JPH0526949B2 - - Google Patents

Info

Publication number
JPH0526949B2
JPH0526949B2 JP59248653A JP24865384A JPH0526949B2 JP H0526949 B2 JPH0526949 B2 JP H0526949B2 JP 59248653 A JP59248653 A JP 59248653A JP 24865384 A JP24865384 A JP 24865384A JP H0526949 B2 JPH0526949 B2 JP H0526949B2
Authority
JP
Japan
Prior art keywords
fuel
valve
injection
pressure
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59248653A
Other languages
Japanese (ja)
Other versions
JPS61129457A (en
Inventor
Yoshinori Nagae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24865384A priority Critical patent/JPS61129457A/en
Publication of JPS61129457A publication Critical patent/JPS61129457A/en
Publication of JPH0526949B2 publication Critical patent/JPH0526949B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はデイーゼル機関の燃料噴射装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection device for a diesel engine.

〔従来の技術〕[Conventional technology]

第6図は従来のデイーゼル機関の燃料噴射装置
を示す。図において、01は燃料ポンプ本体、0
2はプランジヤバレル、03はプランジヤ、04
はプランジヤリード、05は給排油孔、06は給
油室、07′は吐出弁弁座、08′は吐出弁、0
9′は吐出弁吸戻しカラー、10′は吐出弁ばね、
11′は吐出弁押え金物、12′はコントロールラ
ツクである。また、101は燃料弁本体、102
はノズルチツプ、103は袋ナツトで、ノズルチ
ツプ102を燃料弁本体101に締めつけてい
る。104は燃料弁内油路、105はノズルチツ
プ内油路、106は油溜り部である。107は針
弁、108は噴孔、109は針弁押棒、110は
ばね受、111はばねで、112は針弁開弁圧調
整ねじである。201は燃料ポンプと燃料弁とを
つなぐ高圧噴射管である。
FIG. 6 shows a conventional fuel injection system for a diesel engine. In the figure, 01 is the fuel pump body, 0
2 is plunger barrel, 03 is plunger, 04
is the plunger lead, 05 is the oil supply and drain hole, 06 is the oil supply chamber, 07' is the discharge valve seat, 08' is the discharge valve, 0
9' is the discharge valve suction back collar, 10' is the discharge valve spring,
11' is a discharge valve presser, and 12' is a control rack. In addition, 101 is a fuel valve body, 102
1 is a nozzle tip, and 103 is a cap nut that fastens the nozzle tip 102 to the fuel valve body 101. 104 is an oil passage in the fuel valve, 105 is an oil passage in the nozzle tip, and 106 is an oil reservoir. 107 is a needle valve, 108 is a nozzle hole, 109 is a needle valve push rod, 110 is a spring receiver, 111 is a spring, and 112 is a needle valve opening pressure adjustment screw. 201 is a high pressure injection pipe that connects the fuel pump and the fuel valve.

燃料ポンプ01内の給油室06には図示しない
燃料供給ポンプにより燃料が充満しており、給排
油孔05からプランジヤ03の上部にも入つてい
る。次にポンプの作用について述べると図示しな
い機関のクランク軸と同期して回転するカムによ
りプランジヤ03が上昇し、給排油孔05を閉じ
ると燃料の圧縮が始まり、高圧になつた燃料は吐
出弁08′を押しあけ、噴射管201、燃料弁内
油路104、ノズルチツプ内油路105を通つて
油溜り部106に導かれる。ここで針弁107に
油圧が作用し、ばね111により押えられている
力より油圧が大きくなると、針弁107が開き、
噴孔108より図示しない機関のシリンダ内へ燃
料が噴射される。プランジヤ03がさらに上昇す
ると、プランジヤリード04が給排油孔05にか
かり高圧のプランジヤ上部と低圧の給油室06と
が通じるため圧力が下がり吐出が終ることにな
る。これより逐次系内の圧力も下がり油溜り部1
06の圧力も下がり、油圧にばね力が打ち勝つて
針弁が閉じ噴射を終る。通常噴射終りの圧力は噴
射始めの圧力より約4割程度低いものである。ま
た、吐出終り時圧力が下がると吐出弁08′はす
ぐに閉じ、このとき燃料弁とポンプの間に噴射管
201を介して閉止した長い管路が形成されるた
め、この間で圧力波の往復が残り、この圧力波に
より針弁107が再開し、噴孔からの再噴射が起
きたり、管路内や油溜り部に空洞を生じたりする
ことがある。この再噴射現象を通常2噴射と称し
ている。第7図に噴射圧力、針弁の動きを示して
いる。
A fuel chamber 06 in the fuel pump 01 is filled with fuel by a fuel supply pump (not shown), and the fuel also enters the upper part of the plunger 03 through a fuel supply/drain hole 05 . Next, to explain the operation of the pump, the plunger 03 is raised by a cam that rotates in synchronization with the crankshaft of the engine (not shown), and when the oil supply and discharge hole 05 is closed, the fuel starts to be compressed, and the high-pressure fuel is discharged from the discharge valve. 08' and is guided to the oil reservoir 106 through the injection pipe 201, the oil passage 104 in the fuel valve, and the oil passage 105 in the nozzle tip. Here, oil pressure acts on the needle valve 107, and when the oil pressure becomes greater than the force held down by the spring 111, the needle valve 107 opens.
Fuel is injected from the injection hole 108 into a cylinder of an engine (not shown). When the plunger 03 further rises, the plunger lead 04 enters the oil supply/discharge hole 05, and the high pressure upper part of the plunger communicates with the low pressure oil supply chamber 06, so that the pressure decreases and discharge ends. From this, the pressure in the system gradually decreases, oil sump part 1
The pressure in 06 also decreases, the spring force overcomes the oil pressure, and the needle valve closes, ending the injection. Normally, the pressure at the end of injection is about 40% lower than the pressure at the beginning of injection. Furthermore, when the pressure decreases at the end of discharge, the discharge valve 08' closes immediately, and at this time, a long closed pipeline is formed between the fuel valve and the pump via the injection pipe 201, so that the pressure waves flow back and forth between the fuel valve and the pump. remains, and this pressure wave may cause the needle valve 107 to restart, causing re-injection from the nozzle hole, or creating a cavity in the pipe or oil reservoir. This re-injection phenomenon is usually referred to as 2-injection. Figure 7 shows the injection pressure and movement of the needle valve.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のものには次の欠点がある。 The above has the following drawbacks.

上述のように噴射終りの圧力は噴射開始圧力よ
りも低い。これはすでに燃焼を開始し空気の消費
がなされているシリンダ内に粗い噴霧での噴射を
行うことになり、燃焼の悪化、煙の発生につなが
るもので機関にとつて好ましくない。また、2次
噴射も同様に鉄圧の噴射であると共に遅い時期で
の噴射であるので前述のものよりさらに悪い現象
となる。空洞の発生は、その程度が大きいものに
なるとキヤビテーシヨンエロージヨンを生じ、噴
射管、針弁等の破損につながることもある。ま
た、シール部の悪化や針弁摺動部の焼付きに至る
こともある。また、低負荷、低回転域ではカム速
度の低下から噴射圧が低くなるため相対的に噴孔
面積が大きくなり粒の大きい噴霧となり燃焼が悪
化する。
As mentioned above, the pressure at the end of injection is lower than the pressure at the start of injection. This results in a coarse spray being injected into the cylinder where combustion has already started and air has been consumed, which leads to poor combustion and the generation of smoke, which is undesirable for the engine. Further, since the secondary injection is also an iron-pressure injection and is also an injection at a late timing, the phenomenon is even worse than the above-mentioned one. If the occurrence of cavities becomes large enough, cavitation erosion may occur, which may lead to damage to injection pipes, needle valves, etc. Furthermore, it may lead to deterioration of the sealing part or seizure of the needle valve sliding part. Furthermore, in the low load and low rotation range, the injection pressure decreases due to the decrease in cam speed, so the nozzle hole area becomes relatively large, resulting in a spray with large particles, which deteriorates combustion.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は上記の点に着目し、2次噴射及
び空洞の発生がなく、同時に高圧で噴射を完了
し、俗に言う「噴射の切れ」を向上させ、さらに
低負荷(低回転)域で燃料弁の一部を閉じること
により噴射圧を上げ燃焼を良好に保つことのでき
る燃焼噴射装置を提供することであり、その特徴
とするところは、ジヤーク式燃料ポンプから分岐
して1個のシリンダに複数個の燃料弁を設けたデ
イーゼル機関の燃料噴射装置において、上記燃料
ポンプに設けられて燃料の吐出時に開放される逆
止弁及び吐出終了時に吐出側の圧力により開放さ
れる逆止弁と、上記燃料弁のそれぞれに設けられ
る噴射系とは別の油圧を受けて同燃料弁の針弁を
押圧するピストンと、上記ピストンに至る油圧管
をそれぞれ開閉する電磁弁と、機関回転数、クラ
ンク回転角及び機関の負荷等に基づき上記電磁弁
の開閉を制御するマイクロコンピユータとを具
え、上記マイクロコンピユータが、各燃料弁の噴
射の終期に同燃料弁のピストンに油圧を供給して
同燃料弁を閉鎖し、機関の部分負荷時に、一部の
燃料弁のピストンに油圧を供給し、機関負荷に応
じて各燃料弁の噴射を間欠的に中止し、且つ噴射
を中止する燃料弁を周期的に順次交替させるよう
に制御することである。
The purpose of the present invention is to focus on the above-mentioned points, to eliminate secondary injection and cavity formation, to complete injection at high pressure at the same time, to improve the so-called "cutting of injection", and to further improve the low load (low rotation) region. To provide a combustion injection device that can increase injection pressure and maintain good combustion by closing a part of the fuel valve.The main feature of this device is that it is possible to increase the injection pressure and maintain good combustion by closing a part of the fuel valve. In a fuel injection system for a diesel engine in which a cylinder is provided with a plurality of fuel valves, a check valve is provided in the fuel pump and opens when fuel is discharged, and a check valve is opened by pressure on the discharge side when discharge ends. , a piston that receives hydraulic pressure separate from the injection system provided in each of the fuel valves and presses the needle valve of the same fuel valve, a solenoid valve that opens and closes the hydraulic pipes leading to the piston, and an engine speed, a microcomputer that controls the opening and closing of the solenoid valve based on the crank rotation angle, engine load, etc., and the microcomputer supplies hydraulic pressure to the piston of each fuel valve at the end of injection of each fuel valve, The valves are closed, and when the engine is under partial load, hydraulic pressure is supplied to the pistons of some fuel valves, and injection of each fuel valve is intermittently stopped depending on the engine load, and the fuel valves that stop injection are cycled. It is controlled so that they are alternated sequentially.

〔作用〕[Effect]

(1) 高圧での噴射を完了することにより、後もえ
の少ない燃焼の良好な機関となる。
(1) By completing the injection at high pressure, the engine will have good combustion with less afterburn.

(2) さらに低速域で一部の燃料弁を閉じることに
より、噴射圧力が上がり燃焼が改善される。
(2) Furthermore, by closing some fuel valves in the low speed range, injection pressure increases and combustion is improved.

(3) 休止燃料弁を固定することもなく、サイクル
毎に変化させることにより、燃料弁のカーボン
詰まり等の不具合が回避される。
(3) By changing the idle fuel valve every cycle without having to fix it, problems such as carbon clogging of the fuel valve can be avoided.

〔実施例〕〔Example〕

以下図面を参照して本発明による実施例につき
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明による1実施例の燃料噴射装置
を示す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of a fuel injection device according to the present invention.

図において、01は燃料ポンプ本体、02はプ
ランジヤバレル、03はプランジヤ、04はプラ
ンジヤリード、05は給排油孔、06は給油室、
07は弁座、08はボール弁即ち逆止弁、09は
ばね、10はばね受で油路が設けられている。
In the figure, 01 is the fuel pump body, 02 is the plunger barrel, 03 is the plunger, 04 is the plunger lead, 05 is the oil supply/drain hole, 06 is the oil supply chamber,
07 is a valve seat, 08 is a ball valve or check valve, 09 is a spring, and 10 is a spring receiver, and an oil passage is provided therein.

11はボール弁即ち逆止弁、12はばね、13
はばね受で油路をもつている。14はオリフイ
ス、15は押え金物、16はコントロールラツク
である。
11 is a ball valve or check valve, 12 is a spring, 13
It has an oil path with a spring holder. 14 is an orifice, 15 is a presser foot, and 16 is a control rack.

101は燃料弁本体、102はノズルチツプ、
103は袋ナツトで、ノズルチツプ102を燃料
弁本体101に締めつけている。104は燃料弁
内油路、105はノズルチツプ内油路、106は
油溜り部である。107は針弁、108は噴孔、
109は針弁押棒、110はばね受、111はば
ねで、112は針弁開弁圧調整ねじで、113は
ロツクナツトである。114はピストンガイド、
115はピストンである。116はピストン押
棒、117はばね、118はピストン上部金物で
ある。
101 is a fuel valve body, 102 is a nozzle tip,
A cap nut 103 fastens the nozzle tip 102 to the fuel valve body 101. 104 is an oil passage in the fuel valve, 105 is an oil passage in the nozzle tip, and 106 is an oil reservoir. 107 is a needle valve, 108 is a nozzle hole,
109 is a needle valve push rod, 110 is a spring holder, 111 is a spring, 112 is a needle valve opening pressure adjusting screw, and 113 is a lock nut. 114 is a piston guide,
115 is a piston. 116 is a piston push rod, 117 is a spring, and 118 is a piston upper metal fitting.

201は燃料ポンプと燃料弁とをつなぐ高圧噴
射管である。
201 is a high pressure injection pipe that connects the fuel pump and the fuel valve.

301は油圧管、302は電磁弁取付金物、3
03は電磁弁(Normal Close)、304は電磁
弁(Normal Open)、305は逃し管、306,
307は油圧管、308は貯圧器、309はポン
プ、310は油タンクである。
301 is a hydraulic pipe, 302 is a solenoid valve mounting hardware, 3
03 is a solenoid valve (Normal Close), 304 is a solenoid valve (Normal Open), 305 is a relief pipe, 306,
307 is a hydraulic pipe, 308 is a pressure reservoir, 309 is a pump, and 310 is an oil tank.

401はラツク位置検出器(例えばポテンシヨ
メータ)、402はトリガ信号発生器、403は
回転パルス発生器である。
401 is a rack position detector (for example, a potentiometer), 402 is a trigger signal generator, and 403 is a rotational pulse generator.

第1図に示されるように、油圧ポンプ309に
より加圧された油が油路307,306を介して
電磁弁取付金物に導かれる。蓄圧器308は圧力
変動をおさえるためのものである。
As shown in FIG. 1, oil pressurized by a hydraulic pump 309 is guided to the electromagnetic valve fitting via oil passages 307 and 306. The pressure accumulator 308 is for suppressing pressure fluctuations.

電磁弁は303がNormal close、304が
Normal openでありピストンへの油路301は
電磁弁303の二次側及び304の一次側に開口
している。ドレン油路305は電磁弁304の二
次側に接続しており、ピストンに油圧を作用させ
るときは、電磁弁303を開、304を閉じるこ
とでなされる。油圧作用を終えるときは電磁弁3
03を閉、304を閉とする。
For the solenoid valve, 303 is Normal close, and 304 is Normal close.
Normally open, the oil passage 301 to the piston opens to the secondary side of the electromagnetic valve 303 and the primary side of the solenoid valve 304. The drain oil passage 305 is connected to the secondary side of the solenoid valve 304, and when applying hydraulic pressure to the piston, the solenoid valve 303 is opened and the solenoid valve 304 is closed. When ending hydraulic action, use solenoid valve 3.
03 is closed and 304 is closed.

上記構成の場合の作用について述べる。 The operation in the case of the above configuration will be described.

まずマイクロコンピユータの働きについて述べ
る。
First, I will explain how a microcomputer works.

コンピユータには記憶部として、機関回転数
NEとポンプラツクRCに対して、クランク回転角
の何度でトリガ信号を発すれば良いかあらかじめ
インプツトされている。
The computer has a memory section that stores information about the engine rotational speed.
The crank rotation angle at which the trigger signal should be issued is pre-inputted for N E and pump rack R C.

そこに、機関回転数パルス、ラツク位置信号及
びトリガ信号が入力されると、機関回転数が演算
され、ラツク位置が決まり、入力されたトリガ信
号と所要トリガタイミングが演算され、トリガ信
号が発せられる。
When the engine rotation speed pulse, rack position signal, and trigger signal are input, the engine rotation speed is calculated, the rack position is determined, the input trigger signal and the required trigger timing are calculated, and a trigger signal is issued. .

次に新設された油圧系であるが、タンク310
の油はポンプ309により高圧になり、蓄圧器3
08の作用により定圧に保たれる。電磁弁取付金
物302は油路が形成されており、電磁弁303
と304が取付けられている。電磁弁303は
Normal close typeで通常は閉じており、電磁弁
304はNormal open typeで通常は開放であ
り、油圧管301及び逃し管305はタンクへ開
放している。
Next is the newly installed hydraulic system, tank 310
The oil is brought to high pressure by the pump 309, and the pressure is increased to the pressure accumulator 3.
The pressure is kept constant by the action of 08. The solenoid valve mounting hardware 302 has an oil passage formed therein, and the solenoid valve 303
and 304 are installed. The solenoid valve 303
The solenoid valve 304 is a Normal close type and is normally closed, the solenoid valve 304 is a Normal open type and is normally open, and the hydraulic pipe 301 and relief pipe 305 are open to the tank.

電磁弁303と304は電磁弁コントローラに
より作動時間が設定されており、マイクロコンピ
ユータからのトリガ信号により駆動される。
The operating times of the solenoid valves 303 and 304 are set by a solenoid valve controller, and are driven by a trigger signal from a microcomputer.

まず高負荷時の噴射系の作用について述べる。 First, we will discuss the operation of the injection system under high loads.

燃料ポンプ01内の給油室06には図示しない
燃料供給ポンプにより燃料が充満しており、給排
油孔05からプランジヤ03の上部にも入つてい
る。図示しない機関のクランク軸と同期して回転
するカムによりプランジヤ03が上昇し、給排油
孔05を閉じると燃料の圧縮が始まり、高圧にな
つた燃料はボール弁08を押しあけ、噴射管20
1、燃料弁内油路104、ノズルチツプ内油路1
05を通つて油溜り部106に導かれる。ここで
針弁107に油圧が作用し、ばね111により押
えられている力より油圧が大きくなると、針弁1
07が開き噴孔108より図示しない機関のシリ
ンダ内へ燃料が噴射される。
A fuel chamber 06 in the fuel pump 01 is filled with fuel by a fuel supply pump (not shown), and the fuel also enters the upper part of the plunger 03 through a fuel supply/drain hole 05 . The plunger 03 is raised by a cam that rotates in synchronization with the crankshaft of the engine (not shown), and when the oil supply and discharge hole 05 is closed, fuel compression begins, and the high-pressure fuel pushes open the ball valve 08, and the injection pipe 20
1. Fuel valve oil passage 104, nozzle tip oil passage 1
05 and is led to the oil sump section 106. Here, oil pressure acts on the needle valve 107, and when the oil pressure becomes larger than the force held down by the spring 111, the needle valve 107
07 opens and fuel is injected from the injection hole 108 into a cylinder of an engine (not shown).

プランジヤ03がさらに上昇し、プランジヤリ
ード04が給排油孔05にかかると高圧のプラン
ジヤ上部と低圧の給油室06とが通じるため圧力
が下がり吐出を終る。これにより逐次系内の圧力
も下がる。このとき先述の油圧系及び電磁弁がす
でに作動しており、油圧管301を通して油圧が
ピストン115の上部に作用する。ピストン11
5は針弁107より大きく数倍の径を有している
ので、油溜り106の圧力の十数分の一以下でバ
ランスする。ピストン上部の油圧がそれ以上にな
ると、ピストンは下降し、ピストン押棒116、
ばね受110、押棒109を介して針弁107も
下がり噴射を完了する。このとき油溜り部106
の圧力は高いのにもかかわらず針弁が下がり噴孔
が閉じられるため、さらに圧力が上がりポンプ側
へと伝播する。しかし、ポンプ側ではオリフイス
を通してボール弁11を押しあけ適当に減速され
圧力が下がる。そこでノズル側への高圧での圧力
伝播はなくなる。油溜り部106に高圧が作用し
なくなつたところで、電磁弁の作動が解除されピ
ストン115上部の圧力が下がる。ピストンはば
ね117により戻される。このとき油溜り部10
6の圧力は十分下がつておりばね111により針
弁107は閉じている。
When the plunger 03 further rises and the plunger lead 04 hits the oil supply/discharge hole 05, the high pressure upper part of the plunger communicates with the low pressure oil supply chamber 06, so the pressure decreases and discharge ends. This also reduces the pressure within the sequential system. At this time, the aforementioned hydraulic system and electromagnetic valve are already in operation, and hydraulic pressure acts on the upper part of the piston 115 through the hydraulic pipe 301. Piston 11
Since the needle valve 5 has a diameter several times larger than the needle valve 107, the pressure is balanced at one-tenth or less of the pressure in the oil reservoir 106. When the oil pressure at the top of the piston exceeds this level, the piston descends and the piston push rod 116,
The needle valve 107 also moves down via the spring receiver 110 and the push rod 109, completing the injection. At this time, the oil reservoir 106
Even though the pressure is high, the needle valve is lowered and the nozzle hole is closed, so the pressure increases further and propagates to the pump side. However, on the pump side, the ball valve 11 is pushed through the orifice and the pressure is appropriately decelerated. Therefore, pressure propagation at high pressure to the nozzle side is eliminated. When high pressure no longer acts on the oil reservoir 106, the solenoid valve is deactivated and the pressure above the piston 115 is reduced. The piston is returned by spring 117. At this time, the oil reservoir 10
The pressure at 6 has dropped sufficiently and the needle valve 107 is closed by the spring 111.

このように噴射の後期に高圧で噴射を終了する
ことができる。
In this way, the injection can be completed at a high pressure in the latter half of the injection.

第2図に本発明による場合の噴射現象を示し
た。噴射の後期にピストンに油圧が作用し、ノズ
ル側圧力はまだ相当高いのに噴射が完了している
のがわかる。その閉弁によりノズル側圧力は高く
なつているにもかかわらずポンプ側では圧力が吸
収されているのがわかる。
FIG. 2 shows the injection phenomenon according to the present invention. You can see that oil pressure acts on the piston in the latter half of injection, and injection is complete even though the pressure on the nozzle side is still quite high. It can be seen that even though the pressure on the nozzle side is high due to the valve closing, the pressure is absorbed on the pump side.

ここでは、1個の燃料弁につき説明したが、複
数個設置された他の燃料弁についても勿論同じこ
とになつている。
Although the explanation has been made for one fuel valve here, the same applies to other fuel valves where a plurality of fuel valves are installed.

次に複数個の燃料弁として第3図に示す3個の
燃料弁をもつ噴射装置につき、中負荷及び低負荷
の作用について述べる。
Next, we will discuss the effects of medium load and low load on an injection system having three fuel valves as shown in FIG. 3 as a plurality of fuel valves.

第4図に中負荷域での数サイクルのノズル圧
力、針弁リフト、油圧の作動について示す。これ
は各サイクル毎に3個の燃料弁のうち1個の燃料
弁を完全に閉じるように油圧を作用させたもの
で、図の1サイクル目では燃料弁c、次にb、次
にa、次にc…というように各サイクルごとに無
噴射になる燃料弁が変わるように油圧が作用する
時期を設定している(これは勿論マイクロコンピ
ユータに入力された回転数とラツク位置によりあ
らかじめ油圧の作動時期が記憶されており、それ
により作動するものである)。
Figure 4 shows the operation of nozzle pressure, needle valve lift, and hydraulic pressure over several cycles in a medium load range. This applies hydraulic pressure to completely close one of the three fuel valves in each cycle; in the first cycle in the figure, fuel valve c, then b, then a, Next, the timing at which the hydraulic pressure is applied is set so that the fuel valve that becomes non-injected changes in each cycle, as shown in c... (The activation timing is memorized and the device operates accordingly.)

このとき、噴孔面積は従来のものの2/3に絞ら
れるため、高圧での噴射となるものである。さら
に他の2個の燃料弁については、先述のように噴
射の後期に油圧を作用させ高圧で噴射を完了させ
ることを行うものである。
At this time, the area of the nozzle hole is reduced to two-thirds of the conventional one, so the injection is performed at high pressure. As for the other two fuel valves, as described above, hydraulic pressure is applied in the latter half of the injection to complete the injection at high pressure.

次にさらに負荷あるいは回転数が下がり従来の
ものでは相当に噴射圧が低い場合について第5図
により説明する。
Next, a case where the load or rotational speed is further reduced and the injection pressure is considerably low in the conventional system will be explained with reference to FIG.

ここでは、各サイクル毎に3個の燃料弁のうち
2個の燃料弁を完全に閉じるように油圧を作用さ
せるのである。即ち、図の1サイクル目では噴射
しているのは燃料弁a、次にc、b、a…といつ
た具合に3個のうち1個の燃料弁のみしか噴射し
ないのである。しかしながら作用する燃料弁は交
互に変るのである。このとき、噴孔面積は従来の
ものの1/3になるため、負荷、回転数が相当に低
くても、高圧での噴射が実現できる。
Here, hydraulic pressure is applied to completely close two of the three fuel valves in each cycle. That is, in the first cycle in the figure, only one of the three fuel valves injects fuel, followed by fuel valve a, then c, b, a, and so on. However, the active fuel valves alternate. At this time, the area of the nozzle hole is reduced to 1/3 of that of the conventional one, making it possible to achieve high-pressure injection even when the load and rotational speed are considerably low.

〔発明の効果〕〔Effect of the invention〕

上述の場合には次の効果がある。 The above case has the following effects.

以上のように噴射の後期に高圧のままで噴射を
完了できること及びポンプ側で圧力を吸収するこ
とにより2次噴射やキヤビテーシヨンの問題もな
いことから、 (1) 噴射後期の低圧でのだらだらした噴射がなく
なり、微粒化の悪い噴霧がなくなること及び噴
射が速やかに完了することにより機関での良好
な燃焼が確保でき性能改善につながる。
As mentioned above, injection can be completed with high pressure in the latter half of injection, and there is no problem with secondary injection or cavitation because the pressure is absorbed on the pump side. (1) Sloppy injection at low pressure in the latter half of injection This eliminates mist, which is poorly atomized, and completes injection quickly, ensuring good combustion in the engine and leading to improved performance.

(2) 機関性能に悪影響を及ぼす2次噴射または耐
久性の低下をもたらすキヤビテーシヨンの発生
もなくなることから信頼性の高い機関の噴射系
を提供することができる。
(2) Since the occurrence of secondary injection that adversely affects engine performance or cavitation that causes a decrease in durability can be eliminated, a highly reliable engine injection system can be provided.

また、部分負荷域において、複数個の燃料弁
の一部を閉じることにより噴孔面積が絞られ高
圧噴射を実現できること、及びその休止させる
燃料弁が毎サイクル同じものでなく交互に行わ
させることにより、 (3) 部分負荷での燃焼性能の改善が実現できる。
In addition, in the partial load range, by closing some of the fuel valves, the nozzle hole area is narrowed and high-pressure injection can be achieved, and the fuel valves that are stopped are not the same every cycle, but are alternated. , (3) Improved combustion performance under partial load can be achieved.

(4) また休止により懸念される燃料弁の劣化また
はカーボンつまり等の不具合も交互にその休止
を行うことにより問題がなくなり高い信頼度を
維持できる。
(4) In addition, problems such as fuel valve deterioration or carbon clogging that may occur due to suspension of operation can be eliminated by alternating suspension of operation, and high reliability can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による1実施例の装置を示す説
明図、第2図は第1図の装置のピストン油圧、針
弁リフト、ノズル圧力、ポンプ圧力を示す線図、
第3図は3個の燃料弁をもつ噴射装置を示す説明
図、第4図は各サイクル毎に3個の燃料弁のうち
交互に1個の燃料弁を無噴射とした場合の状態を
示す線図、第5図は同じく交互に2個の燃料弁を
無噴射とした場合の状態を示す線図、第6図は従
来の燃料噴射装置を示す説明図、第7図は第6図
の装置の性能を示す線図である。 01……燃料ポンプ本体、08,11……逆止
弁、101……燃料弁本体、107……針弁、1
15……ピストン、201……噴射管、303,
304……電磁弁。
FIG. 1 is an explanatory diagram showing a device according to an embodiment of the present invention, and FIG. 2 is a diagram showing piston oil pressure, needle valve lift, nozzle pressure, and pump pressure of the device in FIG. 1.
Fig. 3 is an explanatory diagram showing an injection device having three fuel valves, and Fig. 4 shows a state in which one fuel valve out of the three fuel valves is alternately set to no injection in each cycle. 5 is a diagram showing the state when two fuel valves are alternately set to non-injection, FIG. 6 is an explanatory diagram showing a conventional fuel injection device, and FIG. 7 is a diagram similar to that of FIG. 6. It is a diagram showing the performance of the device. 01... Fuel pump body, 08, 11... Check valve, 101... Fuel valve body, 107... Needle valve, 1
15... Piston, 201... Injection pipe, 303,
304... Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 ジヤーク式燃料ポンプから分岐して1個のシ
リンダに複数個の燃料弁を設けたデイーゼル機関
の燃料噴射装置において、上記燃料ポンプに設け
られて燃料の吐出時に開放される逆止弁及び吐出
終了時に吐出側の圧力により開放される逆止弁
と、上記燃料弁のそれぞれに設けられ噴射系とは
別の油圧を受けて同燃料弁の針弁を押圧するピス
トンと、上記ピストンに至る油圧管をそれぞれ開
閉する電磁弁と、機関回転数、クランク回転角及
び機関の負荷等に基づき上記電磁弁の開閉を制御
するマイクロコンピユータとを具え、上記マイク
ロコンピユータが、各燃料弁の噴射の終期に同燃
料弁のピストンに油圧を供給して同燃料弁を閉鎖
し、機関の部分負荷時に、一時の燃料弁のピスト
ンに油圧を供給し、機関負荷に応じて各燃料弁の
噴射を間欠的に中止し、且つ噴射を中止する燃料
弁を周期的に順次交替させるように制御すること
を特徴とする多燃料弁噴射装置。
1. In a fuel injection system for a diesel engine in which a plurality of fuel valves are provided in one cylinder branched from a jerk-type fuel pump, a check valve that is provided in the fuel pump and is opened when fuel is discharged, and a discharge termination valve. a check valve that is opened by pressure on the discharge side; a piston that is installed in each of the fuel valves and receives hydraulic pressure separate from the injection system to press the needle valve of the fuel valve; and a hydraulic pipe that leads to the piston. and a microcomputer that controls the opening and closing of the solenoid valves based on the engine speed, crank rotation angle, engine load, etc., and the microcomputer controls the timing at the end of injection of each fuel valve. Hydraulic pressure is supplied to the piston of the fuel valve to close the fuel valve, and when the engine is under partial load, hydraulic pressure is supplied to the piston of the temporary fuel valve, and injection of each fuel valve is intermittently stopped depending on the engine load. A multi-fuel valve injection device characterized in that the fuel valves that stop injection are controlled to be periodically and sequentially replaced.
JP24865384A 1984-11-27 1984-11-27 Multi-fuel-valve injector Granted JPS61129457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24865384A JPS61129457A (en) 1984-11-27 1984-11-27 Multi-fuel-valve injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24865384A JPS61129457A (en) 1984-11-27 1984-11-27 Multi-fuel-valve injector

Publications (2)

Publication Number Publication Date
JPS61129457A JPS61129457A (en) 1986-06-17
JPH0526949B2 true JPH0526949B2 (en) 1993-04-19

Family

ID=17181323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24865384A Granted JPS61129457A (en) 1984-11-27 1984-11-27 Multi-fuel-valve injector

Country Status (1)

Country Link
JP (1) JPS61129457A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659065B2 (en) * 1986-06-04 1994-08-03 日本電気株式会社 Data transmission method
JP2655415B2 (en) * 1988-04-14 1997-09-17 石川島播磨重工業株式会社 Fuel injection device
DE102004018233B3 (en) * 2004-04-15 2005-10-06 Man B & W Diesel Ag Internal combustion engine plant especially for ship propulsion has fuel line with electronically controlled fuel valve, with each valve alternately pressurized by compressed air for opening depending on crankshaft position

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738781A (en) * 1980-06-24 1982-03-03 Chinoin Gyogyszer Es Vegyeszet Quinazoline compound

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618220Y2 (en) * 1981-03-23 1986-03-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5738781A (en) * 1980-06-24 1982-03-03 Chinoin Gyogyszer Es Vegyeszet Quinazoline compound

Also Published As

Publication number Publication date
JPS61129457A (en) 1986-06-17

Similar Documents

Publication Publication Date Title
US6439202B1 (en) Hybrid electronically controlled unit injector fuel system
JP3583784B2 (en) Hydraulic drive electronic fuel injection system
JP2651432B2 (en) Common rail fuel injector
US6843053B2 (en) Fuel system
USRE33270E (en) Pressure-controlled fuel injection for internal combustion engines
US7574995B2 (en) Fuel injection system
US5577892A (en) Method of injecting fuel including delayed magnetic spill valve actuation
EP1164283B1 (en) A fuel injection valve
US6604507B1 (en) Fuel injector
US20030127539A1 (en) Injection device and method for injecting a fluid
US8113175B2 (en) Fuel injection system
EP0340807B1 (en) Method and apparatus for precisely controlled fuel injection in internal combustion engine
US5323964A (en) High pressure unit fuel injector having variable effective spill area
RU2273764C2 (en) Injection system
US5558067A (en) Double pulsing electronic unit injector solenoid valve to fill timing chamber before metering chamber
JPH0526949B2 (en)
US7654469B2 (en) Fuel injection system for an internal combustion engine
JPH0513979Y2 (en)
JP3322578B2 (en) Two-fluid injection device
US10570863B1 (en) Fuel injector having cam-actuated plunger and plunger cavity metering edge for valvetrain noise suppression
US10975815B2 (en) Fuel injector and fuel system with valve train noise suppressor
JPH031508B2 (en)
JP4550991B2 (en) Fuel / water injection internal combustion engine
JPS647244Y2 (en)
JPS61185674A (en) Fuel injection device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees