JPH0513979Y2 - - Google Patents

Info

Publication number
JPH0513979Y2
JPH0513979Y2 JP1985030392U JP3039285U JPH0513979Y2 JP H0513979 Y2 JPH0513979 Y2 JP H0513979Y2 JP 1985030392 U JP1985030392 U JP 1985030392U JP 3039285 U JP3039285 U JP 3039285U JP H0513979 Y2 JPH0513979 Y2 JP H0513979Y2
Authority
JP
Japan
Prior art keywords
fuel
valve
injection
pressure
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985030392U
Other languages
Japanese (ja)
Other versions
JPS61147368U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985030392U priority Critical patent/JPH0513979Y2/ja
Publication of JPS61147368U publication Critical patent/JPS61147368U/ja
Application granted granted Critical
Publication of JPH0513979Y2 publication Critical patent/JPH0513979Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は多燃料弁噴射装置に関する。[Detailed explanation of the idea] [Industrial application field] The present invention relates to a multi-fuel valve injection system.

〔従来の技術〕[Conventional technology]

第7図にデイーゼル機関の燃料噴射系の基本構
成について示す。第7図aは燃料ポンプ1001で高
圧を発生し、噴射管1002を通り燃料弁1003から霧
状に噴射されるものである。最近の機関では1個
の燃料ポンプに2個の燃料弁またはそれ以上の燃
料弁を装着したものがある。第7図bに3個の燃
料弁を配設したものを示す。ここでは、この3個
のものを例に噴射系の具体的構造、作用、欠点等
につき第8図により説明する。
FIG. 7 shows the basic configuration of a diesel engine fuel injection system. In FIG. 7a, high pressure is generated by a fuel pump 1001, which passes through an injection pipe 1002 and is injected in the form of a mist from a fuel valve 1003. Some modern engines have one fuel pump equipped with two or more fuel valves. FIG. 7b shows an arrangement with three fuel valves. Here, the specific structure, operation, drawbacks, etc. of the injection system will be explained using FIG. 8 using these three systems as examples.

図において、01は燃料ポンプ本体、02はプ
ランジヤバレル、03はプランジヤ、04はプラ
ンジヤリード、05は給排油孔、06は給油室、
07は吐出弁弁座、08は吐出弁、09は吐出弁
吸戻しカラー、10は吐出弁ばね、11は吐出弁
押え金物、12はコントローララツクである。ま
た、101は燃料弁本体、102はノズルチツ
プ、103は袋ナツトで、ノズルチツプ102を
燃料弁本体101に締めつけている。104は燃
料弁内油路、105はノズルチツプ内油路、10
6は油溜り部である。107は針弁、108は噴
孔、109は針弁押棒、110はばね受、111
はばねで、112は針弁開弁圧調整ねじである。
201は燃料ポンプと燃料弁とをつなぐ高圧噴射
管である。
In the figure, 01 is the fuel pump body, 02 is the plunger barrel, 03 is the plunger, 04 is the plunger lead, 05 is the oil supply/drain hole, 06 is the oil supply chamber,
07 is a discharge valve seat, 08 is a discharge valve, 09 is a discharge valve suction back collar, 10 is a discharge valve spring, 11 is a discharge valve presser, and 12 is a controller rack. Further, 101 is a fuel valve main body, 102 is a nozzle tip, and 103 is a cap nut that fastens the nozzle tip 102 to the fuel valve main body 101. 104 is an oil passage in the fuel valve, 105 is an oil passage in the nozzle tip, 10
6 is an oil reservoir. 107 is a needle valve, 108 is a nozzle hole, 109 is a needle valve push rod, 110 is a spring holder, 111
112 is a spring, and 112 is a needle valve opening pressure adjustment screw.
201 is a high pressure injection pipe that connects the fuel pump and the fuel valve.

燃料ポンプ01内の給油室06には図示しない
燃料供給ポンプにより燃料が充満しており、給排
油孔05からプランジヤ03の上部にも入つてい
る。次にポンプの作用について述べると、図示し
ない機関のクランク軸と同期して回転するカムに
よりプランジヤ03が上昇し、給排油孔05を閉
じると燃料の圧縮が始まり、高圧になつて燃料は
吐出弁08を押しあけ、噴射管201、燃料弁内
油路104、ノズルチツプ内油路105を通つて
油溜り部106に導かれる。ここで針弁107に
油圧が作用し、ばね111により押えられている
力より油圧が大きくなると、針弁107が開き、
噴孔108より図示しない機関のシリンダ内へ燃
料が噴射される。プランジヤ03がさらに上昇す
ると、プランジヤリード04が給排油孔05にか
かり高圧のプランジヤ上部と低圧の給油室06と
が通じるため圧力が下がり吐出が終ることにな
る。これにより逐次系内の圧力が下がり油溜り部
106の圧力も下がり、油圧にばね力が打ち勝つ
て針弁が閉じ噴射を終る。通常噴射終りの圧力は
噴射始めの圧力より約4割程度低いものである。
また、吐出終り時圧力が下がると吐出弁08はす
ぐに閉じ、このとき燃料弁とポンプの間に噴射管
201を介して閉止した長い管路が形成されるた
め、この間で圧力波の往復が残り、この圧力波に
より針弁107が再開し、噴孔からの再噴射が起
きたり、管路内や油溜り部に空洞を生じたりする
ことがある。この両噴射現象を通常2次噴射と称
している。第9図に噴射圧力、針弁の動きを示し
ている。
A fuel chamber 06 in the fuel pump 01 is filled with fuel by a fuel supply pump (not shown), and the fuel also enters the upper part of the plunger 03 through a fuel supply/drain hole 05 . Next, talking about the action of the pump, the plunger 03 is raised by a cam that rotates in synchronization with the crankshaft of the engine (not shown), and when the oil supply and discharge hole 05 is closed, the fuel starts to be compressed, and the fuel becomes high pressure and is discharged. The valve 08 is pushed open, and the oil is guided to the oil reservoir 106 through the injection pipe 201, the oil passage 104 in the fuel valve, and the oil passage 105 in the nozzle tip. Here, oil pressure acts on the needle valve 107, and when the oil pressure becomes greater than the force held down by the spring 111, the needle valve 107 opens.
Fuel is injected from the injection hole 108 into a cylinder of an engine (not shown). When the plunger 03 further rises, the plunger lead 04 enters the oil supply/discharge hole 05, and the high pressure upper part of the plunger communicates with the low pressure oil supply chamber 06, so that the pressure decreases and discharge ends. As a result, the pressure in the system gradually decreases, and the pressure in the oil reservoir 106 also decreases, and the spring force overcomes the hydraulic pressure, closing the needle valve and ending the injection. Normally, the pressure at the end of injection is about 40% lower than the pressure at the beginning of injection.
In addition, when the pressure at the end of discharge decreases, the discharge valve 08 closes immediately, and at this time, a long closed pipeline is formed between the fuel valve and the pump via the injection pipe 201, so that the pressure waves are not transmitted back and forth between the fuel valve and the pump. This remaining pressure wave may cause the needle valve 107 to reopen, causing re-injection from the nozzle hole, or creating a cavity in the pipe or oil reservoir. This double injection phenomenon is usually called secondary injection. Figure 9 shows the injection pressure and movement of the needle valve.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

上記のものには次の欠点がある。 The above has the following drawbacks.

上述のように噴射終りの圧力は噴射開始圧力よ
りも低い。これはすでに燃焼を開始し空気の消費
がなされているシリンダ内に粗い噴霧での噴射を
行うことになり、燃焼の悪化、煙の発生につなが
るもので機関にとつて好ましくない。また、2次
噴射も同様に低圧の噴射であると共に遅い時期で
の噴射であるので前述のものよりさらに悪い現象
となる。空洞の発生は、その程度が大きいものに
なるとキヤビテーシヨンエロージヨンを生じ、噴
射管、針弁等の破損につながることもある。ま
た、シール部の悪化や針弁摺動部の焼付きに至る
こともある。
As mentioned above, the pressure at the end of injection is lower than the pressure at the start of injection. This results in a coarse spray being injected into the cylinder where combustion has already started and air has been consumed, which leads to poor combustion and the generation of smoke, which is undesirable for the engine. Furthermore, since the secondary injection is also a low-pressure injection and is also an injection at a late timing, the phenomenon is even worse than the above-mentioned one. If the occurrence of cavities becomes large enough, cavitation erosion may occur, which may lead to damage to injection pipes, needle valves, etc. Furthermore, it may lead to deterioration of the sealing part or seizure of the needle valve sliding part.

さらに第10図は横軸に機関回転数N、縦軸に
平均有効圧力Pmeをとつたときの等噴射圧力線
を示したものである。低回転及び低負荷では噴射
圧力が低くなり、これも先述のように燃焼悪化に
つながるものである。
Furthermore, FIG. 10 shows constant injection pressure lines when the horizontal axis is the engine speed N and the vertical axis is the average effective pressure Pme. At low rotation speeds and low loads, the injection pressure becomes low, which also leads to deterioration of combustion as described above.

かかる現状に鑑み実用新案登録出願人は、上記
の従来技術における欠点を解消した多燃料弁噴射
装置を先に特願昭59−248653号として特許出願し
た。
In view of the current situation, the applicant for utility model registration has filed a patent application for a multi-fuel valve injection device that eliminates the drawbacks of the prior art described above in Japanese Patent Application No. 59-248653.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の目的は上記の点に着目し、2次噴射及
び空洞の発生がなく同時に高圧で噴射を完了し、
俗に言う「噴射の切れ」を向上させることがで
き、さらに低負荷、低回転域で燃料弁の一部を閉
じることにより噴射圧を上げ燃焼を良好に保つこ
とのできる噴射装置を提供することであり、その
特徴とするところは、ジヤーク式燃料ポンプから
分岐して1個のシリンダに複数個の燃料弁を設け
たデイーゼル機関の燃料噴射装置であつて、上記
燃料ポンプに設けられて燃料の吐出時に開放され
る逆止弁及び吐出終了時に吐出側の圧力により開
放される逆止弁と、上記燃料弁のそれぞれに設け
られ噴射系とは別の油圧を受けて同燃料弁の針弁
を押圧するピストンと、上記ピストンに至る油圧
管をそれぞれ開閉する電磁弁と、機関回転数、ク
ランク回転角及び機関の負荷等に基づき上記電磁
弁の開閉を制御するマイクロコンピユータとを具
え、上記マイクロコンピユータが、各燃料弁の噴
射の終期に同燃料弁のピストンに油圧を供給して
同燃料弁を閉鎖し、機関の部分負荷時に、一部の
燃料弁のピストンに油圧を供給し、機関負荷に応
じて各燃料弁の噴射を間欠的に中止し、且つ噴射
を中止する燃料弁を周期的に順次交替させるよう
に制御する多燃料弁噴射装置において、上記燃料
弁の給油室に圧力検出器を取付け、同圧力検出器
により上記燃料弁の噴射の終期を検出するように
構成したことである。
The purpose of this invention is to focus on the above points, to simultaneously complete injection at high pressure without secondary injection or cavity formation,
To provide an injection device capable of improving so-called "cutting of injection" and further increasing injection pressure and maintaining good combustion by closing a part of a fuel valve in a low load and low rotation range. Its feature is that it is a diesel engine fuel injection device that is branched from a jerk-type fuel pump and has multiple fuel valves in one cylinder. A check valve that is opened at the time of discharge, a check valve that is opened by pressure on the discharge side at the end of discharge, and a needle valve of the fuel valve that is provided in each of the fuel valves and receives hydraulic pressure separate from the injection system. The microcomputer comprises a piston to press, a solenoid valve to open and close hydraulic pipes leading to the piston, and a microcomputer to control opening and closing of the solenoid valve based on engine speed, crank rotation angle, engine load, etc. At the end of injection of each fuel valve, hydraulic pressure is supplied to the piston of the fuel valve to close the fuel valve, and when the engine is under partial load, hydraulic pressure is supplied to the piston of some fuel valves to reduce the engine load. In a multi-fuel valve injection device that controls to intermittently stop the injection of each fuel valve according to the timing of the injection, and to periodically and sequentially replace the fuel valves that stop the injection, a pressure detector is installed in the fuel supply chamber of the fuel valve. The present invention is configured such that the end of injection of the fuel valve is detected by the pressure detector.

〔作用〕[Effect]

この場合は、噴射の後期に高圧のままで噴射を
完了でき、ポンプ側で圧力を吸収して、2次噴射
やキヤビテーシヨンの問題がなく、さらに燃料弁
の一部を閉じて噴射圧を上げ、燃焼を良好に保
つ。
In this case, the injection can be completed with high pressure in the latter half of the injection, the pressure is absorbed on the pump side, there is no problem with secondary injection or cavitation, and the injection pressure is increased by closing part of the fuel valve. Maintains good combustion.

なお、前記特願昭59−248653号発明の実施例に
おいては、燃料ポンプのコントロールラツクに取
付けたラツク位置検出器を用いて各燃料弁の噴射
の終期を検出するため、噴射終期の決定にコント
ロールラツクのバツクラツシユ、プランジヤの摩
耗等の機械的誤差を生ずる惧れがあるが、本考案
においては圧電素子等の圧力検出器により給油室
の圧力を検出するため、一層精度の高い噴射制御
を行うことができる。
In the embodiment of the invention of Japanese Patent Application No. 59-248653, the end of injection of each fuel valve is detected using a rack position detector attached to the control rack of the fuel pump, so the control is used to determine the end of injection. There is a risk of mechanical errors such as backlash and plunger wear, but in this invention, the pressure in the oil supply chamber is detected using a pressure detector such as a piezoelectric element, so injection control with even higher precision can be performed. I can do it.

〔実施例〕〔Example〕

以下図面を参照して本考案による実施例につき
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本考案による1実施例の噴射装置を示
す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of the injection device according to the present invention.

図において、01は燃料ポンプ本体、02はプ
ランジヤバレル、03はプランジヤ、04はプラ
ンジヤリード、05は給排油孔、06は給油室、
07は弁座、08はボール弁即ち逆止弁、09は
ばね、10はばね受で油路が設けられている。1
1はボール弁即ち逆止弁、12はばね、13はば
ね受で油路をもつている。14はオリフイス、1
5は押え金物、16はコントロールラツクであ
る。
In the figure, 01 is the fuel pump body, 02 is the plunger barrel, 03 is the plunger, 04 is the plunger lead, 05 is the oil supply/drain hole, 06 is the oil supply chamber,
07 is a valve seat, 08 is a ball valve or check valve, 09 is a spring, and 10 is a spring receiver, and an oil passage is provided therein. 1
1 is a ball valve or check valve, 12 is a spring, and 13 is a spring receiver having an oil passage. 14 is orifice, 1
5 is a presser foot, and 16 is a control rack.

101は燃料弁本体、102はノズルチツプ、
103は袋ナツトで、ノズルチツプ102を燃料
弁本体101に締めつけている。104は燃料弁
内油路、105はノズルチツプ内油路、106は
油溜り部である。107は針弁、108は噴孔、
109は針弁押棒、110はばね受け、111は
ばねで、112は針弁開弁圧調整ねじで、113
はロツクナツトである。114はピストンガイ
ド、115はピストンである。116はピストン
押棒、117はばね、118はピストン上部金物
である。
101 is a fuel valve body, 102 is a nozzle tip,
A cap nut 103 fastens the nozzle tip 102 to the fuel valve body 101. 104 is an oil passage in the fuel valve, 105 is an oil passage in the nozzle tip, and 106 is an oil reservoir. 107 is a needle valve, 108 is a nozzle hole,
109 is a needle valve push rod, 110 is a spring holder, 111 is a spring, 112 is a needle valve opening pressure adjustment screw, 113
is rock nut. 114 is a piston guide, and 115 is a piston. 116 is a piston push rod, 117 is a spring, and 118 is a piston upper metal fitting.

201は燃料ポンプと燃料弁とをつなぐ高圧噴
射管である。
201 is a high pressure injection pipe that connects the fuel pump and the fuel valve.

301は油圧管、302は電磁弁取付金物、3
03,304は電磁弁、305は逃し管、30
6,307は油圧管、308は蓄圧器、309は
ポンプ、310は油タンクである。
301 is a hydraulic pipe, 302 is a solenoid valve mounting hardware, 3
03, 304 is a solenoid valve, 305 is a relief pipe, 30
6, 307 is a hydraulic pipe, 308 is a pressure accumulator, 309 is a pump, and 310 is an oil tank.

401はトリガ信号発生器、402は回転数パ
ルス発生器である。
401 is a trigger signal generator, and 402 is a rotation speed pulse generator.

501はデイフレクタ、502は圧電素子
(AEセンサ)である。
501 is a deflector, and 502 is a piezoelectric element (AE sensor).

上記構成の場合の作用について述べる。 The operation in the case of the above configuration will be described.

まずマイクロコンピユータの働きについて述べ
る。
First, I will explain how a microcomputer works.

演算機能として、回転数パルスから回転数、ま
た圧電素子の信号からポンプ吐出終りの判別及び
トリガ信号からの差により負荷が演算される。
As a calculation function, the load is calculated based on the rotation speed from the rotation speed pulse, the determination of the end of pump discharge from the piezoelectric element signal, and the difference from the trigger signal.

記憶部としては、回転数、負荷に応じた遅延ト
リガ発生時期、さらに回転数を横軸、負荷を縦軸
にとつて作動燃料弁の数をかえるマツプがある。
作動マツプの例を第2図に示した。
The memory section includes a map for changing the delay trigger generation timing according to the rotation speed and load, and the number of activated fuel valves with the rotation speed on the horizontal axis and the load on the vertical axis.
An example of the operation map is shown in Figure 2.

次に新設された油圧系であるが、タンク310
の油はポンプ309により高圧になり、蓄圧器3
08の作用により定圧に保たれる、電磁弁取付金
物302は油路が形成されており、電磁弁303
と304が取付けられている。電磁弁303は
Normal close typeで通常は閉じており、電磁弁
304はNormal open typeで通常は開放であ
り、油圧管301及び逃し管305はタンクへ開
放している。
Next is the newly installed hydraulic system, tank 310
The oil is brought to high pressure by the pump 309, and the pressure is increased to the pressure accumulator 3.
The solenoid valve mounting hardware 302, which is maintained at a constant pressure by the action of 08, has an oil passage formed therein, and the solenoid valve 303
and 304 are installed. The solenoid valve 303
The solenoid valve 304 is a Normal close type and is normally closed, the solenoid valve 304 is a Normal open type and is normally open, and the hydraulic pipe 301 and relief pipe 305 are open to the tank.

電磁弁303と304は電磁弁コントローラに
より作動時間が設定されており、マイクロコンピ
ユータからの遅延トリガ信号により駆動される。
The operating times of the solenoid valves 303 and 304 are set by a solenoid valve controller, and are driven by a delayed trigger signal from a microcomputer.

噴射系の作用について述べるが、ここでは第7
図bに示した3燃料弁を例にとり第2図に示した
作動マツプに従つて順次説明する。
We will discuss the operation of the injection system, but here we will discuss the 7th function.
Taking the three fuel valves shown in FIG. 2 as an example, explanation will be given in sequence according to the operation map shown in FIG.

まず、3燃料弁作動域A、即ち高負荷時の作用
について述べる。
First, the operation in the three-fuel valve operating range A, that is, at high loads, will be described.

燃料ポンプ01内の給油室06には図示しない
燃料供給ポンプにより燃料が充満しており、給排
油孔05からプランジヤ03の上部にも入つてい
る。図示しない機関のクランク軸と同期して回転
するカムによりプランジヤ03が上昇し、給排油
孔05を閉じると燃料の圧縮が始まり、高圧にな
つた燃料はボール弁08を押しあけ、噴射管20
1、燃料弁内油路104、ノズルチツプ内油路1
05を通つて油溜り部106に導かれる。ここで
針弁107に油圧が作用し、ばね111により押
えられている力より油圧が大きくなると、針弁1
07が開き噴孔108より図示しない機関のシリ
ンダ内へ燃料が噴射される。
A fuel chamber 06 in the fuel pump 01 is filled with fuel by a fuel supply pump (not shown), which also enters the upper part of the plunger 03 through a fuel supply/drain hole 05 . The plunger 03 is raised by a cam that rotates in synchronization with the crankshaft of the engine (not shown), and when the oil supply and drain hole 05 is closed, fuel compression begins, and the high-pressure fuel pushes open the ball valve 08 and the injection pipe 20.
1. Fuel valve internal oil passage 104, nozzle tip internal oil passage 1
05 and is led to the oil reservoir 106. Here, oil pressure acts on the needle valve 107, and when the oil pressure becomes greater than the force held down by the spring 111, the needle valve 107
07 opens and fuel is injected from the injection hole 108 into a cylinder of an engine (not shown).

プランジヤ03がさらに上昇し、プランジヤリ
ード04が給排油孔05にかかると高圧のプラン
ジヤ上部と低圧の給油室06とが通じるため圧力
が下がり吐出を終る。これにより逐次系内の圧力
も下がる。このとき先述の油圧系及び電磁弁がす
でに作動しており、油圧管301を通して油圧が
ピストン115の上部に作用する。ピストン11
5は針弁107より大きく数倍の径を有している
ので、油溜り106の圧力の十数分の一以下でバ
ランスする。ピストン上部の油圧がそれ以上にな
ると、ピストンは下降し、ピストン押棒116、
ばね受110、押棒109を介して針弁107も
下がり噴射を完了する。このとき油溜り部106
の圧力は高いのにもかかわらず針弁が下がり、噴
孔が閉じられるため、さらに圧力が上がりポンプ
側へと伝播する。しかし、ポンプ側ではオリフイ
スを通してボール弁11を押しあけ適当に減速さ
れ圧力が下がる。そこでノズル側への高圧での圧
力伝播はなくなる。油溜り部106に高圧が作用
しなくなつたところで、電磁弁の作動が解除され
ピストン115上部の圧力が下がる。ピストンは
ばね117による戻される。このとき油溜り部1
06の圧力は十分下がつており、ばね111によ
り針弁107は閉じている。
When the plunger 03 further rises and the plunger lead 04 is applied to the oil supply/discharge hole 05, the high pressure upper part of the plunger communicates with the low pressure oil supply chamber 06, so the pressure decreases and discharge ends. This also reduces the pressure within the sequential system. At this time, the aforementioned hydraulic system and electromagnetic valve are already in operation, and hydraulic pressure acts on the upper part of the piston 115 through the hydraulic pipe 301. Piston 11
Since the needle valve 5 has a diameter several times larger than the needle valve 107, the pressure is balanced at one-tenth or less of the pressure in the oil reservoir 106. When the oil pressure at the top of the piston exceeds this level, the piston descends and the piston push rod 116,
The needle valve 107 also moves down via the spring receiver 110 and the push rod 109, completing the injection. At this time, the oil reservoir 106
Even though the pressure is high, the needle valve is lowered and the nozzle hole is closed, which further increases the pressure and propagates to the pump side. However, on the pump side, the ball valve 11 is pushed through the orifice and the pressure is appropriately decelerated. Therefore, pressure propagation at high pressure to the nozzle side is eliminated. When high pressure no longer acts on the oil reservoir 106, the solenoid valve is deactivated and the pressure above the piston 115 is reduced. The piston is returned by spring 117. At this time, oil sump part 1
The pressure at 06 has dropped sufficiently, and the needle valve 107 is closed by the spring 111.

このように噴射の後期に高圧で噴射を終了する
ことができる。
In this way, the injection can be completed at a high pressure in the latter half of the injection.

第3図に本考案による場合噴射現象を示した。
噴射の後期にピストンに油圧が作用し、ノズル側
圧力はまだ相当高いのに噴射が完了しているのが
わかる。その閉弁によりノズル側圧力は高くなつ
ているにもかかわらずポンプ側では圧力が吸収さ
れているのがわかる。
FIG. 3 shows the jetting phenomenon according to the present invention.
You can see that oil pressure acts on the piston in the latter half of injection, and injection is complete even though the pressure on the nozzle side is still quite high. It can be seen that even though the pressure on the nozzle side is high due to the valve closing, the pressure is absorbed on the pump side.

次に2燃料弁作動域Bでの作用を述べる。 Next, the action in the two-fuel valve operating range B will be described.

第4図において、1サイクル目では燃料弁c、
次にb、次にc…というよに各サイクルごとに無
噴射になる燃料弁が変るように、油圧が作用する
時期が設定されている(これは勿論マイクロコン
ピユータに入力された回転数と吐出終り信号とト
リガ信号から負荷が演算されそれにより作動す
る。)このとき噴孔面積は従来のものの2/3に絞ら
れるため、高圧での噴射となるのである。さらに
他の2個の燃料弁については先述のように噴射の
後期に油圧を作用させ高圧で噴射を完了させるこ
とを行うのである。
In FIG. 4, in the first cycle, the fuel valve c,
Next, b, then c, etc., the timing at which the hydraulic pressure is applied is set so that the fuel valve that does not inject changes in each cycle (this is, of course, determined by the rotational speed input to the microcomputer and the discharge (The load is calculated from the end signal and the trigger signal, and the system operates accordingly.) At this time, the area of the nozzle hole is reduced to two-thirds of that of the conventional one, resulting in high-pressure injection. Furthermore, as mentioned above, hydraulic pressure is applied to the other two fuel valves in the latter half of the injection to complete the injection at high pressure.

次にさらに負荷及び回転数が下がり、1燃料弁
作動域Cでは、第5図に示すように、無噴射とな
る状態が2サイクル続き、次に1回噴射するよう
にトリガ信号が発せられる。即ち、図の1サイク
ル目では噴射しているのは燃料弁a、次にc,
b,a…といつた具合に3個のうち1個の燃料弁
のみしか噴射しないのである。しかしながら、作
動する燃料弁は交互に変るのである。このとき噴
孔面積は従来の1/3になるため、負荷回転数が低
くても高圧での噴射が実現できる。
Next, the load and rotational speed further decrease, and in the 1-fuel valve operating range C, as shown in FIG. 5, the no-injection state continues for two cycles, and then a trigger signal is issued to inject once. That is, in the first cycle in the figure, the fuel valves injecting are fuel valves a, then c,
Only one of the three fuel valves injects fuel as shown in b, a, and so on. However, the fuel valves that are activated alternate. At this time, the nozzle hole area is reduced to 1/3 of the conventional size, making it possible to achieve high-pressure injection even at low load rotation speeds.

第6図にマイクロコンピユータ内での演算フロ
ーを簡単に述べる。回転数パルスで回転数の演算
が行われ圧電素子(AEセンサ)からの信号によ
り吐出終りが判別され、さらにトリガ信号との差
から負荷が演算される。これら回転数と負荷から
記憶装置としてもつている回転数−負荷マツプ上
に照合され、それにより遅延トリガ信号がそれぞ
れの燃料弁に対応する電磁弁コントローラへ発せ
られる。
FIG. 6 briefly describes the calculation flow within the microcomputer. The rotation speed is calculated using the rotation speed pulse, the end of ejection is determined based on the signal from the piezoelectric element (AE sensor), and the load is calculated from the difference with the trigger signal. These rotational speeds and loads are compared on a rotational speed-load map stored as a storage device, and a delay trigger signal is thereby issued to the electromagnetic valve controller corresponding to each fuel valve.

〔考案の効果〕[Effect of idea]

上述の場合には次の効果がある。 The above case has the following effects.

以上のように噴射の後期に高圧のままで噴射を
完了できること及びポンプ側で圧力を吸収するこ
とにより2次噴射やキヤビテーシヨンの問題もな
いことから、 (1) 噴射後期の低圧でのだらだらした噴射がなく
なり、微粒化の悪い噴霧がなくなること、及び
噴射がすみやかに完了することにより、機関で
の良好な燃焼が確保でき性能改善につながり、 (2) 機関性能に悪影響をおよぼす2次噴射または
耐久性低下をもたらすキヤビテーシヨンの発生
もなくなることから信頼性の高い機関の噴射系
を提供することができる。
As mentioned above, injection can be completed with high pressure in the latter half of injection, and there is no problem with secondary injection or cavitation because the pressure is absorbed on the pump side. (1) Sloppy injection at low pressure in the latter half of injection (2) By eliminating poorly atomized spray and completing injection quickly, good combustion in the engine can be ensured, leading to improved performance. (2) Secondary injection or durability that adversely affects engine performance Since cavitation, which causes a decrease in performance, does not occur, a highly reliable engine injection system can be provided.

また、さらに部分負荷域において、複数個の
燃料弁の一部を完全に閉じることにより噴孔面
積が絞られ高圧噴射を実現できること及び休止
させる燃料弁が毎サイクル同じものでなく交互
に行わせることにより、 (3) 部分負荷での燃焼、性能の改善が実現でき、 (4) 休止による懸念される燃料弁の劣化またはカ
ーボンのつまり等の不具合も交互に休止を行う
ことにより問題がなくなり、高い信頼性を維持
できる。
Furthermore, in a partial load range, by completely closing some of the plurality of fuel valves, the nozzle hole area is narrowed and high-pressure injection can be realized, and the fuel valves that are stopped are not the same every cycle but are alternated. (3) It is possible to improve combustion and performance under partial load, and (4) problems such as deterioration of the fuel valve or carbon blockage, which are concerns due to stoppages, can be eliminated by alternating stoppages, and high fuel efficiency can be achieved. Reliability can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案による1実施例の装置を示す説
明図、第2図は作動燃料弁の数をかえる作動マツ
プを示す説明図、第3図は第1図の装置のピスト
ン油圧、針弁リフト、ノズル圧力、ポンプ圧力、
圧電素子信号及び静的吐出始めを示す線図、第4
図は2燃料弁作動域での各弁の油圧、ノズル圧力
及び針弁リフトを示す線図、第5図は1燃料弁作
動域での各弁の油圧、ノズル圧力及び針弁リフト
を示す線図、第6図はマイクロコンピユータの演
算フローを示す線図、第7図aは従来の1個の燃
料ポンプと1個のシリンダに1個の燃料弁を設け
た燃料噴射系を示す説明図、第7図bは同じく1
個のシリンダに複数個の燃料弁を設けた燃料噴射
系を示す説明図、第8図は従来の燃料噴射装置を
示す説明図、第9図は第8図の装置のポンプ圧
力、ノズル圧力及び針弁リフトを示す線図、第1
0図は等噴射圧力線を示す線図である。 01……燃料ポンプ本体、06……給油室、0
8,11……逆止弁、101……燃料弁本体、1
07……針弁、115……ピストン、303,3
04……電磁弁。
Fig. 1 is an explanatory diagram showing an embodiment of the device according to the present invention, Fig. 2 is an explanatory diagram showing an operation map for changing the number of actuated fuel valves, and Fig. 3 is an explanatory diagram showing the piston oil pressure and needle valve of the device of Fig. 1. lift, nozzle pressure, pump pressure,
Diagram showing piezoelectric element signal and static discharge start, 4th
The figure is a line diagram showing the oil pressure, nozzle pressure, and needle valve lift of each valve in the 2-fuel valve operating range. Figure 5 is a line showing the oil pressure, nozzle pressure, and needle valve lift of each valve in the 1-fuel valve operating range. Figure 6 is a diagram showing the calculation flow of the microcomputer, Figure 7a is an explanatory diagram showing a conventional fuel injection system with one fuel pump and one fuel valve per cylinder, Figure 7b is also 1
FIG. 8 is an explanatory diagram showing a conventional fuel injection system, and FIG. 9 is an explanatory diagram showing the pump pressure, nozzle pressure, and Diagram showing needle valve lift, 1st
Figure 0 is a diagram showing equal injection pressure lines. 01...Fuel pump body, 06...Refueling chamber, 0
8, 11... Check valve, 101... Fuel valve body, 1
07... Needle valve, 115... Piston, 303,3
04... Solenoid valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ジヤーク式燃料ポンプから分岐して1個のシリ
ンダに複数個の燃料弁を設けたデイーゼル機関の
燃料噴射装置であつて、上記燃料ポンプに設けら
れて燃料の吐出時に開放される逆止弁及び吐出終
了時に吐出側の圧力により開放される逆止弁と、
上記燃料弁のそれぞれに設けられ噴射系とは別の
油圧を受けて同燃料弁の針弁を押圧するピストン
と、上記ピストンに至る油圧管をそれぞれ開閉す
る電磁弁と、機関回転数、クランク回転角及び機
関の負荷等に基づき上記電磁弁の開閉を制御する
マイクロコンピユータとを具え、上記マイクロコ
ンピユータが、各燃料弁の噴射の終期に同燃料弁
のピストンに油圧を供給して同燃料弁を閉鎖し、
機関の部分負荷時に、一部の燃料弁のピストンに
油圧を供給し、機関負荷に応じて各燃料弁の噴射
を間欠的に中止し、且つ噴射を中止する燃料弁を
周期的に順次交替させるように制御する多燃料弁
噴射装置において、上記燃料弁の給油室に圧力検
出器を取付け、同圧力検出器により上記燃料弁の
噴射の終期を検出するように構成したことを特徴
とする多燃料弁噴射装置。
A fuel injection device for a diesel engine having a plurality of fuel valves in one cylinder branched from a jerk-type fuel pump, the check valve being provided in the fuel pump and opened when fuel is discharged, and the discharge valve. A check valve that is opened by the pressure on the discharge side at the end of the process,
A piston installed in each of the above fuel valves that receives hydraulic pressure separate from the injection system to press the needle valve of the fuel valve, a solenoid valve that opens and closes the hydraulic pipes leading to the above piston, and engine speed and crank rotation. a microcomputer that controls the opening and closing of the electromagnetic valve based on the engine angle and engine load, and the microcomputer supplies hydraulic pressure to the piston of the fuel valve at the end of injection of each fuel valve to operate the fuel valve. Closed,
When the engine is under partial load, hydraulic pressure is supplied to the pistons of some fuel valves, injection of each fuel valve is intermittently stopped depending on the engine load, and the fuel valves that stop injection are periodically alternated in sequence. In the multi-fuel valve injection device, a pressure detector is attached to the fuel supply chamber of the fuel valve, and the end of injection of the fuel valve is detected by the pressure detector. Valve injection device.
JP1985030392U 1985-03-05 1985-03-05 Expired - Lifetime JPH0513979Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985030392U JPH0513979Y2 (en) 1985-03-05 1985-03-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985030392U JPH0513979Y2 (en) 1985-03-05 1985-03-05

Publications (2)

Publication Number Publication Date
JPS61147368U JPS61147368U (en) 1986-09-11
JPH0513979Y2 true JPH0513979Y2 (en) 1993-04-14

Family

ID=30530051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985030392U Expired - Lifetime JPH0513979Y2 (en) 1985-03-05 1985-03-05

Country Status (1)

Country Link
JP (1) JPH0513979Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412013A (en) * 1977-06-28 1979-01-29 Isuzu Motors Ltd Direct jet type diesel engine
JPS5713266A (en) * 1980-06-27 1982-01-23 Diesel Kiki Co Ltd Fuel injection device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412013A (en) * 1977-06-28 1979-01-29 Isuzu Motors Ltd Direct jet type diesel engine
JPS5713266A (en) * 1980-06-27 1982-01-23 Diesel Kiki Co Ltd Fuel injection device

Also Published As

Publication number Publication date
JPS61147368U (en) 1986-09-11

Similar Documents

Publication Publication Date Title
US7865293B2 (en) Fuel injection control device
JP2651432B2 (en) Common rail fuel injector
US7747377B2 (en) Fuel injection control device
US6439202B1 (en) Hybrid electronically controlled unit injector fuel system
US8014932B2 (en) Fuel injection controller for internal combustion engine
US8437942B2 (en) Fuel injection characteristic sensing device and fuel injection command correcting device
US7574995B2 (en) Fuel injection system
JPH09209867A (en) Fuel injector
EP1164283B1 (en) A fuel injection valve
US8113175B2 (en) Fuel injection system
US8443780B2 (en) Low leakage cam assisted common rail fuel system, fuel injector, and operating method therefor
US6205978B1 (en) Fuel injection
RU2273764C2 (en) Injection system
JPH0513979Y2 (en)
US5558067A (en) Double pulsing electronic unit injector solenoid valve to fill timing chamber before metering chamber
JPH0526949B2 (en)
US7654469B2 (en) Fuel injection system for an internal combustion engine
JP3322578B2 (en) Two-fluid injection device
US10570863B1 (en) Fuel injector having cam-actuated plunger and plunger cavity metering edge for valvetrain noise suppression
JP3904121B2 (en) Accumulated fuel injection valve
US20190353125A1 (en) Fuel injector and fuel system with valve train noise suppressor
JPH04272446A (en) Pressure accumulation type fuel injection device of diesel engine
JPS61192847A (en) Fuel injector
JPS61185674A (en) Fuel injection device
JPS647244Y2 (en)