JPH0527268A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH0527268A
JPH0527268A JP3182407A JP18240791A JPH0527268A JP H0527268 A JPH0527268 A JP H0527268A JP 3182407 A JP3182407 A JP 3182407A JP 18240791 A JP18240791 A JP 18240791A JP H0527268 A JPH0527268 A JP H0527268A
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal display
display device
electrodes
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3182407A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
廣 森田
Kazuya Nishimura
和也 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3182407A priority Critical patent/JPH0527268A/en
Publication of JPH0527268A publication Critical patent/JPH0527268A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the liquid crystal display device which can protect the display elements of the divided parts of wiring electrodes against an electrostatic breakdown. CONSTITUTION:At least one of a pair of substrates facing each other of this liquid crystal display device consists of a matrix array substrate formed by disposing plural nonlinear resistance elements each having a three-layered structure consisting of a metallic layer 13-insulator layer 15-metallic layer 17 in an array form, disposing picture element electrodes 18 respectively in series to the respective nonlinear resistance elements and further connecting the respective line or row directions by the wiring electrodes 14. In addition, the wiring electrodes are divided at a center. The radius of curvature at the corners of the picture element electrodes facing the divided side thereof is set not smaller than the radius of curvature of the picture element electrodes in other parts and larger than the radius of curvature at the corners of the divided parts of the wiring electrodes, by which the above-mentioned purposes are achieved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は液晶表示装置に係り、
特に金属層−絶縁体層−金属層の3層構造をなす非線形
抵抗素子からなるスイッチング素子を各画素に組み込ん
だ液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device,
In particular, the present invention relates to a liquid crystal display device in which a switching element including a non-linear resistance element having a three-layer structure of a metal layer-insulator layer-metal layer is incorporated in each pixel.

【0002】[0002]

【従来の技術】近年、液晶表示装置は、時計,電卓等の
比較的簡単なものから、パ−ソナル・コンピュ−タ,ワ
−ド・プロセッサ,更にOA用の端末機器,TV画像表
示等の大容量表示用途に使用されてきている。
2. Description of the Related Art In recent years, liquid crystal display devices have changed from relatively simple devices such as watches and calculators to personal computers, word processors, OA terminal devices, TV image displays and the like. It has been used for large capacity display applications.

【0003】この種の液晶表示装置においては、従来、
マトリクス表示のマルチプレックス駆動方式、いわゆる
単純マトリクス方式を用いるのが一般的であった。しか
しながら、この方式は走査線等の増加に伴なって表示部
分と非表示部分のコントラスト比が劣化するため、大規
模なマトリクス表示には不適であるという欠点がある。
In this type of liquid crystal display device, conventionally,
It has been common to use a multiplex drive system for matrix display, that is, a so-called simple matrix system. However, this method is disadvantageous in that it is not suitable for large-scale matrix display because the contrast ratio between the display portion and the non-display portion deteriorates as the number of scanning lines increases.

【0004】そこで、この欠点を解決する1つの手段と
して、個々の画素をスイッチング素子により駆動する方
法、いわゆるアクティブマトリクス方式が開発されてい
る。この場合、スイッチング素子としては薄膜トランジ
スタや非線形抵抗素子を用いるが、基本的に2端子で構
造が簡単な非線形抵抗素子は、製造コストの面で有利で
ある。
Therefore, as one means for solving this drawback, a method of driving each pixel by a switching element, that is, an active matrix method has been developed. In this case, a thin film transistor or a non-linear resistance element is used as the switching element, but a non-linear resistance element which basically has two terminals and has a simple structure is advantageous in terms of manufacturing cost.

【0005】非線形抵抗素子としては種々の方式が開発
されているが、その中で金属層−絶縁体層−金属層(M
IM)の3層構造を持つ素子が、現在唯一実用化がなさ
れている。このMIMの非線形抵抗素子をスイッチング
素子として用いた場合、表示容量の増加に伴なうコント
ラスト比の劣化は、単純マトリクス方式と比較すると明
らかに小さい。しかし、走査線数が500本を超えるよ
うな大規模なマトリクス表示を行なう場合には、やはり
同様な問題が発生する。そこで、配線電極を中央で分割
し、独立に駆動することにより、見掛けの走査線の数を
半分にする手法が取られることがある。以下に、一例を
示す。
Various methods have been developed as a non-linear resistance element. Among them, metal layer-insulator layer-metal layer (M
An element having a three-layer structure (IM) has been put into practical use at present. When the non-linear resistance element of this MIM is used as a switching element, the deterioration of the contrast ratio accompanying the increase of the display capacity is obviously smaller than that of the simple matrix method. However, when performing a large-scale matrix display in which the number of scanning lines exceeds 500, the same problem still occurs. Therefore, a method of dividing the wiring electrodes at the center and driving them independently to halve the number of apparent scanning lines may be used. An example is shown below.

【0006】図5および図6は、従来の液晶表示装置に
おけるマトリクスアレイ基板の製造工程を示す断面図と
分割部分の隣接する2画素分の平面図である。先ず、図
5(a)に示すようにガラス基板1上にTa膜2をスパ
ッタリング法により形成した後、1回目のフォトリソグ
ラフィ工程を用いてパタ−ニングを行ない、図5(b)
および図6(a)に示すように非線形抵抗素子の第1の
金属層(下部電極)3およびこれと一体の配線電極4を
形成する。
5 and 6 are a cross-sectional view showing a manufacturing process of a matrix array substrate in a conventional liquid crystal display device and a plan view of two pixels adjacent to each other in a divided portion. First, as shown in FIG. 5A, a Ta film 2 is formed on a glass substrate 1 by a sputtering method, and then patterning is performed using a first photolithography process.
Then, as shown in FIG. 6A, the first metal layer (lower electrode) 3 of the non-linear resistance element and the wiring electrode 4 integral with this are formed.

【0007】次に、図5(c)に示すように、陽極酸化
法等を用いて第1の金属層3および配線電極4の表面に
酸化膜を形成し、非線形抵抗素子の絶縁体層5を得る。
更に、全面に例えばTi膜6をスパッタリング法により
形成した後、図5(d)および図6(b)に示すよう
に、2回目のフォトリソグラフィ工程を用いてパタ−ニ
ングを行ない、非線形抵抗素子の第2の金属層(上部電
極)7を形成する。
Next, as shown in FIG. 5C, an oxide film is formed on the surfaces of the first metal layer 3 and the wiring electrode 4 by using an anodic oxidation method or the like, and the insulator layer 5 of the nonlinear resistance element is formed. To get
Further, after forming, for example, a Ti film 6 on the entire surface by a sputtering method, as shown in FIGS. 5D and 6B, patterning is performed by using a second photolithography process to obtain a nonlinear resistance element. The second metal layer (upper electrode) 7 of is formed.

【0008】最後に、図5(e)および図6(c)に示
すように、ITO(インジウム・チン・オキサイド)を
全面に薄膜形成した後、3回目のフォトリソグラフィ工
程を用いて画素電極8のパタ−ニングを行なうことによ
り、全工程が終了する。
Finally, as shown in FIGS. 5 (e) and 6 (c), a thin film of ITO (indium-tin-oxide) is formed on the entire surface, and then the pixel electrode 8 is formed by the third photolithography process. All the steps are completed by performing the patterning of.

【0009】[0009]

【発明が解決しようとする課題】上記のように非線形抵
抗素子をスイッチング素子として用いる場合、素子の特
性不良は画素単位の表示欠陥、いわゆる点欠陥となる。
素子の特性不良には、様々な要因が考えられるが、MI
M素子に関してはその絶縁体層が500〜800オング
ストロ−ムと薄いため、耐圧が低く工程中に発生する静
電気による超高電圧放電によって絶縁破壊を起こし易
い。
When the non-linear resistance element is used as a switching element as described above, the defective characteristic of the element becomes a display defect in a pixel unit, that is, a so-called point defect.
There are various possible causes for defective characteristics of the device.
Since the insulator layer of the M element is as thin as 500 to 800 angstroms, the breakdown voltage is low and the dielectric breakdown is likely to occur due to the ultrahigh voltage discharge due to the static electricity generated during the process.

【0010】液晶表示装置の製造においては、液晶層の
配向制御のために、基板上にポリミイド膜などの配向膜
を形成後、布で擦る工程などがあり、静電気が発生し易
い。従って、配線電極分割部近くで静電気放電を起こす
ことを完全に抑えることは困難であり、製造工程の収率
を下げることが多かった。
In the manufacture of a liquid crystal display device, there is a process of rubbing with a cloth after forming an alignment film such as a polymide film on a substrate for controlling the alignment of a liquid crystal layer, and static electricity is easily generated. Therefore, it is difficult to completely suppress the occurrence of electrostatic discharge near the wiring electrode divisions, and the manufacturing process yield is often reduced.

【0011】一般に電荷は端部に集中するため、上記の
如く配線電極を中央で分割した場合、分割部分に集中す
る。このため、分割部を境として電位差が出来てしま
い、近接する表示画素電極間や、配線電極端とこれに近
接する表示画素電極の間で放電が発生し、素子が絶縁破
壊を起こすことがあり、その結果、分割部分に点欠陥が
集中するという不良が発生した。
In general, the electric charge is concentrated on the end portion, so that when the wiring electrode is divided at the center as described above, it is concentrated on the divided portion. For this reason, a potential difference is generated at the dividing portion, and discharge may occur between adjacent display pixel electrodes or between a wiring electrode end and a display pixel electrode adjacent thereto, which may cause dielectric breakdown of the element. As a result, defects such as point defects concentrated on the divided portions occurred.

【0012】この発明は、上記問題点を解決するために
なされたもので、静電気による分割部分における表示欠
陥の発生を抑制した液晶表示装置を提供することを目的
とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a liquid crystal display device in which the occurrence of display defects in the divided portions due to static electricity is suppressed.

【0013】[0013]

【課題を解決するための手段】この発明は、相対向する
一対の基板の少なくとも一方が、金属層−絶縁体層−金
属層の3層構造をなす非線形抵抗素子をアレイ状に配置
し、各非線形抵抗素子に画素電極を直列に配置し、更に
配線電極により各行又は各列方向を接続するマトリクス
アレイ基板よりなる液晶表示装置において、上記配線電
極が中央で分割され、その分割側に相対している上記画
素電極のコ−ナ−の曲率半径が、他の部分の画素電極と
比較して小さくなく、又、配線電極の分割部のコ−ナ−
と比較して大きい液晶表示装置である。
According to the present invention, at least one of a pair of substrates facing each other has a non-linear resistance element having a three-layer structure of a metal layer-insulator layer-metal layer arranged in an array, and In a liquid crystal display device composed of a matrix array substrate in which pixel electrodes are arranged in series with a non-linear resistance element, and each row or each column direction is connected by wiring electrodes, the wiring electrodes are divided at the center and face each other on the divided side. The radius of curvature of the corner of the above-mentioned pixel electrode is not smaller than that of the pixel electrodes of other portions, and the corner of the divided portion of the wiring electrode is
It is a large liquid crystal display device compared to.

【0014】[0014]

【作用】この発明によれば、中央の分割部分の配線端部
を近傍の画素電極間に比べて放電、破壊し易い構造、距
離関係に配置してあるために、工程中に分割部分で静電
気が発生しても、この部分が先に破壊されて電位差を緩
和するので、画素表示電極部分の素子を保護することが
可能となる。中央の分割部分の分割間隙長が短ければ、
ここで放電が発生し、配線電極端部が損なわれピンホ−
ルが開くだけで、表示画素の破壊を防止出来る。更に、
配線電極端部の少なくとも一方の絶縁層を除去しておけ
ば、放電はより起こり易くなる。しかし、動作中の電圧
差は、放電を起こすほど大きくないので、表示性能や信
頼性に影響を与えることはない。
According to the present invention, since the wiring end portion of the central divided portion is arranged in a structure and a distance relationship that is more likely to cause discharge and destruction than the neighboring pixel electrodes, electrostatic discharge may occur at the divided portion during the process. Even if occurs, this portion is destroyed first and the potential difference is relieved, so that the element in the pixel display electrode portion can be protected. If the division gap length of the central division is short,
A discharge is generated here, the end of the wiring electrode is damaged, and
Display pixels can be prevented from being destroyed simply by opening the cursor. Furthermore,
If at least one insulating layer at the end of the wiring electrode is removed, the discharge will occur more easily. However, since the voltage difference during operation is not so large as to cause discharge, it does not affect display performance or reliability.

【0015】更に、発明に先立つ実験によれば、配線電
極分割部のコ−ナ−の曲率半径を1〜2μmの範囲にと
り、画素電極のコ−ナ−の曲率半径を1〜10μmの範
囲に変えて放電による欠陥発生を調べたところ、画素電
極のコ−ナ−の曲率半径が4μm以上のものは著しく発
生が低減することが判った。即ち、画素電極のコ−ナ−
の曲率半径を4μm以上とすることが、より好ましい。
Further, according to the experiments prior to the invention, the radius of curvature of the corner of the wiring electrode division portion was set in the range of 1 to 2 μm, and the radius of curvature of the corner of the pixel electrode was set in the range of 1 to 10 μm. When the occurrence of defects due to electric discharge was examined instead, it was found that the occurrence of defects was remarkably reduced when the corner radius of the pixel electrode was 4 μm or more. That is, the corner of the pixel electrode
It is more preferable that the radius of curvature of is 4 μm or more.

【0016】[0016]

【実施例】以下、図面を参照して、この発明の一実施例
を詳細に説明する。この発明による液晶表示装置のマト
リクスアレイ基板は、図1〜図4に示すように構成さ
れ、製造方法的に述べることにする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. The matrix array substrate of the liquid crystal display device according to the present invention is constructed as shown in FIGS. 1 to 4, and the manufacturing method will be described.

【0017】先ず、図1(a)に示すように、ガラス基
板11上にTa膜12をスパッタリング法により形成し
た後、1回目のフォトリソグラフィ工程を用いてパタ−
ニングを行ない、図1(b)および図2(a)に示すよ
うに非線形抵抗素子の第1の金属層(下部電極)13お
よびこれと一体の配線電極14を形成する。
First, as shown in FIG. 1A, a Ta film 12 is formed on a glass substrate 11 by a sputtering method, and then a pattern is formed by using a first photolithography process.
Then, as shown in FIGS. 1B and 2A, the first metal layer (lower electrode) 13 of the non-linear resistance element and the wiring electrode 14 integral therewith are formed.

【0018】次に、図1(c)および図2(b)に示す
ように、陽極酸化法等を用いて第1の金属層13および
配線電極14の表面に酸化膜を形成し、非線形抵抗素子
の絶縁体層15を得る。更に、全面に例えばTi膜16
をスパッタリング法により形成した後、図1(d)およ
び図2(b)に示すように、2回目のフォトリソグラフ
ィ工程を用いてパタ−ニングを行ない、非線形抵抗素子
の第2の金属層(上部電極)17を形成する。
Next, as shown in FIGS. 1 (c) and 2 (b), an oxide film is formed on the surfaces of the first metal layer 13 and the wiring electrode 14 by using an anodic oxidation method or the like, and a nonlinear resistance is formed. The insulator layer 15 of the device is obtained. Further, for example, a Ti film 16 is formed on the entire surface.
After being formed by a sputtering method, as shown in FIG. 1D and FIG. 2B, patterning is performed using a second photolithography process to form a second metal layer (upper part) of the nonlinear resistance element. The electrode) 17 is formed.

【0019】最後に、図1(e)および図3、図4に示
すようにITO(インジウム・チン・オキサイド)を全
面に薄膜形成した後、3回目のフォトリソグラフィ工程
を用いて画素電極18のパタ−ニングを行なう。このと
き、分割線側に相対している(近接している)画素電極
18のコ−ナ−Aの曲率半径r1 が、他の部分の画素電
極のコ−ナ−Bの曲率半径r2 と同等以上で且つ、配線
電極14のコ−ナ−Cの曲率半径r3 と比較して大きく
設定されている。即ち、r1 2 ,r3 の関係にあ
る。具体的にこの実施例では、r1 =4μm,r2 =2
μm,r3 =1μmとした。図3および図4において
は、便宜上、ガラス基板11と絶縁体層15は省略して
ある。以上により、全工程が終了する。
Finally, as shown in FIG. 1 (e), FIG. 3 and FIG. 4, a thin film of ITO (indium tin oxide) is formed on the entire surface, and then the third photolithography process is used to form the pixel electrode 18 Perform patterning. At this time, the radius of curvature r 1 of the corner A of the pixel electrode 18 facing (close to) the division line side is the radius of curvature r 2 of the corner B of the pixel electrode in the other part. Is equal to or larger than the above, and is set larger than the radius of curvature r 3 of the corner C of the wiring electrode 14. That is, there is a relation of r 1 r 2 and r 3 . Specifically, in this embodiment, r 1 = 4 μm and r 2 = 2
μm and r 3 = 1 μm. In FIGS. 3 and 4, the glass substrate 11 and the insulator layer 15 are omitted for convenience. With the above, all steps are completed.

【0020】尚、上記実施例においては、配線電極の分
割線側に相対している(近接している)画素電極のコ−
ナ−に注目して、ここに電界の集中による放電発生がな
いように丸みを付けたが、更に安全を見込んで分割線か
ら内側に入った画素コ−ナ−更には全ての画素コ−ナ−
に同様な丸みを付けても、同様の効果が得られる。即
ち、r1 =r2 =4μm,r3 =1μmとしても同様の
効果を得た。上記のようなマトリックスアレイ基板を用
いて液晶表示装置を形成するには、例えば次のように行
なう。
In the above embodiment, the pixel electrode counters (proximity) to the division line side of the wiring electrodes.
Focusing on the corners, we rounded them so that there would be no discharge due to the concentration of the electric field, but for the sake of safety, the pixel corners that entered the inside from the dividing line and all the pixel corners. −
Even if the same roundness is added to, the same effect can be obtained. That is, similar effects were obtained even when r 1 = r 2 = 4 μm and r 3 = 1 μm. A liquid crystal display device is formed using the matrix array substrate as described above, for example, as follows.

【0021】先ず、マトリックスアレイ基板の非線形抵
抗素子形成面にポリミイド樹脂からなる配向膜を塗布・
焼成し、ラビングすることにより液晶配向方向を規制す
る。対向用基板にも同様の処理を行ない、一方の液晶表
示用基板より約90°捩じった方向にラビングを行な
う。上記2種類の基板を用意し、液晶の分子長軸方向が
両基板間で約90°捩じれるように、5〜20μmの間
隔を保って保持させ、液晶を注入し液晶セルを構成す
る。そして、液晶セルの外側に偏光軸を約90°捩じっ
た形で偏光板を配置すれば良い。
First, an alignment film made of a polyimide resin is applied to the surface of the matrix array substrate on which the nonlinear resistance element is formed.
The liquid crystal alignment direction is regulated by firing and rubbing. Similar processing is performed on the counter substrate, and rubbing is performed in a direction twisted by about 90 ° from one liquid crystal display substrate. The above-mentioned two types of substrates are prepared, and liquid crystals are injected to form a liquid crystal cell by holding the substrates at a distance of 5 to 20 μm so that the major axis direction of the liquid crystal is twisted by about 90 ° between the substrates. Then, the polarizing plate may be arranged outside the liquid crystal cell with the polarization axis twisted by about 90 °.

【0022】[0022]

【発明の効果】この発明によれば、配線電極の分割部分
の表示素子を静電破壊から保護することが可能となる。
According to the present invention, it is possible to protect the display element in the divided portion of the wiring electrode from electrostatic breakdown.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る液晶表示装置におけ
るマトリクスアレイ基板の製造工程を示す断面図。
FIG. 1 is a cross-sectional view showing a manufacturing process of a matrix array substrate in a liquid crystal display device according to an embodiment of the present invention.

【図2】同じく平面図。FIG. 2 is a plan view of the same.

【図3】同じく平面図。FIG. 3 is a plan view of the same.

【図4】図3の要部を拡大して示す平面図。FIG. 4 is an enlarged plan view showing a main part of FIG.

【図5】従来の液晶表示装置におけるマトリクスアレイ
基板の製造工程を示す断面図。
FIG. 5 is a cross-sectional view showing a manufacturing process of a matrix array substrate in a conventional liquid crystal display device.

【図6】同じく平面図。FIG. 6 is a plan view of the same.

【符号の説明】[Explanation of symbols]

11…ガラス基板、12…Ta膜、13…第1の金属
層、14…配線電極、15…絶縁体層、16…Ti膜、
17…第2の金属層、18…画素電極。
11 ... Glass substrate, 12 ... Ta film, 13 ... First metal layer, 14 ... Wiring electrode, 15 ... Insulator layer, 16 ... Ti film,
17 ... 2nd metal layer, 18 ... Pixel electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 相対向する一対の基板の少なくとも一方
が、金属層−絶縁体層−金属層の3層構造をなす複数の
非線形抵抗素子をアレイ状に配置し、各非線形抵抗素子
にそれぞれ画素電極を直列に配置し、更に配線電極によ
り各行又は各列方向を接続したマトリクスアレイ基板よ
りなる液晶表示装置において、 上記配線電極が中央で分割され、その分割側に相対して
いる上記画素電極のコ−ナ−の曲率半径が、他の部分の
画素電極と比較して小さくなく、又、配線電極の分割部
のコ−ナ−と比較して大きいことを特徴とする液晶表示
装置。
1. A plurality of non-linear resistance elements having a three-layer structure of a metal layer-insulator layer-metal layer are arranged in an array on at least one of a pair of substrates facing each other, and each non-linear resistance element has a pixel. In a liquid crystal display device comprising a matrix array substrate in which electrodes are arranged in series, and each row or each column direction is connected by wiring electrodes, the wiring electrodes are divided at the center, and the pixel electrodes of the pixel electrodes facing each other are divided. A liquid crystal display device, characterized in that the radius of curvature of the corner is not smaller than that of the pixel electrode in other portions and is larger than that of the corner of the divided portion of the wiring electrode.
【請求項2】 配線電極の中央分割部の分割側に相対し
ている画素電極のコ−ナ−の曲率半径が4μm以上であ
ることを特徴とする請求項1記載の液晶表示装置。
2. The liquid crystal display device according to claim 1, wherein the corner radius of the pixel electrode facing the division side of the central division of the wiring electrode is 4 μm or more.
JP3182407A 1991-07-23 1991-07-23 Liquid crystal display device Pending JPH0527268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182407A JPH0527268A (en) 1991-07-23 1991-07-23 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182407A JPH0527268A (en) 1991-07-23 1991-07-23 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH0527268A true JPH0527268A (en) 1993-02-05

Family

ID=16117762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182407A Pending JPH0527268A (en) 1991-07-23 1991-07-23 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH0527268A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131766A (en) * 2000-10-20 2002-05-09 Kyocera Corp Liquid crystal display device
US6608655B2 (en) 1997-12-26 2003-08-19 Sharp Kabushiki Kaisha Liquid crystal display device including identical shape dummy wire surrounding each pixel and capable of reducing the influence of parasitic capacities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608655B2 (en) 1997-12-26 2003-08-19 Sharp Kabushiki Kaisha Liquid crystal display device including identical shape dummy wire surrounding each pixel and capable of reducing the influence of parasitic capacities
JP2002131766A (en) * 2000-10-20 2002-05-09 Kyocera Corp Liquid crystal display device

Similar Documents

Publication Publication Date Title
JP3567183B2 (en) Liquid crystal display
JP2859093B2 (en) Liquid crystal display
KR100482468B1 (en) Fringe field switching mode lcd
JP3234357B2 (en) Liquid crystal display
JP5278777B2 (en) Liquid crystal display
JP2010108000A (en) Liquid crystal display device and method for manufacturing the same
JP3302625B2 (en) Liquid crystal display
JP2001281693A (en) Liquid crystal display panel and its production method
JP3335895B2 (en) Liquid crystal display
JP3603468B2 (en) LCD panel
JPH0527268A (en) Liquid crystal display device
JP3265687B2 (en) Liquid crystal display
JP3209652B2 (en) Liquid crystal display
JP3071648B2 (en) Liquid crystal display device
JP2004046123A (en) Liquid crystal display device
JPH05142578A (en) Liquid crystal display device
JPH08286213A (en) Liquid crystal display device
JP3337011B2 (en) Active matrix type liquid crystal display device and manufacturing method thereof
JPH05203997A (en) Liquid crystal display device
JPH0519299A (en) Liquid crystal display device
JP2945893B1 (en) Liquid crystal display
JP3380857B2 (en) Liquid crystal display
JP4750072B2 (en) Manufacturing method of liquid crystal display device
JPH04298721A (en) Liquid crystal display device
JP3380855B2 (en) Liquid crystal display