JPH031508B2 - - Google Patents

Info

Publication number
JPH031508B2
JPH031508B2 JP57213598A JP21359882A JPH031508B2 JP H031508 B2 JPH031508 B2 JP H031508B2 JP 57213598 A JP57213598 A JP 57213598A JP 21359882 A JP21359882 A JP 21359882A JP H031508 B2 JPH031508 B2 JP H031508B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
valve
pressure chamber
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57213598A
Other languages
Japanese (ja)
Other versions
JPS59103960A (en
Inventor
Masaaki Saito
Hiromichi Miwa
Toyoaki Nakagawa
Akinobu Moryama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21359882A priority Critical patent/JPS59103960A/en
Publication of JPS59103960A publication Critical patent/JPS59103960A/en
Publication of JPH031508B2 publication Critical patent/JPH031508B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【発明の詳細な説明】 本発明はデイーゼル機関に用いられるユニツト
インジエクタの燃料噴射制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel injection control device for a unit injector used in a diesel engine.

デイーゼル機関は、燃料噴射を行なうために通
常は燃料を高圧化する噴射ポンプと、この噴射ポ
ンプから圧送される燃料をノズルに供給する燃料
噴射管と、高圧燃料を噴射するノズルとを備えて
いるが、これらを一体化したものとしてユニツト
インジエクタがあり、このユニツトインジエクタ
を各気筒に配設した燃料噴射装置が例えば
SAEpaper750773号に提案されている。
A diesel engine usually includes an injection pump that pressurizes the fuel to perform fuel injection, a fuel injection pipe that supplies the fuel pumped from the injection pump to a nozzle, and a nozzle that injects the high-pressure fuel. However, there is a unit injector that integrates these, and a fuel injection system in which this unit injector is installed in each cylinder is, for example,
It is proposed in SAEpaper No. 750773.

このようなユニツトインジエクタの一例を第1
図、第2図に示すと、ユニツトインジエクタ1
は、機関の回転に同期して回転するカムシヤフト
2により、プツシユロツド3、ロツカアーム4を
介してプランジヤ5を図中上下動させることによ
つて圧力室6内の燃料の圧力を高め、この高圧燃
料をノズル7のニードル室8に導き、ニードルバ
ルブ9をバルブスプリング10に抗して持ち上
げ、スプレーチツプ11の噴孔12より燃料を噴
射するものである。
An example of such a unit injector is shown in the first example.
As shown in Fig. 2, unit injector 1
The camshaft 2, which rotates in synchronization with the rotation of the engine, moves the plunger 5 up and down in the figure via the push rod 3 and the rocker arm 4, thereby increasing the pressure of the fuel in the pressure chamber 6, and pumping this high-pressure fuel. The fuel is introduced into the needle chamber 8 of the nozzle 7, the needle valve 9 is lifted up against the valve spring 10, and the fuel is injected from the nozzle hole 12 of the spray tip 11.

この場合、燃料噴射量の制御はコントロールラ
ツク13によつて(コントロールラツク13はガ
バナに連動する)プランジヤブツシング14を介
してプランジヤ5をその軸線回りに回転させるこ
とにより行なう。すなわち、プランジヤ5の下降
時において、スパイラル状の溝であるメータリン
グリセス15の上部が前記ブツシング14のアツ
パポート16に、メータリングリセス15の下部
がロアポート17に、それぞれ連通する時期を変
更することにより、圧力室6内での圧縮開始及び
終了時期を変えて噴射量の制御を行つている。
In this case, the fuel injection amount is controlled by a control rack 13 by rotating the plunger 5 about its axis via a plunger bushing 14 (the control rack 13 is interlocked with a governor). That is, by changing the timing at which the upper part of the metering recess 15, which is a spiral groove, communicates with the upper port 16 of the bushing 14, and the lower part of the metering recess 15 communicates with the lower port 17, when the plunger 5 descends. The injection amount is controlled by changing the compression start and end times in the pressure chamber 6.

しかしながら、このような従来のユニツトイン
ジエクタ1にあつては、噴射量はいわゆる機械式
(コントロールラツク13によるプランジヤ5を
回転する)の制御であつたため、このようなあら
かじめコントロールラツク13により決定された
噴射量、あるいは機械式の噴射時期調整装置等で
定められた噴射量は、大略直線的ないしは緩やか
な曲線で変化する(メータリングリセス15の形
状等に起因する)ように変更できるのみである。
したがつて、機関の運転条件(回転数、出力、水
温等)の変化に対応して最適の噴射量を得ること
ができないという問題点があつた。
However, in the case of such a conventional unit injector 1, the injection amount was controlled by a so-called mechanical method (the plunger 5 is rotated by the control rack 13). The injection amount or the injection amount determined by a mechanical injection timing adjustment device or the like can only be changed so that it changes approximately linearly or along a gentle curve (due to the shape of the metering recess 15, etc.).
Therefore, there was a problem in that it was not possible to obtain the optimum injection amount in response to changes in engine operating conditions (rotational speed, output, water temperature, etc.).

したがつて、この噴射量をいわゆる電気的に制
御し、機関、車輛の特性に、また、その運転条件
に応じて、正確に燃費、排気、騒音、出力等に対
し常に適切なマツチングを行うことを目的とする
ものが特開昭54−50726号公報に前記ユニツトイ
ンジエクタとして提案されている。
Therefore, it is necessary to electrically control this injection amount and always perform appropriate matching for fuel efficiency, exhaust, noise, output, etc., depending on the characteristics of the engine and vehicle, as well as the operating conditions. A unit injector for this purpose has been proposed in Japanese Patent Laid-Open No. 54-50726.

しかしながら、このような従来のユニツトイン
ジエクタにあつては、電磁弁で高圧燃料の噴射ノ
ズルへの供給を直接的に制御する(噴射圧力を直
接制御する)ようになされていたため、例えば噴
射圧力を1000気圧とした場合、この圧力が電磁弁
の弁体のシート部先端に作用すると、たとえシー
ト面積を直径1mm程度と極微小にしても開弁に8
Kg/cm2程度の力を必要とする。一方、この電磁弁
の応答速度については、小型高速デイーゼル機関
に適用する場合、例えば4600r.p.mではクランク
角度で最大でもTDC前40゜〜45゜の期間に燃料を噴
射することが要求されており、この期間はおよそ
1.6msecであり極めて短かく、さらに、低負荷運
転時にあつてはこの噴射期間は約0.4msecとさら
に短時間に噴射を終了しなければならない。
However, in such conventional unit injectors, the supply of high-pressure fuel to the injection nozzle was directly controlled using a solenoid valve (injection pressure was directly controlled). If the pressure is 1000 atm and this pressure acts on the tip of the seat of the valve body of a solenoid valve, even if the seat area is made extremely small with a diameter of about 1 mm, it will take 80 minutes to open the valve.
Requires force of about Kg/ cm2 . On the other hand, regarding the response speed of this solenoid valve, when applied to a small high-speed diesel engine, for example, at 4600 rpm, fuel is required to be injected at a maximum crank angle of 40° to 45° before TDC. , this period is approximately
The injection period is 1.6 msec, which is extremely short, and during low-load operation, the injection period must be completed in an even shorter period of about 0.4 msec.

このような高い開弁力と速い応答速度を有する
電磁弁を得ることは、たとえ可能としても高価に
ならざるを得ない。従つてこのような電磁弁は低
速でかつ高価な大型デイーゼル機関でなければ適
用出来ないという問題点があつた。
Even if it were possible to obtain a solenoid valve having such a high opening force and fast response speed, it would be expensive. Therefore, there is a problem that such a solenoid valve can only be applied to large diesel engines that are slow in speed and expensive.

そこで特願昭57−67980号では燃料噴射量を計
量する弁を別に設け、この計量弁を電磁弁の開閉
駆動によつて制御する装置を提案している。この
案では電磁弁が開くと燃料圧力がピストンを作動
し、このピストンが前記計量弁を駆動して圧力室
の燃料圧力を開放するようになつており、燃料供
給ポンプからの供給圧がピストンを駆動するた
め、ある程度の供給圧(例えば5〜数10Kg/cm2
が要求される。また制御特性を良くするためには
計量弁を大きくする必要があり、そうなるとピス
トンも大型となる。このためピストンやポペツト
弁を小型化するにはなお充分ではない面があつ
た。
Therefore, Japanese Patent Application No. 57-67980 proposes a device in which a valve for measuring the amount of fuel to be injected is provided separately, and this metering valve is controlled by opening and closing a solenoid valve. In this plan, when the solenoid valve opens, the fuel pressure operates the piston, which drives the metering valve to release the fuel pressure in the pressure chamber, and the supply pressure from the fuel supply pump operates the piston. For driving, a certain amount of supply pressure (e.g. 5 to several tens of kg/cm 2 ) is required.
is required. Furthermore, in order to improve control characteristics, it is necessary to make the metering valve larger, which in turn requires a larger piston. For this reason, it was still not enough to downsize pistons and poppet valves.

本発明はこの案をさらに改良するものであり、
機関に同期して回転するカムと、燃料供給ポンプ
により燃料供給通路を介して燃料の供給される圧
力室と、前記カムに応動して圧力室の燃料を加圧
するプランジヤと、圧力室と連通し開弁圧以上で
開くノズルと、前記圧力室と低圧側とを連通する
燃料逃し通路と、小径部と大径部を有する段付き
で形成されこの小径部前面で前記燃料逃し通路を
開閉する弁体と、この弁体を閉弁方向に付勢する
スプリングと、前記弁体の大径部背面に形成され
る背圧室と、この背圧室に前記圧力室からの高圧
燃料の一部を導く圧力通路と、この圧力通路を絞
るオリフイスと、前記背圧室上流の燃料供給通路
を開閉する弁装置と、機関の運転状態を検出する
手段からの信号に基づき前記弁装置を開閉駆動す
る制御手段とを設けることにより、弁装置自体は
背圧室の圧力を保持あるいは解放するためにだけ
使用して、弁装置の小型化を図る燃料噴射制御装
置を提供することを目的とする。
The present invention further improves this idea,
A cam that rotates in synchronization with the engine, a pressure chamber to which fuel is supplied via a fuel supply passage by a fuel supply pump, a plunger that pressurizes fuel in the pressure chamber in response to the cam, and communicates with the pressure chamber. A nozzle that opens at a pressure equal to or higher than the valve opening pressure, a fuel relief passage that communicates the pressure chamber with the low pressure side, and a stepped valve having a small diameter portion and a large diameter portion, and opens and closes the fuel relief passage in front of the small diameter portion. a spring that biases the valve body in the valve closing direction; a back pressure chamber formed on the back surface of the large diameter portion of the valve body; and a part of the high-pressure fuel from the pressure chamber into the back pressure chamber. an orifice that throttles the pressure passage; a valve device that opens and closes the fuel supply passage upstream of the back pressure chamber; and control that opens and closes the valve device based on a signal from a means for detecting the operating state of the engine. It is an object of the present invention to provide a fuel injection control device in which the valve device itself is used only to maintain or release the pressure in the back pressure chamber, thereby reducing the size of the valve device.

以下本発明を図示実施例に基づいて説明する。 The present invention will be explained below based on illustrated embodiments.

第3図は本発明の一実施例の概略構成図で、図
中ユニツトインジエクタ20の本体21に穿設さ
れたシリンダ22にプランジヤ23が摺動可能に
嵌合しており、プランジヤ23はプランジヤ23
の頭部と本体21との間に介装されたスプリング
24により図中上方に付勢されるとともに、機関
に同期して回転するカム25に頭部を当接してお
り、カム25の1回転毎にプランジヤ23は押し
下げられ、圧力室26の燃料を加圧する。
FIG. 3 is a schematic configuration diagram of an embodiment of the present invention, in which a plunger 23 is slidably fitted into a cylinder 22 bored in a main body 21 of a unit injector 20. 23
The head is urged upward in the figure by a spring 24 interposed between the head and the main body 21, and the head is in contact with a cam 25 that rotates in synchronization with the engine, and one revolution of the cam 25 Each time the plunger 23 is pushed down, the fuel in the pressure chamber 26 is pressurized.

圧力室26は燃料タンク39に連通する燃料供
給通路28に連通しており、燃料供給通路28に
介装され機関に同期して回転する燃料供給ポンプ
37が燃料タンク39内の燃料を圧力室26に供
給するようになつている。
The pressure chamber 26 communicates with a fuel supply passage 28 that communicates with a fuel tank 39. A fuel supply pump 37, which is installed in the fuel supply passage 28 and rotates in synchronization with the engine, supplies the fuel in the fuel tank 39 to the pressure chamber 26. It is now being supplied to

本体21の下部には圧力室26で加圧された高
圧燃料を図示しない燃料室に噴射するノズル27
が形成される。
At the bottom of the main body 21 is a nozzle 27 that injects high-pressure fuel pressurized in a pressure chamber 26 into a fuel chamber (not shown).
is formed.

具体的にはノズル27は圧力室26と燃料通路
29を介して連通するニードル室27D、ニード
ルバルブ27C、スプリング27B、噴孔27E
並びにスプリング室27Aから構成されており、
常時はスプリング27Bがニードルバルブ27C
を下方に付勢して噴孔27Eを閉じているが、圧
力室26の高圧燃料が燃料通路29を介してニー
ドル室27Dに伝わり、この圧力がスプリング2
7Bの付勢力(ノズル27の開弁圧)に打ち勝つ
と、ニードルバルブ27Cを上方に付勢して噴孔
27Eを開き圧力室26の燃料が噴孔27Eから
噴射されるようになつている。
Specifically, the nozzle 27 includes a needle chamber 27D communicating with the pressure chamber 26 via a fuel passage 29, a needle valve 27C, a spring 27B, and a nozzle hole 27E.
It also consists of a spring chamber 27A,
Spring 27B is normally the needle valve 27C.
is urged downward to close the nozzle hole 27E, but the high pressure fuel in the pressure chamber 26 is transmitted to the needle chamber 27D via the fuel passage 29, and this pressure is applied to the spring 2
When the urging force of the pressure chamber 7B (valve opening pressure of the nozzle 27) is overcome, the needle valve 27C is urged upward to open the nozzle hole 27E and the fuel in the pressure chamber 26 is injected from the nozzle hole 27E.

圧力室26に連通する燃料供給通路28からは
燃料逃し通路31が分岐し、この燃料逃し通路3
1を開閉する計量弁35が設けられる。
A fuel relief passage 31 branches off from the fuel supply passage 28 that communicates with the pressure chamber 26 .
A metering valve 35 that opens and closes 1 is provided.

また、燃料供給通路28のさらに上流(図で右
側)には、この燃料供給通路28を開閉する弁装
置として電磁弁36が介装される。電磁弁36が
閉じると、後述のように計量弁35も閉じるの
で、圧力室26の高圧燃料は燃料逃し通路31へ
と逃げることができず、ノズル27に供給される
ことになる。
Further, further upstream of the fuel supply passage 28 (on the right side in the figure), a solenoid valve 36 is interposed as a valve device for opening and closing the fuel supply passage 28. When the electromagnetic valve 36 closes, the metering valve 35 also closes as will be described later, so that the high-pressure fuel in the pressure chamber 26 cannot escape to the fuel relief passage 31 and is supplied to the nozzle 27.

上記計量弁35の弁体35Aは小径部と大径部
からなる段付きに形成され、小径部前面(圧力室
側)にシート部が設けられる。これに対して大径
部の背面には背圧室としてのスプリング室35B
が形成され、このスプリング室35Bに備えたス
プリング35Cにより弁体35Aが図で左方(閉
弁方向)に付勢される。さらに弁体35Aには圧
力室26からの高圧燃料をスプリング室35Bに
導く圧力通路35Dを穿設するとともに、この通
路35Dの圧力室26側には圧力調整用のオリフ
イス35Eを形成している。
The valve body 35A of the metering valve 35 is formed into a stepped shape consisting of a small diameter portion and a large diameter portion, and a seat portion is provided on the front surface (pressure chamber side) of the small diameter portion. On the other hand, a spring chamber 35B as a back pressure chamber is located on the back side of the large diameter portion.
A spring 35C provided in the spring chamber 35B biases the valve body 35A to the left (valve closing direction) in the figure. Further, the valve body 35A is provided with a pressure passage 35D for guiding high-pressure fuel from the pressure chamber 26 to the spring chamber 35B, and an orifice 35E for pressure adjustment is formed on the pressure chamber 26 side of this passage 35D.

従つて、仮に電磁弁36が開いたとすると、圧
力室26からの高圧燃料の一部は計量弁35の圧
力通路35D、スプリング室35Bから電磁弁3
6を経て燃料供給通路28へ逃げる。この時圧力
調整用のオリフイス35Eによつてオリフイス3
5Eの前後差圧が生じ(オリフイス35Eの後の
スプリング室35B側の圧力がオリフイス35E
手前の圧力室26側に圧力よりも低くなる)、こ
の前後差圧により大きな駆動力が生じ、この駆動
力により弁体35Aをスプリング35Cに抗して
図で右方に迅速に移動し計量弁を開く。ここで前
後差圧による駆動力を損わないようにスプリング
35Cの付勢力を決めており、計量弁35が開く
と、高圧燃料は燃料逃し通路31へ逃げ、ノズル
27に達する燃料圧力を開弁圧以下に下げ、燃料
噴射を遮断するようになつている。
Therefore, if the solenoid valve 36 were to open, a portion of the high pressure fuel from the pressure chamber 26 would flow from the pressure passage 35D of the metering valve 35 and the spring chamber 35B to the solenoid valve 3.
6 and escapes to the fuel supply passage 28. At this time, orifice 35E for pressure adjustment
A pressure difference between the front and rear of 5E is generated (the pressure on the spring chamber 35B side after the orifice 35E is
This pressure difference between the front and rear pressure chambers 26 generates a large driving force, which quickly moves the valve body 35A to the right in the figure against the spring 35C, opening the metering valve. open. Here, the biasing force of the spring 35C is determined so as not to impair the driving force due to the differential pressure between the front and rear, and when the metering valve 35 opens, the high-pressure fuel escapes to the fuel relief passage 31, and the fuel pressure that reaches the nozzle 27 opens the valve. It is designed to lower the pressure below the fuel pressure and cut off fuel injection.

また、電磁弁36を閉じると、スプリング室3
5Bの圧力が圧力室26と同じ圧力まで上昇し、
オリフイス前後差圧がなくなる。この状態ではス
プリング室35Bの燃料圧力が背圧として作用す
るので、弁体35Aの小径部前面と大径部背面の
受圧面積差に応じた駆動力が発生し、この力と閉
弁方向に付勢するスプリング力との合計で弁体3
5Aを図で左方に移動して計量弁35を閉じる。
Also, when the solenoid valve 36 is closed, the spring chamber 3
The pressure in 5B rises to the same pressure as pressure chamber 26,
The differential pressure across the orifice disappears. In this state, the fuel pressure in the spring chamber 35B acts as back pressure, so a driving force is generated according to the pressure receiving area difference between the front surface of the small diameter part and the back surface of the large diameter part of the valve body 35A, and this force and the applied force in the valve closing direction are generated. In total, the valve body 3
5A to the left in the figure and close the metering valve 35.

前述の電磁弁36は弁室36A、弁体36B、
ソレノイド36Cから構成され、ソレノイド36
Cが制御回路40からの信号により通電される
と、弁体36Bが弁室36Aを閉じて閉弁し、通
電が解除されると開弁してスプリング室35Bが
圧力を燃料供給通路28に逃がすものである。
The above-mentioned solenoid valve 36 includes a valve chamber 36A, a valve body 36B,
Consists of solenoid 36C, solenoid 36
When C is energized by a signal from the control circuit 40, the valve body 36B closes the valve chamber 36A, and when the energization is removed, the valve opens and the spring chamber 35B releases pressure to the fuel supply passage 28. It is something.

制御回路40は機関の運転条件を検出する手段
(例えば機関回転数を検出する回転数センサ41、
アクセルペダルの踏角を検出するアクセルセンサ
42、機関の冷却水温を検出する水温センサ4
3、クランク角を検出するクランク角センサ等)
からの検出信号に基づき、機関運転条件に最適な
駆動パルス幅を持つ信号をソレノイド36Cに出
力し、電磁弁36を開閉制御する。
The control circuit 40 includes means for detecting engine operating conditions (for example, a rotation speed sensor 41 that detects the engine rotation speed,
An accelerator sensor 42 that detects the depression angle of the accelerator pedal, and a water temperature sensor 4 that detects the engine cooling water temperature.
3. Crank angle sensor that detects crank angle, etc.)
Based on the detection signal from the solenoid 36C, a signal having a drive pulse width optimal for the engine operating conditions is output to the solenoid 36C, and the solenoid valve 36 is controlled to open and close.

シリンダ22の上部に形成される環状溝32は
燃料戻し通路33を介して燃料タンク39に連通
するとともに、燃料逃し通路31を介して計量弁
25に、また燃料逃し通路31から分岐する燃料
逃し通路31Aを介してスプリング室27Aにそ
れぞれ連通しており、余分な燃料を燃料タンク3
9に戻すようになつている。
An annular groove 32 formed in the upper part of the cylinder 22 communicates with the fuel tank 39 via a fuel return passage 33, and also communicates with the metering valve 25 via a fuel relief passage 31, and a fuel relief passage that branches from the fuel relief passage 31. 31A to the spring chambers 27A, and excess fuel is transferred to the fuel tank 3.
It's starting to go back to 9.

また、燃料供給通路28と燃料戻し通路33と
を連通する通路に介装される圧力調整弁38は燃
料供給通路28の燃料圧力を所定値に保ち、所定
値以上になつた時は開弁して燃料を燃料戻し通路
33に逃がすようになつている。
Further, a pressure regulating valve 38 installed in a passage communicating between the fuel supply passage 28 and the fuel return passage 33 maintains the fuel pressure in the fuel supply passage 28 at a predetermined value, and opens when the pressure exceeds a predetermined value. The fuel is then released into the fuel return passage 33.

以上の構成による作用を第3図A〜Eに基づい
て説明する。
The effect of the above configuration will be explained based on FIGS. 3A to 3E.

燃料供給ポンプ37により燃料タンク39の燃
料は予圧され、燃料供給通路28から、開弁して
いる電磁弁36、計量弁35を経て圧力室26に
供給され、圧力室26の圧力は燃料供給ポンプ3
7による供給圧力となつている(第3図A参照)。
尚、第4図に示すように燃料供給通路28と圧力
室26とを、連通路45で直接連通し、その間
に、通路28から圧力室26側へは流れるが逆方
向には閉となる逆止弁46を介装すれば、より速
やかなプランジヤ23の吸入行程を達成すること
ができる。
The fuel in the fuel tank 39 is pre-pressurized by the fuel supply pump 37, and is supplied from the fuel supply passage 28 to the pressure chamber 26 via the open electromagnetic valve 36 and the metering valve 35, and the pressure in the pressure chamber 26 is controlled by the fuel supply pump. 3
7 (see Fig. 3A).
As shown in FIG. 4, the fuel supply passage 28 and the pressure chamber 26 are directly connected to each other by a communication passage 45, and in the meantime, a reverse flow occurs in which the fuel flows from the passage 28 to the pressure chamber 26 side but is closed in the opposite direction. By interposing the stop valve 46, the suction stroke of the plunger 23 can be achieved more quickly.

機関に同期して回転するカム25によりプラン
ジヤ23が下降し(第3図Bが下降始めの時点を
示す)、圧力室26の燃料を加圧するが、この時
点では電磁弁36は開いており、加圧される燃料
の一部はオリフイス35E、圧力通路35D、ス
プリング室35Bから電磁弁36の弁室36Aを
経て燃料供給通路28へ逃げる。このためオリフ
イス35Eの前後差圧が発生し、この前後差圧に
よる駆動力がスプリング35Cに抗して弁体35
Aを図で右に駆動し、計量弁35を開く。計量弁
35が開くと、加圧された燃料は燃料逃し通路3
1へ逃げるので、ノズル27は開弁圧以上になら
ず、燃料は噴射されない。
The plunger 23 is lowered by the cam 25 rotating in synchronization with the engine (FIG. 3B shows the point at which it begins to descend) and pressurizes the fuel in the pressure chamber 26, but at this point the solenoid valve 36 is open. A portion of the pressurized fuel escapes from the orifice 35E, pressure passage 35D, and spring chamber 35B to the fuel supply passage 28 via the valve chamber 36A of the electromagnetic valve 36. For this reason, a differential pressure is generated across the orifice 35E, and the driving force due to this differential pressure is applied to the valve body 35 against the spring 35C.
Drive A to the right in the diagram to open the metering valve 35. When the metering valve 35 opens, the pressurized fuel flows into the fuel relief passage 3.
1, the nozzle 27 does not exceed the valve opening pressure and no fuel is injected.

プランジヤ23がさらに下降し、所定のクラン
ク角でソレノイド36Cに通電し電磁弁36が閉
じると、スプリング室35Bの燃料は逃げる場所
がなくなるため、スプリング室35Bの燃料圧力
が上昇し、オリフイス35Eによる前後差圧がな
くなる。この前後差圧がなくなつた状態ではスプ
リング室35Bに閉じ込められた燃料圧力が背圧
として作用するので、弁体35Aの小径部前面と
大径部背面の受圧面積差に応じた大きな駆動力が
発生し、この力が弁体35Aを図で左に移動さ
せ、電磁弁36が閉じた所定時間経過後に計量弁
35を閉じる。
When the plunger 23 further descends and the solenoid 36C is energized at a predetermined crank angle to close the electromagnetic valve 36, the fuel in the spring chamber 35B has no place to escape, so the fuel pressure in the spring chamber 35B increases, and the orifice 35E Differential pressure disappears. In a state where this differential pressure between the front and rear ends, the fuel pressure trapped in the spring chamber 35B acts as back pressure, so a large driving force corresponding to the difference in pressure receiving area between the front surface of the small diameter portion and the rear surface of the large diameter portion of the valve body 35A is generated. This force moves the valve body 35A to the left in the figure, and closes the metering valve 35 after a predetermined period of time has elapsed since the solenoid valve 36 was closed.

ることができる。can be done.

この所定時間は弁体35Aの作動に生ずる応答
遅れであるが、スプリング室35Cが弁体35A
の閉作動を助けることより、応答遅れ時間が短く
される。
This predetermined time is a response delay that occurs in the operation of the valve body 35A, but the spring chamber 35C
The response delay time is shortened by assisting the closing operation.

このため圧力室26の燃料は閉じ込められ、プ
ランジヤ23の下降につれて圧力を増し、この高
圧燃料が燃料通路29を介してノズル27のニー
ドル室27Dに伝わる。ニードル室27Dの圧力
がニードルバルブ27Cを下方に付勢するスプリ
ング27Bの付勢力(ノズル27の開弁圧)以上
になると、ニードルバルブ27Cを上方に押し上
げて噴孔27Eを開き、圧力室26の高圧燃料は
図示しない燃焼室に噴射される(第3図C参照)。
For this reason, the fuel in the pressure chamber 26 is confined and increases in pressure as the plunger 23 descends, and this high-pressure fuel is transmitted to the needle chamber 27D of the nozzle 27 via the fuel passage 29. When the pressure in the needle chamber 27D exceeds the biasing force of the spring 27B (opening pressure of the nozzle 27) that biases the needle valve 27C downward, the needle valve 27C is pushed upward to open the nozzle hole 27E and the pressure chamber 26 is High-pressure fuel is injected into a combustion chamber (not shown) (see FIG. 3C).

プランジヤ23がさらに下降し、所定のクラン
ク角でソレノイド36Cへの通電をやめ、電磁弁
36が開かれると、前述のように圧力室26の高
圧燃料の一部がオリフイス35E、圧力通路35
Dを通して逃げることによりオリフイス35Eに
前後差圧が生じ、この差圧による大きな駆動力が
スプリング35Cに抗して計量弁35を迅速に駆
動して開き、高圧燃料のほとんどを燃料逃し通路
31に逃すので、燃料通路29の圧力はすみやか
に下降し、ノズル27の開弁圧以下となつて燃料
の噴射を停止する(第3図D参照)。
When the plunger 23 further descends, the energization to the solenoid 36C is stopped at a predetermined crank angle, and the solenoid valve 36 is opened, a portion of the high pressure fuel in the pressure chamber 26 is transferred to the orifice 35E and the pressure passage 35.
By escaping through D, a differential pressure is generated between the front and rear of the orifice 35E, and a large driving force due to this differential pressure quickly drives the metering valve 35 open against the spring 35C, allowing most of the high-pressure fuel to escape into the fuel relief passage 31. Therefore, the pressure in the fuel passage 29 quickly decreases to below the opening pressure of the nozzle 27, and fuel injection is stopped (see FIG. 3D).

プランジヤ23が最下点に達した後再び上昇を
始めると、圧力室26の圧力が低下するため計量
弁35は再び閉じるが電磁弁36は開いており、
電磁弁36からスプリング室35B、圧力通路3
5D、オリフイス35Eを経て圧力室26に燃料
が供給される(第3図E参照)。
When the plunger 23 starts rising again after reaching the lowest point, the pressure in the pressure chamber 26 decreases, so the metering valve 35 closes again, but the solenoid valve 36 remains open.
From the solenoid valve 36 to the spring chamber 35B and the pressure passage 3
5D and the orifice 35E to the pressure chamber 26 (see FIG. 3E).

すなわち、燃料の噴射は電磁弁36を閉じた所
定時間後から電磁弁36を開くまでの間に行なわ
れることになる。
That is, fuel injection is performed from a predetermined time after the solenoid valve 36 is closed to when the solenoid valve 36 is opened.

従つて電磁弁36を開閉するソレノイド36C
への通電時期並びに通電時間を運転条件に応じて
変えることにより、ノズル27から噴射される燃
料の噴射時期並びに噴射量が制御される。
Therefore, the solenoid 36C that opens and closes the solenoid valve 36
The injection timing and injection amount of fuel injected from the nozzle 27 are controlled by changing the energization timing and energization time depending on the operating conditions.

そして高圧燃料の供給を直接制御する計量弁3
5の開閉駆動は、オリフイス前後差圧による駆動
力により開き、スプリング室35Bの燃料圧力と
弁体35Aの小径部前面と大径部背面の受圧面積
差の積にて定まる駆動力と閉弁方向に付勢するス
プリング力の合計で閉じるため、電磁弁36とし
てはスプリング室35Bの圧力を逃がしあるいは
閉じ込めるだけでよく大きな駆動力は必要としな
い。
and a metering valve 3 that directly controls the supply of high-pressure fuel.
The opening/closing drive of No. 5 is opened by the driving force due to the differential pressure across the orifice, and is determined by the driving force and valve closing direction determined by the product of the fuel pressure in the spring chamber 35B and the pressure receiving area difference between the front surface of the small diameter part and the back surface of the large diameter part of the valve body 35A. Since the electromagnetic valve 36 is closed by the sum of the spring forces urging the spring chamber 35B, a large driving force is not required.

従つて、電磁弁が計量弁として使われ、高圧燃
料を直接制御するために高い開弁力と速い応答速
度を要求される特開昭54−50726号公報と異なり、
電磁弁36は小型で安価なもので良い。また燃料
供給ポンプにある程度(例えば5〜数10Kg/cm2
の供給圧を要求され、計量弁を駆動するためのピ
ストンが必要である特願昭57−67980号と異なり、
燃料供給ポンプ37は低圧の安価なもので良く、
ピストンも不要で構成が簡単である。
Therefore, unlike JP-A-54-50726, in which a solenoid valve is used as a metering valve and requires a high opening force and fast response speed to directly control high-pressure fuel,
The solenoid valve 36 may be small and inexpensive. Also, to some extent (for example, 5 to several 10 kg/cm 2 ) for the fuel supply pump.
Unlike patent application No. 1983-67980, which required a supply pressure of
The fuel supply pump 37 may be a low-pressure, inexpensive one;
No piston is required and the configuration is simple.

以上のように本発明によれば、高圧燃料の一部
を流すことにより前後差圧を生じさせ、この差圧
による駆動力で弁体の開作動を行い、また背圧と
弁体35Aの小径部前面と大径部背面の受圧面積
差から定まる駆動力と閉弁方向に付勢するスプリ
ング力との合計で弁体の閉作動を行い、弁装置は
背圧室の圧力を逃がすために使用しているので、
弁装置は小型で安価なものでよく、また同時に燃
料供給ポンプも低圧で安価なものでよく、コスト
ダウンが図れるという効果が得られる。
As described above, according to the present invention, a pressure difference is generated between the front and rear by flowing a part of the high-pressure fuel, and the driving force generated by this pressure difference is used to open the valve body, and the back pressure and the small diameter of the valve body 35A are The valve body is closed by the sum of the driving force determined by the pressure receiving area difference between the front side and the back side of the large diameter side and the spring force biased in the valve closing direction, and the valve device is used to release the pressure in the back pressure chamber. Because I am doing
The valve device may be small and inexpensive, and at the same time, the fuel supply pump may also be low pressure and inexpensive, resulting in an effect of reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の概略構成図、第2図は第1
図の要部断面図、第3図は本発明の一実施例の概
略構成図で同図A〜Eはそれぞれ作用を説明する
図、第4図は本発明の他の実施例の概略構成図で
ある。 20……ユニツトインジエクタ、23……プラ
ンジヤ、25……カム、26……圧力室、27…
…ノズル、28……燃料供給通路、35……計量
弁、35A……弁体、35B……スプリング室、
35D……圧力通路、35E……オリフイス、3
6……電磁弁、37……燃料供給ポンプ、40…
…制御回路、41……回転数センサ、42……ア
クセルセンサ、43……水温センサ。
Figure 1 is a schematic configuration diagram of the conventional device, and Figure 2 is the
3 is a schematic diagram of an embodiment of the present invention, A to E are diagrams for explaining the functions, and FIG. 4 is a schematic diagram of another embodiment of the present invention. It is. 20... Unit injector, 23... Plunger, 25... Cam, 26... Pressure chamber, 27...
... Nozzle, 28 ... Fuel supply passage, 35 ... Metering valve, 35A ... Valve body, 35B ... Spring chamber,
35D...Pressure passage, 35E...Orifice, 3
6... Solenoid valve, 37... Fuel supply pump, 40...
... Control circuit, 41 ... Rotation speed sensor, 42 ... Accelerator sensor, 43 ... Water temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 機関に同期して回転するカム25と、燃料供
給ポンプ37により燃料供給通路28を介して燃
料の供給される圧力室26と、前記カム25に応
動して圧力室26の燃料を加圧するプランジヤ2
3と、圧力室26を連通し開弁圧以上で開くノズ
ル27と、前記圧力室26と低圧側とを連通する
燃料逃し通路31と、小径部と大径部を有する段
付きで形成されこの小径部前面で前記燃料逃し通
路31を開閉する弁体35Aと、この弁体35A
を閉弁方向に付勢するスプリング35Cと、前記
弁体35Aの大径部背面に形成される背圧室35
Bと、この背圧室35Bに前記圧力室26からの
高圧燃料の一部を導く圧力通路35Dと、この圧
力通路35Dを絞るオリフイス35Eと、前記背
圧室35B上流の燃料供給通路28を開閉する弁
装置36と、機関の運転状態を検出する手段41
〜43からの信号に基づき前記弁装置36を開閉
駆動する制御手段40とを設けたことを特徴とす
る燃料噴射制御装置。
1. A cam 25 that rotates in synchronization with the engine, a pressure chamber 26 to which fuel is supplied via a fuel supply passage 28 by a fuel supply pump 37, and a plunger that pressurizes the fuel in the pressure chamber 26 in response to the cam 25. 2
3, a nozzle 27 that communicates with the pressure chamber 26 and opens at a pressure equal to or higher than the valve opening pressure, a fuel relief passage 31 that communicates the pressure chamber 26 with the low pressure side, and a stepped structure having a small diameter part and a large diameter part. A valve body 35A that opens and closes the fuel relief passage 31 at the front surface of the small diameter portion, and this valve body 35A.
a spring 35C that urges the valve in the valve closing direction, and a back pressure chamber 35 formed on the back surface of the large diameter portion of the valve body 35A.
B, a pressure passage 35D that guides a portion of the high-pressure fuel from the pressure chamber 26 to this back pressure chamber 35B, an orifice 35E that throttles this pressure passage 35D, and a fuel supply passage 28 upstream of the back pressure chamber 35B that opens and closes. and a means 41 for detecting the operating state of the engine.
43. A fuel injection control device characterized by comprising: control means 40 for driving the valve device 36 to open and close based on signals from 43 to 43.
JP21359882A 1982-12-06 1982-12-06 Fuel injection controller Granted JPS59103960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21359882A JPS59103960A (en) 1982-12-06 1982-12-06 Fuel injection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21359882A JPS59103960A (en) 1982-12-06 1982-12-06 Fuel injection controller

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62001437A Division JPS62189360A (en) 1987-01-07 1987-01-07 Fuel injecting and weighing device

Publications (2)

Publication Number Publication Date
JPS59103960A JPS59103960A (en) 1984-06-15
JPH031508B2 true JPH031508B2 (en) 1991-01-10

Family

ID=16641835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21359882A Granted JPS59103960A (en) 1982-12-06 1982-12-06 Fuel injection controller

Country Status (1)

Country Link
JP (1) JPS59103960A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125754A (en) * 1983-12-08 1985-07-05 Toyota Motor Corp Fuel injection pump for use in diesel engine
JPH0441247Y2 (en) * 1985-05-16 1992-09-28
DE3521427A1 (en) * 1985-06-14 1986-12-18 Robert Bosch Gmbh, 7000 Stuttgart FUEL INJECTION DEVICE
JPH057498Y2 (en) * 1985-10-12 1993-02-25
JPH0429082Y2 (en) * 1985-10-14 1992-07-15
US5979415A (en) * 1997-11-12 1999-11-09 Caterpillar Inc. Fuel injection pump with a hydraulically-spill valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5450726A (en) * 1977-09-12 1979-04-20 Gen Motors Corp Fuel pump*injector unit
JPS5450724A (en) * 1977-09-21 1979-04-20 Daimler Benz Ag Pump nozzle apparatus air compressed injection type internal combustion engine
JPS578358B2 (en) * 1975-02-19 1982-02-16

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614707Y2 (en) * 1980-06-16 1986-02-13
JPS59157573U (en) * 1983-04-08 1984-10-23 日産自動車株式会社 Internal combustion engine fuel injection system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578358B2 (en) * 1975-02-19 1982-02-16
JPS5450726A (en) * 1977-09-12 1979-04-20 Gen Motors Corp Fuel pump*injector unit
JPS5450724A (en) * 1977-09-21 1979-04-20 Daimler Benz Ag Pump nozzle apparatus air compressed injection type internal combustion engine

Also Published As

Publication number Publication date
JPS59103960A (en) 1984-06-15

Similar Documents

Publication Publication Date Title
US5551398A (en) Electronically-controlled fluid injector system having pre-injection pressurizable fluid storage chamber and direct-operated check
US7111613B1 (en) Fuel injector control system and method
JPH09209867A (en) Fuel injector
JP2001193602A (en) Electronically controlled diesel fuel injection system
US5042718A (en) Solenoid-valve-controlled fuel injection device, for an air-compressing internal combustion engine
US4759330A (en) Fuel injection control apparatus for use in an engine
US5183019A (en) Idling control device for high pressure fuel injection engine
JPS61272461A (en) Fuel injection valve for internal-combustion engine
EP0981687A1 (en) Electronic control and method for consistently controlling the amount of fuel injected by a hydraulically activated, electronically controlled injector fuel system to an engine
US5150684A (en) High pressure fuel injection unit for engine
JPS60175762A (en) Fuel injection device
US20060266335A1 (en) Fuel injector control system and method
JPH031508B2 (en)
US6102004A (en) Electronic control for a hydraulically activated, electronically controlled injector fuel system and method for operating same
JPH02191865A (en) Fuel injection device
US5558067A (en) Double pulsing electronic unit injector solenoid valve to fill timing chamber before metering chamber
JPH0461189B2 (en)
US20040099246A1 (en) Fuel injector with multiple control valves
JPH0430375Y2 (en)
JPH0438912B2 (en)
JP3691168B2 (en) Accumulated fuel injection system for engines
JP2512893B2 (en) Fuel injector
JPH078841Y2 (en) Fuel injector
JPH1182220A (en) Fuel injection controller of diesel engine
JPH0526949B2 (en)