図 1
Fig. 1 is a block diagram showing a three-dimensional shape measuring device according to an embodiment of the present invention, Fig. 2 is a block diagram of an example of the same three-dimensional shape measuring device with a movement function added, and Fig. 3 is a block diagram showing the same three-dimensional shape measuring device. Explanatory diagram schematically showing a 4-split optical sensor that can be used in a shape measuring device, Figures 4 (a), (b), (C)
5(a), 5(b), and 5(C) are schematic diagrams showing variations in the arrangement of the light source and light condensing section of the same three-dimensional shape measuring device. A schematic diagram showing an example using a mirror, Figure 6 shows the light source and first
FIG. 7 is a schematic diagram showing an example of integrating mirror functions; FIG. 7 is a block diagram showing an example of a conventional three-dimensional shape measuring device; FIG.
The figure shows the same three-dimensional shape measuring device, the Seven Odolite, and a TV camera! It is an explanatory schematic diagram showing a relationship. [Explanation of symbols] ], 11+t,, lc, la, le, 111t, I
h... Three-dimensional shape measuring device 2... Laser light (spot light) 3... Light source 4... First mirror, 4. ... Axis center 5 of the first mirror
...Second mirror 5□...Axis center of second mirror 6.
...Object to be measured 7...Spot image 8...Condensing section 8a...Optical sensor lO...Control section 16...First encoder 17...Second encoder 18...Third Encoder 19... 4-split optical sensor No. 2 @ 21 3 Redundancy Fig. 1 7 2 Fig. 8 % Fig. 7 1

Claims (1)

【特許請求の範囲】 1、被測定物にスポット光を投光し、該投光点から所定
距離隔てた撮像面で上記被測定物上に投射されたスポッ
ト像を撮像し、上記スポット光の投光角度、上記スポッ
ト像の撮像角度および上記投光点と上記撮像面との間の
距離から被測定物上のスポット像の位置座標を演算する
3次元形状計測装置において、 スポット光を投光する光源と、 該光源からのスポット光の光軸上に設けられ、上記スポ
ット光の光軸と直交する軸心を中心として回転自在に取
り付けられ、上記光源から投光されたスポット光を反射
する第1ミラーと、 上記光源をはさんで上記第1ミラーとは反対側に設けら
れ、上記第1ミラーの軸心と平行かつ一体的に構成され
た軸心を中心として回転自在に取り付けられた第2ミラ
ーと、 上記光源と一体的に設けられ、上記第2ミラーにより反
射されたスポット像を撮像し該撮像されたスポット像の
位置を検出する光学センサと、 上記第1ミラーを回転させて被測定物上にスポット像を
投射し、該被測定物上に投射されたスポット像を上記第
2ミラーを回転させて上記光学センサ上に結像させ、該
結像点が所定位置となったとき上記第1ミラーの回転角
度、第2ミラーの回転角度および上記第1ミラーの軸心
と第2ミラーの軸心との間の距離から上記被測定物上の
スポット像の位置座標を演算する3次元形状演算手段と
を具備してなることを特徴とする3次元形状計測装置。
[Claims] 1. A spot light is projected onto the object to be measured, and a spot image projected onto the object to be measured is captured with an imaging surface separated by a predetermined distance from the projection point, and the spot light is projected onto the object to be measured. In a three-dimensional shape measuring device that calculates the positional coordinates of a spot image on an object to be measured from a projection angle, an imaging angle of the spot image, and a distance between the projection point and the imaging surface, the spot light is projected. a light source provided on the optical axis of the spot light from the light source, rotatably mounted around an axis perpendicular to the optical axis of the spot light, and reflecting the spot light projected from the light source; a first mirror, which is provided on the opposite side of the first mirror across the light source and is rotatably mounted around an axis that is parallel to and integrally formed with the axis of the first mirror; a second mirror; an optical sensor that is provided integrally with the light source and that captures a spot image reflected by the second mirror and detects the position of the captured spot image; and a second mirror that rotates the first mirror. A spot image is projected onto the object to be measured, the spot image projected onto the object to be measured is focused on the optical sensor by rotating the second mirror, and the image forming point is at a predetermined position. Then, the position coordinates of the spot image on the object to be measured are calculated from the rotation angle of the first mirror, the rotation angle of the second mirror, and the distance between the axis of the first mirror and the axis of the second mirror. A three-dimensional shape measuring device comprising three-dimensional shape calculation means.
JP2327790A 1990-01-31 1990-01-31 Measuring apparatus of three dimensional form Pending JPH03226617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327790A JPH03226617A (en) 1990-01-31 1990-01-31 Measuring apparatus of three dimensional form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327790A JPH03226617A (en) 1990-01-31 1990-01-31 Measuring apparatus of three dimensional form

Publications (1)

Publication Number Publication Date
JPH03226617A true JPH03226617A (en) 1991-10-07

Family

ID=12106107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327790A Pending JPH03226617A (en) 1990-01-31 1990-01-31 Measuring apparatus of three dimensional form

Country Status (1)

Country Link
JP (1) JPH03226617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268523A (en) * 2020-10-09 2021-01-26 华中科技大学鄂州工业技术研究院 Laser three-dimensional measuring device and measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112268523A (en) * 2020-10-09 2021-01-26 华中科技大学鄂州工业技术研究院 Laser three-dimensional measuring device and measuring method

Similar Documents

Publication Publication Date Title
US10082521B2 (en) System for measuring six degrees of freedom
JP5440801B2 (en) Reference sphere detection device, reference sphere position detection device, and three-dimensional coordinate measurement device
EP0661519B1 (en) Surveying instrument
JP2002168625A (en) Run-out detecting device, rotating laser device having the same and position-measuring/setting system having the same
CN110926437B (en) Reflector device for determining and/or marking the position of an object point
JP3647608B2 (en) Surveyor automatic tracking device
JP7344060B2 (en) 3D surveying equipment, 3D surveying method, and 3D surveying program
JPH116710A (en) Distance measuring apparatus
JP2001296124A (en) Method and apparatus for measurement of three- dimensional coordinates
JP2001066138A (en) Measuring system, and prism-type optical path control used for it
US11543244B2 (en) Retroreflector comprising fisheye lens
JPH03226617A (en) Measuring apparatus of three dimensional form
JP6221197B2 (en) Laser tracker
JP3600763B2 (en) Method and apparatus for controlling irradiation position of wedge prism
JP2736558B2 (en) Position measuring method and device
JPS63225109A (en) Distance and inclination measuring instrument
JPH05333152A (en) Inclination measuring device
JPS6281508A (en) Optical 3-dimensional position measuring apparatus
JP2694647B2 (en) Distance measuring theodolite
JPH03167404A (en) Method for measuring size of large object
JP2769002B2 (en) How to measure the optical axis of a camera lens
JP7050342B2 (en) Calibration method of optical comb coordinate measuring device, automatic tracking device, automatic tracking optical comb positioning device, and optical comb coordinate measuring device
US20230168354A1 (en) Method and system for aligning surveying instruments
JPH03226616A (en) Measuring apparatus of three dimensional form
JPS63252204A (en) Distance and angle-of-inclination measuring device