JPH06167316A - Measuring method for shape - Google Patents

Measuring method for shape

Info

Publication number
JPH06167316A
JPH06167316A JP31857892A JP31857892A JPH06167316A JP H06167316 A JPH06167316 A JP H06167316A JP 31857892 A JP31857892 A JP 31857892A JP 31857892 A JP31857892 A JP 31857892A JP H06167316 A JPH06167316 A JP H06167316A
Authority
JP
Japan
Prior art keywords
measuring
coordinate
measured
image
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31857892A
Other languages
Japanese (ja)
Inventor
Yasuharu Jin
康晴 神
Akashi Yamaguchi
証 山口
Taizo Yoshida
泰三 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Original Assignee
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO PLANT KENSETSU KK, Kobe Steel Ltd filed Critical SHINKO PLANT KENSETSU KK
Priority to JP31857892A priority Critical patent/JPH06167316A/en
Publication of JPH06167316A publication Critical patent/JPH06167316A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To display the measuring data at each measuring position along with measuring data measured at the other measuring positions unitedly on the single three-dimensional coordinate axis even when the shape of a to-be- measured object is measured at a plurality of measuring positions by moving a three-dimensional shape measuring apparatus according to a shape measuring method using a spot projection method. CONSTITUTION:Two measuring points common to, for example, suitably selected first and second measuring positions are set on a to-be-measured object 6. A laser light 2 is cast to the measuring points from the first and second measuring positions by a measuring device 1 set with the axial core in the Z-axis direction kept vertical. The positional coordinates of the measuring points are operated in coordinate systems at the measuring positions. At the same time, a function related to the coordinate transformation is calculated. Accordingly, for instance, the data of the positional coordinate at the second measuring position is converted to the data of the positional coordinate at the first measuring position basing on the function.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,例えばビル構造物,車
体,船体,圧力容器などの大型の被測定物の3次元形状
などを計測する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a three-dimensional shape of a large object to be measured such as a building structure, a car body, a hull, and a pressure vessel.

【0002】[0002]

【従来の技術】従来,被測定物の3次元形状を非接触で
計測する方法として,AM光位相差計測法やスポット光
投影法などの各種計測方法が提案されている。そのう
ち,以下に述べるように被測定物にスポット光を投光す
るスポット光投影法は三角測量の原理を用いており,一
般的に信頼性が高く高精度の測定ができることで知られ
ている。図6は,上記スポット光投影法を用いた3次元
形状計測装置の一例を示している。この3次元形状計測
装置51は,被測定物52にスポット光(例えばレーザ
光)53を投光角可変に投光するレーザ光源を内蔵した
セオドライト54と,上記被測定物52上に投射された
スポット像55を撮像するTVカメラを内蔵したセオド
ライト56とを具備している。上記セオドライト54と
56とは,図7に模式的に示されるように所定距離(例
えばL)隔てて配置されている。上記セオドライト54
から投光されたレーザ光53により形成されたスポット
像55が上記セオドライト56により撮像され,このセ
オドライト56の撮像面上の所定点(例えば中心点)に
くるように画像処理装置57の画像処理情報に基づいて
セオドライト56が回転制御され,スポット像55が追
尾される。そして,撮像された上記スポット像がセオド
ライト56の中心点にきた時のレーザ光53の投光角度
(例えば図7に示すθ1 ,φ1 ),セオドライト56に
より撮像されたスポット像の撮像角度(同図に示す
θ2 ,φ2 ),及び距離Lの値からこの距離Lの中点5
8を原点とする被測定物52上のスポット像55の位置
座標(X,Y,Z)が三角測量の原理に基づき例えば次
式に従って求められ,この被測定物52の3次元形状が
計測される。 X=(L・(tan θ2 +tan θ1 ))/(2・(tan θ2 −tan θ1 )) Y=(L・tan θ2 ・tan θ1 )/(tan θ2 −tan θ1 ) Z=(L・tan θ2 ・tan θ1 ・tan φ1 )/((tan θ2 −tan θ1 ) ・sin θ1 ) =(L・tan θ2 ・tan θ1 ・tan φ2 )/((tan θ2 −tan θ1 ) ・sin θ2 ) 尚,この場合の上記被測定物52の3次元形状は,当該
装置が設置された測定位置を原点とした座標系での位置
座標に基づいて与えられる。ここで,上記測定位置はセ
オドライト54による投光位置とセオドライト56によ
る撮像位置とを含む概念である。上述した3次元形状計
測装置51は,例えばSICE′89,第28回学術講
演会予稿集,JS7−1,P69に開示されている。
2. Description of the Related Art Conventionally, various measuring methods such as an AM optical phase difference measuring method and a spot light projecting method have been proposed as a method for measuring a three-dimensional shape of an object to be measured without contact. Among them, as described below, the spot light projection method, which projects spot light onto the object to be measured, uses the principle of triangulation, and is generally known to be highly reliable and highly accurate. FIG. 6 shows an example of a three-dimensional shape measuring apparatus using the spot light projection method. This three-dimensional shape measuring device 51 is projected onto the object to be measured 52, and a theodolite 54 having a built-in laser light source for projecting a spot light (for example, a laser beam) 53 to the object to be measured 52 with a variable projection angle. The theodolite 56 having a built-in TV camera for picking up the spot image 55 is provided. The theodolites 54 and 56 are arranged at a predetermined distance (for example, L) from each other as schematically shown in FIG. The theodolite 54
The spot image 55 formed by the laser beam 53 projected from the image is picked up by the theodolite 56, and the image processing information of the image processing device 57 is set so as to come to a predetermined point (for example, the center point) on the image pickup surface of the theodolite 56. The theodolite 56 is rotationally controlled based on, and the spot image 55 is tracked. Then, the projection angle of the laser beam 53 when the spot image picked up comes to the center point of the theodolite 56 (for example, θ 1 and φ 1 shown in FIG. 7), the picking angle of the spot image picked up by the theodolite 56 ( From the values of θ 2 , φ 2 ) and the distance L shown in FIG.
The position coordinates (X, Y, Z) of the spot image 55 on the object to be measured 52 whose origin is 8 are obtained according to the following formula based on the principle of triangulation, and the three-dimensional shape of the object to be measured 52 is measured. It X = (L · (tan θ 2 + tan θ 1 )) / (2 · (tan θ 2 −tan θ 1 )) Y = (L · tan θ 2 · tan θ 1 ) / (tan θ 2 −tan θ 1 ) Z = (L ・ tan θ 2・ tan θ 1・ tan φ 1 ) / ((tan θ 2 −tan θ 1 ) ・ sin θ 1 ) = (L ・ tan θ 2・ tan θ 1・ tan φ 2 ) / ((Tan θ 2 −tan θ 1 ) · sin θ 2 ) The three-dimensional shape of the object to be measured 52 in this case is the position coordinate in the coordinate system with the measurement position where the device is installed as the origin. Given based on. Here, the measurement position is a concept including a projection position by the theodolite 54 and an imaging position by the theodolite 56. The above-described three-dimensional shape measuring apparatus 51 is disclosed, for example, in SICE'89, Proceedings of 28th Academic Lecture Meeting, JS7-1, P69.

【0003】[0003]

【発明が解決しようとする課題】ところで,対象となる
被測定物の形状が大型で,単一の測定位置のみからはそ
の形状計測を行い得ない場合は,当該3次元形状計測装
置51による測定位置を変えて更に形状計測を行わなけ
ればならない。このように2ヶ所以上の複数の測定位置
で形状計測を行った場合,一つの測定位置に関してはそ
の位置独自の座標軸を保有していることから,例えば図
8に示す第1の測定位置に関する座標値○印と○印との
間,第2の測定位置に関する座標値●印と●印との間に
おけるそれぞれの距離の算出などは可能であるが,座標
値○印と●印との間ではそれぞれの3次元座標値を与え
る基となる3次元座標軸が異なり,その間の距離の算出
やその他数値解析による3次元座標値の有効的な利用を
図り得ない。その結果,大型の被測定物に対する形状計
測を迅速且つ簡便に実施することができないという不具
合を生じる。そこで,本発明は,上記事情に鑑みて創案
されたものであり,計測装置を移動させて複数の箇所か
ら被測定物の形状計測を行った場合でも,各箇所で計測
した計測データを他の複数の箇所で計測した計測データ
と統一した一つの3次元座標軸上に簡便に表示し得るよ
うにしてより有効な形状計測を行うことのできる形状計
測方法の提供を目的とするものである。
When the shape of the object to be measured is large and the shape cannot be measured from only a single measurement position, the measurement by the three-dimensional shape measuring device 51 is performed. It is necessary to change the position and perform shape measurement. When shape measurement is performed at two or more measurement positions in this way, one measurement position has its own coordinate axis. Therefore, for example, the coordinates for the first measurement position shown in FIG. It is possible to calculate the respective distances between the values ○ and ○ and the coordinate values ● and ● related to the second measurement position, but between the coordinate values ○ and ●. The three-dimensional coordinate axes on which each three-dimensional coordinate value is given are different, and it is impossible to effectively use the three-dimensional coordinate values by calculating the distance between them and other numerical analysis. As a result, there is a problem in that it is impossible to quickly and easily perform shape measurement on a large object to be measured. Therefore, the present invention was devised in view of the above circumstances, and even when the shape of an object to be measured is measured from a plurality of points by moving the measuring device, the measurement data measured at each point is not It is an object of the present invention to provide a shape measuring method capable of performing more effective shape measurement by simply displaying on one three-dimensional coordinate axis unified with measurement data measured at a plurality of points.

【0004】[0004]

【課題を解決するための手段】上記目的を達成する為
に,本発明が採用する主たる手段は,その要旨とすると
ころが,投光位置から被測定物に向けてスポット光を投
光して上記被測定物上に投射されたスポット像を撮像手
段で撮像し,上記スポット光の投光角度,上記スポット
像の撮像角度及び上記スポット光の投光位置と上記撮像
手段による撮像位置との間の距離から被測定物上のスポ
ット像の3軸座標系での位置座標を演算する形状計測方
法において,適宜選択された複数の撮像位置に関して共
通する任意の2個の測定点を設定し,各撮像位置で上記
3軸座標系の内1軸が互いに平行となるように設定した
撮像手段により上記2個の測定点をそれぞれ撮像して各
撮像位置での座標系で上記測定点に係る位置座標を演算
すると共に座標変換に係る関数を算出し,上記関数に基
づいて他の撮像位置に於ける位置座標のデータを一の撮
像位置における位置座標のデータに変換するようにした
点に係る形状計測方法である。
In order to achieve the above-mentioned object, the main means adopted by the present invention is the gist of the invention, in which the spot light is projected from the projection position toward the object to be measured. The spot image projected on the object to be measured is imaged by the image pickup means, and the light projection angle of the spot light, the image pickup angle of the spot image, and the light projection position of the spot light and the image pickup position of the image pickup means. In a shape measuring method for calculating the position coordinates of a spot image on an object to be measured from a distance in a three-axis coordinate system, arbitrary two measurement points common to a plurality of appropriately selected image pickup positions are set, and each image pickup is performed. The two measuring points are imaged by the image pickup means set such that one axis of the three-axis coordinate system is parallel to each other at the position, and the position coordinate relating to the measuring point is obtained in the coordinate system at each image pickup position. Coordinate conversion with calculation Calculates according function, a shape measuring method according to the points to convert the data in the position coordinate data of the position coordinates in an imaging position to another imaging position based on the function.

【0005】[0005]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る形状計測方法を適用
することができる3次元形状計測装置を示すブロック
図,図2は上記形状計測方法を実施する場合の手法を示
す説明図,図3は本発明の他の実施例に係る形状計測方
法を実施する場合の手法を示す説明図,図4は上記3次
元形状計測装置に移動機能を付加した一例のブロック
図,図5は上記各3次元形状計測装置に用いることので
きる四分割光学センサを模式的に示す説明図である。先
ず,当該形状計測方法の一例を適用することのできる3
次元形状計測装置1を図1に示す。この3次元形状計測
装置1は,図1に示す如く,スポット光(例えばレーザ
光)2を投光するレンズ(不図示)などからなる光源3
を具備し,上記光源3は上記3次元形状計測装置1を構
成する回転構造部9aに取付られている。上記回転構造
部9a内の上記光源3と一体的に上記レーザ光2の光軸
2a上に,この光軸2aと直交する軸芯4aを中心とし
て回転自在に第1ミラー4が取付られている。又,上記
光源3を挟んで上記第1ミラー4の反対側に,上記回転
構造部9a内の光源3と一体的に上記第1ミラー4の軸
芯4aと平行の軸芯5aを中心として回転自在に第2ミ
ラー5が取付られている。上記光源3,第1ミラー4,
第2ミラー5などを一体的に収納する上記回転構造部9
aは,当該3次元形状計測装置1の支持構造部9b上に
矢印Dに示すように回転自在に取付られている。上記光
源3からレーザ光2が投光されると,このレーザ光2は
上記第1ミラー4により反射され,被測定物6上にスポ
ット像7が形成される。上記スポット像7は上記第2ミ
ラー5により反射され,上記回転構造部9a内に光源3
と一体的に取付られたレンズ等からなる集光部8に集光
される。上記集光部8により集光されたスポット像は,
この集光部8に設けられた光学センサ8a上に撮像され
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not intended to limit the technical scope of the present invention. Here, FIG. 1 is a block diagram showing a three-dimensional shape measuring apparatus to which a shape measuring method according to an embodiment of the present invention can be applied, and FIG. 2 is an explanatory diagram showing a method for implementing the shape measuring method. 3 is an explanatory view showing a method for carrying out a shape measuring method according to another embodiment of the present invention, FIG. 4 is a block diagram of an example in which a moving function is added to the above three-dimensional shape measuring apparatus, and FIG. 5 is It is explanatory drawing which shows typically the four-division optical sensor which can be used for each said three-dimensional shape measuring device. First, an example of the shape measuring method can be applied.
A dimensional shape measuring device 1 is shown in FIG. As shown in FIG. 1, the three-dimensional shape measuring apparatus 1 includes a light source 3 including a lens (not shown) that projects a spot light (for example, a laser light) 2.
The light source 3 is attached to the rotary structure 9a that constitutes the three-dimensional shape measuring apparatus 1. A first mirror 4 is mounted on the optical axis 2a of the laser beam 2 integrally with the light source 3 in the rotary structure 9a so as to be rotatable around an axis 4a orthogonal to the optical axis 2a. . Further, on the opposite side of the first mirror 4 with the light source 3 interposed, the light source 3 in the rotary structure 9a is integrally rotated about an axis 5a parallel to the axis 4a of the first mirror 4. The second mirror 5 is freely attached. The light source 3, the first mirror 4,
The rotating structure 9 that integrally houses the second mirror 5 and the like.
The symbol a is rotatably mounted on the support structure 9b of the three-dimensional shape measuring apparatus 1 as indicated by arrow D. When the laser light 2 is projected from the light source 3, the laser light 2 is reflected by the first mirror 4 and a spot image 7 is formed on the DUT 6. The spot image 7 is reflected by the second mirror 5, and the light source 3 is reflected in the rotary structure 9a.
The light is condensed on the light condensing unit 8 including a lens and the like attached integrally with the. The spot image collected by the light collecting unit 8 is
An image is picked up on the optical sensor 8a provided in the light collecting unit 8.

【0006】上記光学センサ8aは,撮像された上記ス
ポット像の位置を検出できる例えばPSD(ポジション
センシティブデテクタ)などからなる。当該3次元形状
計測装置1の制御回路は,マイクロコンピュータCPU
などからなる制御部10を中枢として構成され,この制
御部10に,上記第1ミラー4を回転駆動する第1駆動
部11,第2ミラー5を回転駆動する第2駆動部12,
上記光学センサ8aからの出力信号を処理する像位置検
出部13,上記回転構造部9aを回転駆動する第3駆動
部14及び当該3次元形状計測装置1に各種指令を与え
る操作部15などが接続されている。上記第1ミラー4
の回転角度及び第2ミラー5の回転角度は,それぞれ上
記第1駆動部11及び第2駆動部12に内蔵された第1
エンコーダ16及び第2エンコーダ17により検出さ
れ,制御部10に入力される。又,上記回転構造部9a
の回転角度は,上記第3駆動部14に内蔵された第3エ
ンコーダ18により検出され,上記制御部10に入力さ
れる。当該3次元形状計測装置1の三角測量の基準距離
Lは,上記第1ミラー4の軸芯4aと上記第2ミラー5
の軸芯5aとの間の距離であり,この距離は常に一定で
ある。ここで,上記第1ミラー4の軸芯4aの位置が投
光位置に対応し,上記第2ミラー5の軸芯5aの位置が
撮像位置に対応する。これらは装置本体に対して分離し
て設けてもよいが,装置の取扱性等を考慮して一体化さ
れ,各位置は概念的に測定位置として一括して取扱う。
更に本装置では,上記支持構造部9bに設けられた各脚
部を適宜伸縮させ,当該装置のZ軸方向に係る軸芯を垂
直となし得るレベル機構をも備えている。引き続き,上
記構成に係る3次元形状計測装置1における3次元形状
の測定処理について説明する。上記操作部15が所定操
作されると,第3駆動部14が駆動されて回転構造部9
aが回転され,さらに第1ミラー4が回転されて被測定
物6にレーザ光2が投光される。これにより,被測定物
6上にはスポット像7が投射される。そして,第2ミラ
ー5が回転されて上記スポット像7がこの第2ミラー5
により反射され,光学センサ8a上に結像される。結像
された上記スポット像の位置は,上記光学センサ8aに
よって検出され,像位置検出部13を介してスポット像
の結像位置情報に変換されて制御部10に入力される。
The optical sensor 8a is composed of, for example, a PSD (position sensitive detector) capable of detecting the position of the spot image thus picked up. The control circuit of the three-dimensional shape measuring apparatus 1 is a microcomputer CPU
A control unit 10 including the above is configured as a center, and a first drive unit 11 that rotationally drives the first mirror 4 and a second drive unit 12 that rotationally drives the second mirror 5,
An image position detection unit 13 that processes an output signal from the optical sensor 8a, a third drive unit 14 that rotationally drives the rotary structure unit 9a, and an operation unit 15 that gives various commands to the three-dimensional shape measuring apparatus 1 are connected. Has been done. First mirror 4
The rotation angle of the first mirror 11 and the rotation angle of the second mirror 5 are the same as those of the first and second driving units 11 and 12, respectively.
It is detected by the encoder 16 and the second encoder 17 and input to the control unit 10. In addition, the rotating structure portion 9a
The rotation angle is detected by the third encoder 18 incorporated in the third drive unit 14 and input to the control unit 10. The triangulation reference distance L of the three-dimensional shape measuring apparatus 1 is determined by the axial center 4a of the first mirror 4 and the second mirror 5
Is the distance from the axis 5a of the shaft, and this distance is always constant. Here, the position of the axis 4a of the first mirror 4 corresponds to the projection position, and the position of the axis 5a of the second mirror 5 corresponds to the imaging position. These may be provided separately from the device body, but they are integrated considering the handleability of the device, and each position is conceptually handled collectively as a measurement position.
Further, the present apparatus is also provided with a level mechanism capable of vertically extending and contracting each leg portion provided on the support structure portion 9b to make the axis center of the apparatus in the Z-axis direction vertical. Subsequently, the measurement processing of the three-dimensional shape in the three-dimensional shape measuring apparatus 1 having the above configuration will be described. When the operation section 15 is operated in a predetermined manner, the third drive section 14 is driven to rotate the rotary structure section 9
a is rotated, the first mirror 4 is rotated, and the laser beam 2 is projected onto the DUT 6. As a result, the spot image 7 is projected on the DUT 6. Then, the second mirror 5 is rotated so that the spot image 7 is formed on the second mirror 5.
Is reflected by and is imaged on the optical sensor 8a. The position of the imaged spot image is detected by the optical sensor 8a, is converted into the imaged position information of the spot image via the image position detection unit 13, and is input to the control unit 10.

【0007】上記結像位置情報に基づき,更に上記第2
ミラー5が回転制御され,上記光学センサ8a上に結像
されたスポット像が所定位置(例えば光学センサ8aの
中心点)となった時,上記第2ミラー5の回転角度及び
上記第1ミラー4の回転角度が求められる。上記光学セ
ンサ8a上に結像されたスポット像を所定位置とする撮
像処理は,上述したように第2ミラー5の1軸回転処理
のみであるので,高速処理が可能である。そして,求め
られた第1ミラー4の回転角度,第2ミラー5の回転角
度及び第1ミラー4の軸芯4aと第2ミラー5の軸芯5
aとの間の距離から被測定物6上のスポット像7の位置
座標が演算される。この場合,上記位置座標が,当該3
次元形状計測装置1が設置された測定位置を原点とした
座標系でのものである。以下,同様に回転構造部9a,
第1ミラー4,第2ミラー5が順に回転制御されて,被
測定物6全体の3次元形状が求められる。ここで,測定
対象となる上記被測定物6の形状が大きくて,単一の測
定位置からのみではその形状計測を行い得ない場合,以
下に示すような手法が実施される。即ち,適宜選択され
た例えば第1,第2の測定位置(図2参照)に関して上
記被測定物6上に共通する任意の2個の測定点が設定さ
れ,各測定位置にX,Y,Zの3軸座標系の内例えばZ
軸が垂直(互いに平行)となるようにレベル機構により
調整された上記3次元形状計測装置1が設置される。こ
の測定点に向けて第1の測定位置と第2の測定位置から
各別に上記3次元形状計測装置1よりレーザ光2が投光
され,各測定位置での座標系で上記測定点に係る位置座
標が演算されると共に,座標変換に係る関数が算出され
る。そして,上記関数に基づいて,例えば第2の測定位
置における位置座標のデータが第1の測定位置における
位置座標のデータに変換される。この場合の具体的手順
としては,先ず,例えば第1の測定位置で測定されたX
YZ3軸座標系での共通する測定点をA(X1 ,Y1
1 ),B(X2 ,Y2,Z2 ),第2の測定位置で測
定されたxyz3軸座標系での共通する測定点をa(x
1 ,y1 ,z1 ),b(x2 ,y2 ,z2 )とする。
Based on the image formation position information, the second
When the mirror 5 is rotationally controlled and the spot image formed on the optical sensor 8a reaches a predetermined position (for example, the center point of the optical sensor 8a), the rotation angle of the second mirror 5 and the first mirror 4 The rotation angle of is calculated. Since the image pickup processing in which the spot image formed on the optical sensor 8a is at a predetermined position is only the uniaxial rotation processing of the second mirror 5 as described above, high speed processing is possible. Then, the determined rotation angle of the first mirror 4, the rotation angle of the second mirror 5, the axis 4a of the first mirror 4 and the axis 5 of the second mirror 5 are obtained.
The position coordinates of the spot image 7 on the object 6 to be measured are calculated from the distance to the object a. In this case, the above position coordinates are
This is in a coordinate system whose origin is the measurement position where the three-dimensional shape measuring apparatus 1 is installed. Hereinafter, similarly, the rotating structure 9a,
The first mirror 4 and the second mirror 5 are sequentially rotated and controlled, and the three-dimensional shape of the entire DUT 6 is obtained. Here, when the shape of the measured object 6 to be measured is large and the shape cannot be measured only from a single measurement position, the following method is performed. That is, two arbitrary measurement points common to the DUT 6 are set with respect to appropriately selected, for example, first and second measurement positions (see FIG. 2), and X, Y, Z are set at each measurement position. Of the three-axis coordinate system of, for example, Z
The above-mentioned three-dimensional shape measuring apparatus 1 adjusted by a level mechanism so that its axes are vertical (parallel to each other) is installed. The laser beam 2 is separately projected from the first measurement position and the second measurement position toward the measurement point by the three-dimensional shape measuring apparatus 1, and the position related to the measurement point in the coordinate system at each measurement position. Coordinates are calculated and a function related to coordinate conversion is calculated. Then, based on the above-mentioned function, for example, the data of the position coordinates at the second measurement position is converted into the data of the position coordinates at the first measurement position. As a specific procedure in this case, first, for example, X measured at the first measurement position is measured.
A common measurement point in the YZ 3-axis coordinate system is A (X 1 , Y 1 ,
Z 1 ), B (X 2 , Y 2 , Z 2 ), and the common measurement point in the xyz triaxial coordinate system measured at the second measurement position is a (x
1 , y 1 , z 1 ) and b (x 2 , y 2 , z 2 ).

【0008】そして,上記第2の測定位置で測定された
例えば座標点c(x3 ,y3 ,z3)を上記第1の測定
位置におけるXYZ3軸座標系での座標値Cに変換する
には,先ず,座標点cのxyz3軸座標系でのz軸方向
に係る値z3 とXYZ3軸座標系でのZ軸方向に係るZ
3 との関係が Z3 =z3 +Δz Δz=1/2・(Z1 +Z2 −z1 −z2 ) として求められる。引続き,測定点A,BのXY軸平面
での座標値と測定点a,bのxy軸平面での座標値とが
用いられて2次元平面での演算が遂行される。まず,線
分ABと線分abの長さが平均化され,その平均値Lが
求められる。
Then, for example, the coordinate point c (x 3 , y 3 , z 3 ) measured at the second measurement position is converted into the coordinate value C in the XYZ triaxial coordinate system at the first measurement position. Is the value z 3 in the z-axis direction in the xyz 3- axis coordinate system of the coordinate point c and Z in the Z-axis direction in the XYZ 3- axis coordinate system.
3 and the relationship is obtained as Z 3 = z 3 + Δz Δz = 1/2 · (Z 1 + Z 2 -z 1 -z 2). Subsequently, the coordinate values of the measurement points A and B on the XY axis plane and the coordinate values of the measurement points a and b on the xy axis plane are used to perform the calculation on the two-dimensional plane. First, the lengths of the line segment AB and the line segment ab are averaged, and the average value L is obtained.

【数1】 続いて測定点Aを固定し,線分ABの延長線上に上記測
定点Aから距離Lだけ離れた点がB′点(X2 ′,
2 ′)として定義される。同様にして,測定点aを固
定し,線分abの延長線上に測定点aから距離Lだけ離
れた点がb′点(x2 ′,y2 ′)として定義される。
そして,例えば下記の回転移動を表す2行2列行列式か
ら線分AB′と線分ab′のなす角θ(第1の測定位置
に関する座標系に対する第2の測定位置に関する座標系
の回転角)の値が求められる。
[Equation 1] Then, the measurement point A is fixed, and a point separated from the measurement point A by a distance L on the extension line of the line segment AB is point B '(X 2 ',
Y 2 ′). Similarly, the measurement point a is fixed, and the point on the extension line of the line segment ab which is separated from the measurement point a by the distance L is defined as b ′ point (x 2 ′, y 2 ′).
Then, for example, the angle θ formed by the line segment AB ′ and the line segment ab ′ from the determinant of 2 rows and 2 columns representing the rotational movement described below (the rotation angle of the coordinate system regarding the second measurement position relative to the coordinate system regarding the first measurement position ) Is required.

【数2】 引続き,座標変換を行うべきc点のxy座標系での座標
値(x3 ,y3 )と座標変換後のXY座標系での求める
べき座標値,即ちC点(X3 ,Y3 )の関係が,前述の
如く求められたθの値を用いることにより次式で求めら
れる。即ち,
[Equation 2] Subsequently, the coordinate value (x 3 , y 3 ) in the xy coordinate system of the point c to be subjected to coordinate conversion and the coordinate value to be obtained in the XY coordinate system after the coordinate conversion, that is, the point C (X 3 , Y 3 ). The relation can be obtained by the following equation by using the value of θ obtained as described above. That is,

【数3】 となる。よって,xyz3軸座標系でのc点(x3 ,y
3 ,z3 )と座標変換後のC点(X3 ,Y3 ,Z3 )の
関係は
[Equation 3] Becomes Therefore, point c (x 3 , y in the xyz 3- axis coordinate system
3 , z 3 ) and the point C (X 3 , Y 3 , Z 3 ) after coordinate conversion are

【数4】 となる。[Equation 4] Becomes

【0009】以降,xyz3軸座標系での他の任意の点
についても上記と同様,に示す変換式に代入すること
により,極めて簡便に各計測データを第1の測定位置に
おけるXYZ3軸座標系の値として求めることができ
る。即ち,3次元空間内における位置座標を変換するに
際し,Z軸方向に関しては単に加減算のみを行って,X
Y平面に関してのみ複雑な演算処理を実行すればよいこ
とから,その演算処理量,必要時間等が少なくて済む。
尚,上記実施例においては,各測定位置において3次元
形状計測装置1のX軸を垂直に設置して形状計測を行う
場合を例に説明したが,このZ軸に代えて,X軸あるい
はY軸を平行にして上記した手順を遂行するようにして
もよい。引続き,図3に基づいて,本発明の他の実施例
に係る形状計測方法の処理手順について説明する。前述
のc点(x3 ,y3 ,z3 )の内,z3 に係る座標値以
外のx3 ,y3 に係る座標値を変換する場合,同図にお
いて示されるL1 ,L2 の各値を求めることにより行わ
れる。ここで, L1 =[(x3 −x1 2 +(y3 −y1 2 1/22 =[(x3 −x2 2 +(y3 −y2 2 1/2 にて表され,(X3 ,Y3 )について (X3 −X1 2 +(Y3 −Y1 2 =L1 2 (X3 −X2 2 +(Y3 −Y2 2 =L2 2 の連立方程式を解くと,2つの解が得られる。これらが
示す2点をC1 ,C2 とする。即ち,XY座標系におい
てC1 とC2 の内,求めるべき点はどちらであるかが以
下の手法にて判別される。即ち,線分ABと線分BC1
の外積の値の正負及び線分ABと線分BC2 の外積の値
の正負を求め,線分abと線分bcの外積の値の正負と
同じ符号を示す点(C1 又はC2 )を選択することによ
り,c(x3 ,y3 ,z3 )の座標変換後におけるC
(X3 ,Y3 ,Z3 )の点が決定される。
Thereafter, other arbitrary points in the xyz 3-axis coordinate system are substituted into the conversion formula shown in the same manner as described above, so that each measurement data can be extremely easily converted into the XYZ 3-axis coordinate system at the first measurement position. It can be obtained as a value. That is, when converting the position coordinates in the three-dimensional space, only addition and subtraction are performed in the Z-axis direction, and X
Since it is only necessary to execute complicated arithmetic processing on the Y plane, the amount of arithmetic processing, required time, etc. can be reduced.
In the above embodiment, the case where the X-axis of the three-dimensional shape measuring apparatus 1 is installed vertically at each measurement position to perform shape measurement has been described as an example, but instead of the Z-axis, the X-axis or Y-axis is used. The axes may be parallel and the procedure described above may be performed. Subsequently, the processing procedure of the shape measuring method according to another embodiment of the present invention will be described with reference to FIG. When converting the coordinate values of x 3 , y 3 other than the coordinate values of z 3 among the points c (x 3 , y 3 , z 3 ) described above, L 1 and L 2 shown in FIG. It is performed by obtaining each value. Here, L 1 = [(x 3 -x 1) 2 + (y 3 -y 1) 2] 1/2 L 2 = [(x 3 -x 2) 2 + (y 3 -y 2) 2] is expressed by 1/2, (X 3, Y 3 ) for (X 3 -X 1) 2 + (Y 3 -Y 1) 2 = L 1 2 (X 3 -X 2) 2 + (Y 3 - When the simultaneous equations of Y 2 ) 2 = L 2 2 are solved, two solutions are obtained. These two points are designated as C 1 and C 2 . That is, which of the points C 1 and C 2 is to be obtained in the XY coordinate system is determined by the following method. That is, line segment AB and line segment BC 1
The positive and negative sign of the cross product value and the sign of the cross product value of the line segment AB and the line segment BC 2 , and the same sign as the positive and negative sign of the cross product value of the line segment ab and the line segment bc (C 1 or C 2 ) By selecting, C (x 3 , y 3 , z 3 ) is transformed into C after coordinate transformation.
The point of (X 3 , Y 3 , Z 3 ) is determined.

【0010】上記したような手法を用いることにより,
例えばプラントの建設現場において,各機器や設備が入
り込んで1ヶ所の測定位置からではレーザ光が直接当た
らない所が生じたりしてその測定を網羅できない場合で
も,共通測定点を2点設けることにより,複数の測定位
置より得られたデータを座標軸統一により単一の測定位
置で測定した場合と同等の座標値として得ることができ
る。更に,広い測定エリアにおいてその形状計測を行う
場合,単一の測定位置からでは計測装置の保証する測定
可能範囲を越えてしまうような場合でも,共通測定点を
設定して順次その測定エリアを増加させて単一の座標軸
上でのデータとして得ることができる。尚,上記したよ
うに被測定物が大型化して3次元形状計測装置1と被測
定物6との間の距離が長くなってスポット像7の光が弱
くなると,前記実施例における光学センサ8aとして用
いたPSDでは,その出力電流値が小さくなり,位置検
出分解能が低下する。従って,このPSDを例えば図5
に模式的に示す4分割光学センサ19に置き換えてもよ
い。この4分割光学センサ19は,例えばシリコンフォ
トダイオードなどからなり,その検出面が同図に示すよ
うに独立の4面19a,19b,19c,19dに分割
されており,各々の面の受光強度が検出できる。従っ
て,上記4分割光学センサ19の面上に結像されたスポ
ット像の位置は,X,Y軸方向の2値情報として処理す
ることができ,4分割光学センサ19の各面からの出力
信号が所定のバランス状態(例えば全て均等)となるよ
うに制御することができる。その結果,上記4分割光学
センサ19を用いると,スポット像の光強度が弱い場合
でも,一定の分解能でスポット像の位置検出をすること
ができる。又,図4は前記3次元形状計測装置1を,車
輪20,21などを有する移動機構部22に搭載して3
次元形状計測装置1aを構成したところを示している。
このようにすれば,当該計測装置の移動が容易となり,
前記した形状計測方法をより実施しやすくなる。
By using the above method,
For example, at a plant construction site, even if it is not possible to cover the measurement because there is a place where the laser light does not hit directly from one measurement position due to the entry of each device or equipment, by providing two common measurement points , Data obtained from multiple measurement positions can be obtained as coordinate values equivalent to those obtained when measuring at a single measurement position by unifying the coordinate axes. Furthermore, when measuring the shape in a wide measurement area, even if the single measurement position exceeds the measurable range guaranteed by the measuring device, common measurement points are set and the measurement area is gradually increased. And can be obtained as data on a single coordinate axis. As described above, when the object to be measured becomes large and the distance between the three-dimensional shape measuring apparatus 1 and the object to be measured 6 becomes long and the light of the spot image 7 becomes weak, the optical sensor 8a in the above embodiment is used. In the PSD used, the output current value becomes small and the position detection resolution decreases. Therefore, this PSD is shown in FIG.
It may be replaced with the four-division optical sensor 19 schematically shown in FIG. The four-division optical sensor 19 is composed of, for example, a silicon photodiode, and its detection surface is divided into four independent surfaces 19a, 19b, 19c, and 19d as shown in FIG. Can be detected. Therefore, the position of the spot image formed on the surface of the four-division optical sensor 19 can be processed as binary information in the X and Y axis directions, and the output signal from each surface of the four-division optical sensor 19 can be processed. Can be controlled to be in a predetermined balance state (for example, all are equal). As a result, by using the four-division optical sensor 19, even if the light intensity of the spot image is weak, the position of the spot image can be detected with a constant resolution. In addition, FIG. 4 shows that the three-dimensional shape measuring apparatus 1 is mounted on a moving mechanism section 22 having wheels 20, 21 and the like.
The figure shows a configuration of the three-dimensional shape measuring apparatus 1a.
This makes it easy to move the measuring device,
It becomes easier to carry out the above-described shape measuring method.

【0011】[0011]

【発明の効果】本発明は,上記したように,投光位置か
ら被測定物に向けてスポット光を投光して上記被測定物
上に投射されたスポット像を撮像手段で撮像し,上記ス
ポット光の投光角度,上記スポット像の撮像角度及び上
記スポット光の投光位置と上記撮像手段による撮像位置
との間の距離から被測定物上のスポット像の3軸座標系
での位置座標を演算する形状計測方法において,適宜選
択された複数の撮像位置に関して共通する任意の2個の
測定点を設定し,各撮像位置で上記3軸座標系の内1軸
が互いに平行となるように設定した撮像手段により上記
2個の測定点をそれぞれ撮像して各撮像位置での座標系
で上記測定点に係る位置座標を演算すると共に座標変換
に係る関数を算出し,上記関数に基づいて他の撮像位置
に於ける位置座標のデータを一の撮像位置における位置
座標のデータに変換するようにしたことを特徴とする形
状計測方法であるから,例えば計測装置を移動させて複
数の箇所から被測定物の形状計測を行った場合でも,各
箇所で計測した計測データを他の複数の箇所で計測した
計測データと統一した単一の3次元座標軸上に表示する
ことができ,より有効な形状計測を簡単に行うことがで
きる。
As described above, according to the present invention, the spot light is projected from the light projecting position toward the object to be measured, and the spot image projected on the object to be measured is imaged by the image pickup means. The position coordinate of the spot image on the object to be measured in the three-axis coordinate system from the projection angle of the spot light, the imaging angle of the spot image, and the distance between the projection position of the spot light and the imaging position of the imaging means. In the shape measuring method for calculating, two arbitrary measurement points common to a plurality of appropriately selected image pickup positions are set, and one axis of the three-axis coordinate system is parallel to each other at each image pickup position. Each of the two measurement points is imaged by the set image pickup means, the position coordinate related to the measurement point is calculated in the coordinate system at each image pickup position, and the function related to the coordinate conversion is calculated. Position coordinates at the image pickup position of Since the shape measuring method is characterized in that the data is converted into position coordinate data at one imaging position, for example, when the measuring device is moved to measure the shape of the measured object from a plurality of locations. However, the measurement data measured at each location can be displayed on a single three-dimensional coordinate axis that is unified with the measurement data measured at a plurality of other locations, and more effective shape measurement can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る形状計測方法を適用
することができる3次元形状計測装置を示すブロック
図。
FIG. 1 is a block diagram showing a three-dimensional shape measuring apparatus to which a shape measuring method according to an embodiment of the present invention can be applied.

【図2】 上記形状計測方法を実施する場合の手法を示
す説明図。
FIG. 2 is an explanatory diagram showing a method for carrying out the shape measuring method.

【図3】 本発明の他の実施例に係る形状計測方法を実
施する場合の手法を示す説明図。
FIG. 3 is an explanatory diagram showing a method for performing a shape measuring method according to another embodiment of the present invention.

【図4】 上記3次元形状計測装置に移動機能を付加し
た一例のブロック図。
FIG. 4 is a block diagram of an example in which a moving function is added to the three-dimensional shape measuring apparatus.

【図5】 上記各3次元形状計測装置に用いることので
きる四分割光学センサを模式的に示す説明図。
FIG. 5 is an explanatory diagram schematically showing a four-division optical sensor that can be used in each of the three-dimensional shape measuring devices.

【図6】 従来の3次元形状計測装置の一例を示すブロ
ック図。
FIG. 6 is a block diagram showing an example of a conventional three-dimensional shape measuring apparatus.

【図7】 上記従来の3次元形状計測装置の各セオドラ
イト等の位置関係を示す説明図。
FIG. 7 is an explanatory diagram showing a positional relationship of each theodolite and the like of the conventional three-dimensional shape measuring apparatus.

【図8】 従来の形状計測方法による計測状況を示す説
明図。
FIG. 8 is an explanatory diagram showing a measurement situation by a conventional shape measuring method.

【符号の説明】[Explanation of symbols]

1,1a…3次元形状計測装置 2…レーザ光(スポット光) 6…被測定物 7…スポット像 8a…光学センサ 10…制御部 1, 1a ... Three-dimensional shape measuring device 2 ... Laser light (spot light) 6 ... Object to be measured 7 ... Spot image 8a ... Optical sensor 10 ... Control unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 泰三 兵庫県神戸市灘区岩屋北町4丁目5番22号 神鋼プラント建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Taizo Yoshida 4-5-22 Iwayakitamachi, Nada-ku, Kobe-shi, Hyogo Shinko Plant Construction Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 投光位置から被測定物に向けてスポット
光を投光して上記被測定物上に投射されたスポット像を
撮像手段で撮像し,上記スポット光の投光角度,上記ス
ポット像の撮像角度及び上記スポット光の投光位置と上
記撮像手段による撮像位置との間の距離から被測定物上
のスポット像の3軸座標系での位置座標を演算する形状
計測方法において,適宜選択された複数の撮像位置に関
して共通する任意の2個の測定点を設定し,各撮像位置
で上記3軸座標系の内1軸が互いに平行となるように設
定した撮像手段により上記2個の測定点をそれぞれ撮像
して各撮像位置での座標系で上記測定点に係る位置座標
を演算すると共に座標変換に係る関数を算出し,上記関
数に基づいて他の撮像位置に於ける位置座標のデータを
一の撮像位置における位置座標のデータに変換するよう
にしたことを特徴とする形状計測方法。
1. A spot image is projected from a light projecting position toward an object to be measured and a spot image projected on the object to be measured is imaged by an image pickup means. In the shape measuring method, the position coordinates of the spot image on the object to be measured in the triaxial coordinate system are calculated from the image capturing angle of the image and the distance between the projecting position of the spot light and the image capturing position of the image capturing means. Two arbitrary measurement points common to a plurality of selected image pickup positions are set, and the two image pickup means are set so that one axis of the three-axis coordinate system is parallel to each other at each image pickup position. Each measurement point is imaged and the position coordinate related to the above measurement point is calculated in the coordinate system at each image pickup position, and the function related to coordinate conversion is calculated. Based on the above function, the position coordinates at other image pickup positions are calculated. Put the data in one imaging position A shape measuring method characterized in that it is converted into position coordinate data.
JP31857892A 1992-11-27 1992-11-27 Measuring method for shape Pending JPH06167316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31857892A JPH06167316A (en) 1992-11-27 1992-11-27 Measuring method for shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31857892A JPH06167316A (en) 1992-11-27 1992-11-27 Measuring method for shape

Publications (1)

Publication Number Publication Date
JPH06167316A true JPH06167316A (en) 1994-06-14

Family

ID=18100702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31857892A Pending JPH06167316A (en) 1992-11-27 1992-11-27 Measuring method for shape

Country Status (1)

Country Link
JP (1) JPH06167316A (en)

Similar Documents

Publication Publication Date Title
US11408728B2 (en) Registration of three-dimensional coordinates measured on interior and exterior portions of an object
US20190079522A1 (en) Unmanned aerial vehicle having a projector and being tracked by a laser tracker
JP3070953B2 (en) Method and system for point-by-point measurement of spatial coordinates
JP3511450B2 (en) Position calibration method for optical measuring device
JP5123932B2 (en) Camera-equipped 6-degree-of-freedom target measurement device and target tracking device with a rotating mirror
US5051906A (en) Mobile robot navigation employing retroreflective ceiling features
JP5127820B2 (en) Camera-based target coordinate measurement method
KR101026611B1 (en) Apparatus and Method for Determining Orientation Parameters of an Elongate Object
JP4422777B2 (en) Moving body posture detection device
EP1447644A1 (en) Measurement of spatial coordinates
JP2956657B2 (en) Distance measuring device
JP2010078466A (en) Method and system for automatic marker registration
JPS6332306A (en) Non-contact three-dimensional automatic dimension measuring method
JP2001296124A (en) Method and apparatus for measurement of three- dimensional coordinates
JP4284765B2 (en) Robot hand position measuring device
JPH06167316A (en) Measuring method for shape
CN111504269B (en) Underwater scale measurement method and device thereof
JPH05272934A (en) Shape measuring method
JPS6281508A (en) Optical 3-dimensional position measuring apparatus
CN111678451B (en) Method and apparatus for measuring deformation of carrier, and storage medium
JP2738964B2 (en) Dimension measurement device for structural members
JP3068325B2 (en) 3D position measuring device
JPH0364801B2 (en)
Kinoshita et al. Development of optical proximity sensor: ORANGES system-optical range sensor with circular scanning
Edwards et al. A review of current research in 3-D machine vision and robot accuracy