JPH0526826A - Method for measuring thickness of thin film sample and quantitatively analyzing element - Google Patents

Method for measuring thickness of thin film sample and quantitatively analyzing element

Info

Publication number
JPH0526826A
JPH0526826A JP3210002A JP21000291A JPH0526826A JP H0526826 A JPH0526826 A JP H0526826A JP 3210002 A JP3210002 A JP 3210002A JP 21000291 A JP21000291 A JP 21000291A JP H0526826 A JPH0526826 A JP H0526826A
Authority
JP
Japan
Prior art keywords
ray intensity
intensity ratio
thin film
ratio
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3210002A
Other languages
Japanese (ja)
Other versions
JP3132678B2 (en
Inventor
Yuka Nakagawa
由佳 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP03210002A priority Critical patent/JP3132678B2/en
Publication of JPH0526826A publication Critical patent/JPH0526826A/en
Application granted granted Critical
Publication of JP3132678B2 publication Critical patent/JP3132678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To perform both quantitative analysis and film thickness measurement by finding the X-ray intensity ratio of an element, the X-ray intensity ratio which is actually unmeasurable, from the X-ray intensity of another element and chemically coupled form between both of the elements and calculating the thickness of the thin film of the sample from a specific equation. CONSTITUTION:The ratio of a specific X-ray intensity of a radioactive element in a thin film sample of an already known element to that of a radiation characteristic from a single- body standard sample of a component element is found by actual measurement. The X-ray intensity ratio of an element, the X-ray intensity of which is actually unmeasurable, is found from the X-ray intensity ratio of another element and the chemically coupled form between both of the elements. Then the thickness of the thin film is calculated from Equation 1 by using the X-ray intensity ratios of all components. The EO and ECi of the equation respectively represent an applied voltage and X-ray exciting voltage from an element (i). The concentration of each component element and thickness of the thin film are decided by successive approximation by repeating simulation and calculation by assuming the concentration of each component element contained in the thin film from the X-ray intensity ratio, finding the intensity ratio of each component element by simulating the loci of the incident electrons to the sample, correcting the concentration of each component element and film thickness of the thin film so that the calculated X-ray intensity can become equal to that obtained by measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線分光的方法例えば
EPMAを用いた薄膜定量分析において、薄膜と基板が
異なる酸化物であり、かつ基板酸化物の組成が既知であ
る場合等に、薄膜の組成及び膜厚を求める方法に関す
る。
The present invention relates to an X-ray spectroscopic method such as EPMA in a thin film quantitative analysis when the thin film and the substrate are different oxides and the composition of the substrate oxide is known. The present invention relates to a method for determining the composition and film thickness of a thin film.

【0002】[0002]

【従来の技術】薄膜試料における定量分析において、薄
膜と基板に同じ元素(本願ではO)がある場合、基板か
ら出る共通元素の特性X線の強度を基板の分と薄膜の分
に弁別できないために、測定で得られる特性X線強度か
ら、薄膜の元素の組成比を特定できない。例えば、一つ
の測定結果に対して薄膜の厚さをやや薄く設定し、Oな
しと仮定し、測定されているOKαは、基板だけから出
ているとしても、実験値と同じ結果が得られる恐れがあ
る。従って、基板とその上の薄膜試料とに共通元素があ
る場合、EPMAを用いて、試料薄膜の厚さと元素組成
比率を併せて決定することはできなかった。
2. Description of the Related Art In a quantitative analysis of a thin film sample, when the thin film and the substrate have the same element (O in this application), the intensity of the characteristic X-ray of the common element emitted from the substrate cannot be discriminated between the substrate and the thin film. Moreover, the composition ratio of the elements of the thin film cannot be specified from the characteristic X-ray intensity obtained by the measurement. For example, if the thin film thickness is set to be slightly thin for one measurement result and it is assumed that there is no O, even if the measured OKα comes out only from the substrate, the same result as the experimental value may be obtained. There is. Therefore, when the substrate and the thin film sample thereon have a common element, it was not possible to determine the thickness of the sample thin film and the elemental composition ratio together using EPMA.

【0003】[0003]

【発明が解決しようとする課題】本発明は、薄膜試料で
基板と薄膜において同一元素が含まれている場合で、基
板及び薄膜元素が既知の場合において、EPMAのよう
なX線分光的方法により定量分析と膜厚測定を併せて行
う方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention is a thin film sample containing the same element in a substrate and a thin film. When the substrate and the thin film element are known, an X-ray spectroscopic method such as EPMA is used. It is an object to provide a method for performing both quantitative analysis and film thickness measurement together.

【0004】[0004]

【課題を解決するための手段】或る適当な加速電圧で加
速した電子ビームで励起された構成元素既知の薄膜試料
から放射される成分元素の特性X線強度と、上記と同じ
加速電子ビームで励起された成分元素の単体標準試料か
ら放射される特性X線強度との比(X線強度比)を、そ
れを実測的に求め得る元素において実測的に求めてお
き、X線強度比が実測的に求め得ない元素のX線強度比
を、上記で求めた他の元素のX線強度比と、測定不能元
素と他の元素との化学結合形態から求め、全成分の上記
X線強度比から下記式[2]によって薄膜の厚さを算定
し、また、上記X線強度比の比から試料の薄膜の各成分
元素濃度を仮定し、仮定した成分元素濃度と上記膜厚の
もとで、試料入射電子の軌跡のシミュレーションによっ
て、各成分元素の計算によるX線強度比を計算で求め、
同計算によるX線強度比が上記測定によるX線強度比に
等しくなるように、各成分元素濃度及び膜厚を修正し、
上記修正した仮定濃度及び膜厚を用いて上記と同じシミ
ュレーションを行い、以下同様の計算の繰返しにより、
逐次近似的に薄膜試料の元素濃度及び膜厚を決定するよ
うにした。
A characteristic X-ray intensity of a component element emitted from a thin film sample of a known constituent element, which is excited by an electron beam accelerated by an appropriate accelerating voltage, and the same accelerating electron beam as described above are used. The ratio of the excited component elements to the characteristic X-ray intensity (X-ray intensity ratio) radiated from a simple substance standard sample is actually obtained in an element for which it can be actually obtained, and the X-ray intensity ratio is actually measured. The X-ray intensity ratio of the element that cannot be obtained from the above is obtained from the X-ray intensity ratio of the other element obtained above and the chemical bond form between the unmeasurable element and the other element, and the X-ray intensity ratio of all the components is obtained. Then, the thickness of the thin film is calculated by the following formula [2], and the concentration of each component element of the thin film of the sample is assumed from the above X-ray intensity ratio ratio. , The sample incident electron trajectories are simulated, and The X-ray intensity ratio by determined by calculation,
Correct the concentration of each element and the film thickness so that the X-ray intensity ratio obtained by the calculation becomes equal to the X-ray intensity ratio obtained by the above measurement.
The same simulation as above is performed using the corrected assumed concentration and film thickness, and by repeating the same calculation,
The element concentration and film thickness of the thin film sample were determined by successive approximation.

【数2】 ただし、ρZri=7.0(Eo 1.65 −ECi 1.65) μg
/cm2o ;加速電圧、ECi;元素iのX線励起電圧
[Equation 2] However, ρ Z ri = 7.0 (E o 1.65 −E Ci 1.65 ) μg
/ Cm 2 E o ; acceleration voltage, E Ci ; X-ray excitation voltage of element i

【0005】[0005]

【作用】本発明において用いられるコンピュータシミュ
レーション法については、本願出願人が特願平2ー14
9528号等で出願している方法が援用されている。本
発明は、基板及び薄膜層において共通元素を含有してい
る場合、或は、X線強度比を直接測定できない元素を薄
膜に含有している場合におけるの成分元素濃度Cと薄膜
厚さtを同時に求めようとするものである。このコンピ
ュータシミュレーションは、薄膜試料及び各元素の標準
試料において、各元素の特性X線が発生する率即ち強度
を、モンテカルロ法を用いて計算するものであり、試料
の特性X線強度と標準試料の特性X線強度との比(計算
による特性X線強度比)を上記計算によって求めようと
するものである。このX線強度比は、励起線の強度とか
測定時間とか各元素におけるX線の発生頻度とかの影響
を受けずに、各元素濃度に比例する性格があり、コンピ
ュータシミュレーションに用いた各元素濃度及び膜厚が
正しい場合には、計算によるX線強度比と測定によるX
線強度比と等しくなるはずであると云う発想から生まれ
たものであり、コンピュータシミュレーションに用いる
各元素濃度及び膜厚の値を、計算によるX線強度比と測
定によるX線強度比が一致するように補正しながら、コ
ンピュータシミュレーションによって計算によるX線強
度比を求めていき、計算によるX線強度比と測定による
X線強度比が一致すれば、その時の組成比及び膜厚をも
って測定値とすることによって、高精度な測定値を得よ
うとするものである。従って、コンピュータシミュレー
ション法を用いるには、先ず、薄膜試料の組成比即ち基
板及び薄膜における各元素の濃度及び薄膜の厚さを設定
しなけばならない。しかし、本発明では、測定によって
X線強度比を求めることのできない元素が含有されてお
り、この測定で得ることのできない元素のX線強度比を
何らかの方法により設定しなければ、分析を開始するこ
とができない。
Regarding the computer simulation method used in the present invention, the applicant of the present invention filed Japanese Patent Application No. 2-14
The method applied for in No. 9528 is incorporated. The present invention determines the component element concentration C and the thin film thickness t when the common element is contained in the substrate and the thin film layer, or when the thin film contains an element whose X-ray intensity ratio cannot be directly measured. At the same time, they try to seek. In this computer simulation, in a thin film sample and a standard sample of each element, the rate at which the characteristic X-ray of each element is generated, that is, the intensity is calculated by using the Monte Carlo method. The characteristic X-ray intensity of the sample and that of the standard sample are calculated. The ratio with the characteristic X-ray intensity (characteristic X-ray intensity ratio by calculation) is to be obtained by the above calculation. This X-ray intensity ratio has a character proportional to each element concentration without being influenced by the intensity of the excitation ray, the measurement time, the frequency of X-ray generation in each element, and the concentration of each element used in the computer simulation and If the film thickness is correct, the calculated X-ray intensity ratio and the measured X-ray intensity ratio
It was born from the idea that it should be equal to the line intensity ratio, and the elemental concentration and film thickness values used for computer simulation should match the calculated X-ray intensity ratio and the measured X-ray intensity ratio. While correcting the above, calculate the calculated X-ray intensity ratio by computer simulation, and if the calculated X-ray intensity ratio matches the measured X-ray intensity ratio, use the composition ratio and film thickness at that time as the measured value. Therefore, it is intended to obtain a highly accurate measured value. Therefore, in order to use the computer simulation method, first, the composition ratio of the thin film sample, that is, the concentration of each element in the substrate and the thin film, and the thickness of the thin film must be set. However, in the present invention, an element whose X-ray intensity ratio cannot be obtained by measurement is contained, and the analysis is started unless the X-ray intensity ratio of the element that cannot be obtained by this measurement is set by any method. I can't.

【0006】そこで、本発明は、測定でX線強度比を求
めることができない元素例えば酸素Oの測定によるX線
強度比を、次の原理によって設定しようとするものであ
る。X線強度比は、各元素濃度に比例すると云う発想に
則って、本発明が構成されている。従って、酸素OのX
線強度比と他のX線強度比との比は、その元素濃度(重
量)比に等しくなると考えられる。そこで、酸素全体の
濃度は不明であっても、酸素が各元素と既知の化学結合
している場合においては、その結合状態を示す化学式に
おける酸素と結合元素との濃度比(重量比)は、理論的
に判明しているので、その結合状態における酸素のX線
強度比は、その結合状態における酸素の結合元素に対す
る重量比と、その結合元素の測定によるX線強度比との
積から求めることができる。しかし、酸素は、1つの元
素だけと結合状態即ち酸化物となっているとは限らず、
多くの元素と結合状態となっている場合もある。そのよ
うな場合においては、夫々の結合状態毎に酸素のX線強
度比を算出し、算出したX線強度比の総和をもって、試
料に含有する酸素のX線強度比と推定することができ
る。
Therefore, the present invention is intended to set the X-ray intensity ratio by the measurement of an element such as oxygen O, for which the X-ray intensity ratio cannot be determined by the measurement, by the following principle. The present invention is constructed based on the idea that the X-ray intensity ratio is proportional to the concentration of each element. Therefore, X of oxygen O
The ratio of the line intensity ratio to other X-ray intensity ratios is considered to be equal to the element concentration (weight) ratio. Therefore, even if the total concentration of oxygen is unknown, when oxygen is chemically bound to each element in a known manner, the concentration ratio (weight ratio) between oxygen and the binding element in the chemical formula showing the binding state is: Since it is theoretically known, the X-ray intensity ratio of oxygen in the bound state should be obtained from the product of the weight ratio of oxygen to the bound element in the bound state and the X-ray intensity ratio measured by the bound element. You can However, oxygen is not always in a bonded state with only one element, that is, an oxide,
It may also be in a bonded state with many elements. In such a case, the X-ray intensity ratio of oxygen is calculated for each binding state, and the sum of the calculated X-ray intensity ratios can be estimated as the X-ray intensity ratio of oxygen contained in the sample.

【0007】なお、薄膜の厚さは、下記[式3]によっ
て設定するものである。
The thickness of the thin film is set by the following [Equation 3].

【数3】 ただし、ρZri=7.0(Eo 1.65 −ECi 1.65) μg
/cm2o ;加速電圧、ECi;元素iのX線励起電圧 この式は[文献R.A.Waldo:Microbea
m Analysis(1988)P,310〜]に公
表されたもので、薄膜の全成分元素について、特性X線
の強度比Ki0が求められたとき、それを用いて膜厚を算
出する式である。こゝで特性X線強度比とは、試料成分
元素の試料における特性X線強度のその元素の純品試料
における特性X線強度に対する比率であり、[式3]の
適用に当たって、測定で得られた各元素のX線強度比K
i0を用いているが、Oについては、前述したように測定
によってX線強度比を直接求めることができないから、
成分元素と酸素との結合状態から、それらの成分元素の
実測X線強度比と、成分元素に対する酸素の濃度比の積
の総和の値を用いる。例えば、或る結合元素の特性X線
強度比が0.03で、Oが同結合元素に対して重量濃度
比が40%であるならば、その結合元素と結合している
Oの特性X線強度比は0.012となる。その他に別の
結合元素があって、その結合元素のX線強度比は0.1
で、同結合元素に対するOの重量濃度比が60%である
ならば、その結合元素と結合しているOの特性X線強度
比は0.06となり、酸素Oが上記2元素とだけ結合状
態にある場合には、両者のX線強度比の和である0.0
72を、酸素OのX線強度比として設定する。その後
は、上記で設定した各元素濃度及び膜厚を用いて、シミ
ュレーション法で計算によるX線強度比を求め、求めた
計算によるX線強度比を実測によるX線強度比と比較
し、仮定した厚さおよび組成比を修正しながら、シミュ
レーション法で求めた計算による成分元素特性X線強度
比が実測と一致するまで計算を繰返して、厚さと組成比
を求める。
[Equation 3] However, ρ Z ri = 7.0 (E o 1.65 −E Ci 1.65 ) μg
/ Cm 2 E o ; accelerating voltage, E Ci ; X-ray excitation voltage of element i. A. Waldo: Microbea
m Analysis (1988) P, 310-], it is a formula for calculating the film thickness by using the characteristic X-ray intensity ratio K i0 for all the constituent elements of the thin film. .. Here, the characteristic X-ray intensity ratio is the ratio of the characteristic X-ray intensity of the sample component element in the sample to the characteristic X-ray intensity of the pure sample of the element, and is obtained by the measurement in applying [Equation 3]. X-ray intensity ratio K of each element
Although i0 is used, for O, since the X-ray intensity ratio cannot be directly obtained by measurement as described above,
From the bonding state of the constituent elements and oxygen, the value of the sum of the products of the measured X-ray intensity ratios of these constituent elements and the concentration ratio of oxygen to the constituent elements is used. For example, if the characteristic X-ray intensity ratio of a certain binding element is 0.03 and the weight concentration ratio of O is 40% with respect to the same binding element, the characteristic X-ray of O bound to the certain binding element is The intensity ratio is 0.012. There is another bonding element, and the X-ray intensity ratio of the bonding element is 0.1.
If the weight concentration ratio of O to the same binding element is 60%, the characteristic X-ray intensity ratio of O bound to the binding element is 0.06, and oxygen O is bound only to the above two elements. In the case of, the sum of the X-ray intensity ratios of the two is 0.0
72 is set as the X-ray intensity ratio of oxygen O. After that, the X-ray intensity ratio calculated by the simulation method was calculated using the element concentrations and film thicknesses set above, and the calculated X-ray intensity ratio was compared with the actually measured X-ray intensity ratio to make an assumption. While correcting the thickness and the composition ratio, the calculation is repeated until the component element characteristic X-ray intensity ratio calculated by the simulation method agrees with the actual measurement to obtain the thickness and the composition ratio.

【0008】[0008]

【実施例】図に本発明の一実施例のフローチャートを示
す。図において、本発明で用いられる試料は、測定試料
の表面層(薄膜)及び基板の両方に酸化物を含んでお
り、基板の構成元素及び薄膜の構成元素は既知である
が、薄膜の構成元素の濃度及び膜厚は未知のものであ
る。適当な加速電圧Eによる電子ビームを試料Sに照射
し、基板との共通元素O以外の薄膜の各元素i(i=
a,b,c,…,z)の特性X線強度IiSと、各元素i
の標準試料(純品試料)の特性X線強度IiKを測定する
(ア)。動作(ア)で得られた測定データを基に、共通
元素O以外の各元素のX線強度比Ki0=IiS/IiKを計
算する(イ)。共通元素OのX線強度比Ko0を、各構成
元素のX線強度比Ki1を用いて、各元素との結合状態か
ら設定する。例えば、Y,Ba,Cu,Oの超伝導物質
と考えられる膜ならば、それはY,Ba,Cuの各酸化
物の適当比率の混合物を焼成したもので、Yに対するO
の比率が略決まっているので、Y=1に対し、O≒7と
考える。又、試料中の酸化物が、Alの酸化物ならばA
23 として重量比率は、Al:O≒19:8で、S
iの酸化物ならSiO2 として重量比率をSi:O≒
7:8で計算して設定する(ウ)。測定及び計算で得ら
れた各構成元素のX線強度比の比を、薄膜層における第
1近似の各元素濃度Ci1として設定する(エ)。膜厚t
1
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a flowchart of an embodiment of the present invention. In the figure, the sample used in the present invention contains an oxide in both the surface layer (thin film) of the measurement sample and the substrate, and although the constituent elements of the substrate and the constituent elements of the thin film are known, the constituent elements of the thin film are known. The concentration and film thickness of are unknown. The sample S is irradiated with an electron beam with an appropriate acceleration voltage E, and each element i (i =
a, b, c, ..., Z) characteristic X-ray intensity I iS and each element i
The characteristic X-ray intensity I iK of the standard sample (pure sample) is measured (a). Based on the measurement data obtained in the operation (A), the X-ray intensity ratio K i0 = I iS / I iK of each element other than the common element O is calculated (B). The X-ray intensity ratio K o0 of the common element O is set from the bonding state with each element using the X-ray intensity ratio K i1 of each constituent element. For example, in the case of a film considered to be a superconducting material of Y, Ba, Cu, O, it is a mixture of Y, Ba, Cu oxides in an appropriate ratio and is burned.
Since the ratio of is almost fixed, it is considered that O≈7 for Y = 1. If the oxide in the sample is an oxide of Al, A
As L 2 O 3 , the weight ratio is Al: O≈19: 8, and S
If the oxide of i is SiO 2 , the weight ratio is Si: O≈
Calculate and set at 7: 8 (C). The ratio of the X-ray intensity ratios of the constituent elements obtained by the measurement and calculation is set as the elemental concentration C i1 of the first approximation in the thin film layer (d). Film thickness t
1

【数4】 ただし、ρZri=7.0(Eo 1.65 −ECi 1.65) μg
/cm2o ;加速電圧、ECi;元素iのX線励起電圧 により設定する(オ)。上記設定条件によって、コンピ
ュータシミュレーションを行い、計算による各元素の特
性X線強度比Kijを計算する(カ)。共通元素O以外の
全元素において、計算による強度比Kijと測定による強
度比Ki0との誤差εi をεi =[(Ki0−Kij)/
i0]で計算し、εi の平均値Eと、εi の振れ巾Δε
(εi の最大値と最小値の差)を求める(キ)。振れ巾
Δεが設定値α(例えば、0.05)より大きいかどう
か判定する(ク)。振れ巾Δεが設定値αより大きい場
合は、共通元素O以外の各元素の濃度Cij(i;元素
名、j;逐次計算の回数)を Cij=Cij-1×Ki0/Kij-1 (j=2,3,……) 共通元素Oの濃度COJを COJ=1−ΣCij (ΣCijは薄膜層における共通元素以外の元素濃度C
ijの総和)により補正計算を行い(ケ)、ステップ
(カ)に戻り、第j回逐次計算で補正された各元素濃度
ij(i=a,b,c,……)を用いて、上記コンピュ
ータシミュレーションを再度行う。振れ巾Δεが設定値
αより大きくない場合は、平均値Eが設定値β(例え
ば、0.1)より大きいかどうか判定する(コ)。平均
値Eが設定値βより大きい場合は、膜厚tj を、
[Equation 4]However, ρZri= 7.0 (Eo 1.65 -ECi 1.65) Μg
/ Cm2 Eo Accelerating voltage, ECiSet by the X-ray excitation voltage of element i (e). Depending on the above setting conditions,
Computer simulation and calculate the characteristics of each element by calculation.
X-ray intensity ratio KijCalculate (F). Other than common element O
Calculated intensity ratio K for all elementsijAnd measured by strength
Degree ratio Ki0Error εi Is εi = [(Ki0-Kij) /
Ki0], Εi And the average value E ofi Deviation range Δε
i (Difference between the maximum value and the minimum value of)) (g). Swing range
Whether Δε is larger than the set value α (for example, 0.05)
Judge whether (K). When the swing width Δε is larger than the set value α
If the concentration is C, the concentration C of each element other than the common element Oij(I; element
Name, j; number of sequential calculations) Cij= Cij-1× Ki0/ Kij-1  (J = 2, 3, ...) Concentration C of common element OOJTo COJ= 1-ΣCij  (ΣCijIs the element concentration C other than the common element in the thin film layer
ij(Sum) of the correction calculation
Returning to (f), each element concentration corrected in the jth sequential calculation
Cij(I = a, b, c, ...)
Data simulation again. Runout width Δε is the set value
If it is not larger than α, the average value E is set value β (for example,
For example, it is determined whether it is larger than 0.1) (ko). average
When the value E is larger than the set value β, the film thickness tj To

【数5】 但し、K0 ;元素o以外の測定によるX線強度比の総和 Kj-1 ;元素o以外の計算によるX線強度比の総和 によって補正計算を行い(サ)、ステップ(カ)に戻
り、第j回逐次計算で補正された各元素濃度Cij(i=
a,b,c,……)及び膜厚tjを用いて、上記コンピ
ュータシミュレーションを再度行う。平均値Eが設定値
βより大きくない場合は、補正された各元素の濃度Cij
及び膜厚tj を測定値としてCRT等に表示する
(シ)。上記実施例では、薄膜と基板とに共通元素(酸
素O)がある場合において説明を行っているが、基板に
共通元素がない場合でも、試料中の或る元素について、
X線強度比が実測困難な場合においても、その元素の結
合状態が判明している場合にも適用できる。上記コンピ
ュータシミュレーションによる計算方法は、本願出願者
の出願による特願平2ー149528号等に詳細が記載
されているので、省略します。
[Equation 5] However, K 0 : Sum of X-ray intensity ratios measured by elements other than element o K j-1 ; Correction calculation is performed by the sum of X-ray intensity ratios calculated by elements other than element o (S), and the procedure returns to step (F), Each element concentration C ij (i =
a, b, c, ...) And the film thickness t j , the above computer simulation is performed again. When the average value E is not larger than the set value β, the corrected concentration C ij of each element
And the film thickness t j are displayed on the CRT or the like as measured values (S). In the above embodiment, the case where the thin film and the substrate have a common element (oxygen O) has been described. However, even when the substrate has no common element, a certain element in the sample is
It can be applied even when the X-ray intensity ratio is difficult to measure, and when the bonding state of the element is known. The calculation method by computer simulation is omitted because it is described in detail in Japanese Patent Application No. 2-149528 filed by the applicant of the present application.

【0009】[0009]

【発明の効果】本発明によれば、実測によるX線強度比
が得られない元素が薄膜試料に含有されていても、該元
素と結合している各元素の実測X線強度比と結合元素と
の濃度比率によって、該元素の実測X線強度比を設定す
るようにしたことにより、各元素濃度及び膜厚が設定可
能になり、コンピュータシミュレーション法を用いて分
析ができるようになり、試料と基板とに共通元素がある
場合、或は、X線強度比が測定できない元素を含有して
いる場合でも、X線分光的方法によって、元素定量と膜
厚の同時測定ができるようになり、分光分析装置の性能
が一段と向上した。
According to the present invention, even if the thin film sample contains an element for which the measured X-ray intensity ratio is not obtained, the measured X-ray intensity ratio of each element bonded to the element and the bonding element By setting the actually measured X-ray intensity ratio of the element according to the concentration ratio of the element and the element concentration and the film thickness, it becomes possible to perform analysis using a computer simulation method. Even if there is a common element with the substrate, or even if it contains an element whose X-ray intensity ratio cannot be measured, it becomes possible to measure the element quantitatively and simultaneously measure the film thickness by the X-ray spectroscopic method. The performance of the analyzer was further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のフローチャートFIG. 1 is a flowchart of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 【請求項1】或る適当な加速電圧で加速した電子ビーム
で励起された構成元素既知の薄膜試料から放射される成
分元素の特性X線強度と、上記と同じ加速電子ビームで
励起された成分元素の単体標準試料から放射される特性
X線強度との比(X線強度比)を、それを実測的に求め
得る元素において実測的に求めておき、X線強度比が実
測的に求め得ない元素のX線強度比を、上記で求めた他
の元素のX線強度比と、測定不能元素と他の元素との化
学結合形態から求め、全成分の上記X線強度比から下記
式[1]によって薄膜の厚さを算定し、また、上記X線
強度比の比から試料の薄膜の各成分元素濃度を仮定し、
仮定した成分元素濃度と上記膜厚のもとで、試料入射電
子の軌跡のシミュレーションによって、各成分元素の計
算によるX線強度比を計算で求め、同計算によるX線強
度比が上記測定によるX線強度比に等しくなるように、
各成分元素濃度及び膜厚を修正し、上記修正した仮定濃
度及び膜厚を用いて上記と同じシミュレーションを行
い、以下同様の計算の繰返しにより、逐次近似的に薄膜
試料の元素濃度及び膜厚を決定するようにしたことを特
徴とする薄膜試料の厚さ測定及び元素定量分析方法。 【数1】 ただし、ρZri=7.0(Eo 1.65 −ECi 1.65) μg
/cm2o ;加速電圧、ECi;元素iのX線励起電圧
Claim: What is claimed is: 1. A characteristic X-ray intensity of a component element emitted from a thin film sample of a known constituent element excited by an electron beam accelerated by an appropriate acceleration voltage, and the same accelerated electron as above. The ratio of the component element excited by the beam to the characteristic X-ray intensity (X-ray intensity ratio) radiated from the simple substance standard sample has been obtained by actually measuring it with an element for which it can be actually measured. X-ray intensity ratio of the element that cannot be obtained by measurement is obtained from the X-ray intensity ratio of the other element obtained above and the chemical bond form of the unmeasurable element and the other element, and The thickness of the thin film was calculated from the intensity ratio by the following formula [1], and the concentration of each component element of the thin film of the sample was assumed from the ratio of the X-ray intensity ratio,
Based on the assumed constituent element concentrations and the above-mentioned film thickness, the X-ray intensity ratio by calculation of each constituent element is calculated by simulation of the trajectory of the sample incident electrons, and the calculated X-ray intensity ratio is the X-ray intensity ratio by the above measurement. To be equal to the line intensity ratio,
The concentration of each component element and the film thickness are corrected, the same simulation as above is performed by using the corrected assumed concentration and film thickness, and the similar calculation is repeated, and the element concentration and the film thickness of the thin film sample are sequentially approximated. A method for measuring the thickness of a thin film sample and a quantitative elemental analysis method, characterized in that the determination is made. [Equation 1] However, ρ Z ri = 7.0 (E o 1.65 −E Ci 1.65 ) μg
/ Cm 2 E o ; acceleration voltage, E Ci ; X-ray excitation voltage of element i
JP03210002A 1991-07-25 1991-07-25 Thin film sample thickness measurement and elemental quantitative analysis method Expired - Fee Related JP3132678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03210002A JP3132678B2 (en) 1991-07-25 1991-07-25 Thin film sample thickness measurement and elemental quantitative analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03210002A JP3132678B2 (en) 1991-07-25 1991-07-25 Thin film sample thickness measurement and elemental quantitative analysis method

Publications (2)

Publication Number Publication Date
JPH0526826A true JPH0526826A (en) 1993-02-02
JP3132678B2 JP3132678B2 (en) 2001-02-05

Family

ID=16582228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03210002A Expired - Fee Related JP3132678B2 (en) 1991-07-25 1991-07-25 Thin film sample thickness measurement and elemental quantitative analysis method

Country Status (1)

Country Link
JP (1) JP3132678B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178445A (en) * 2007-03-05 2007-07-12 Jeol Ltd Quantitative analysis method in sample analyzer
JP2009537811A (en) * 2006-05-16 2009-10-29 オックスフォード インストルメンツ アナリティカル リミテッド A method to determine the feasibility of the proposed structural analysis process
US9349572B2 (en) 2014-03-20 2016-05-24 Hitachi High-Tech Science Corporation Energy dispersive X-ray analyzer and method for energy dispersive X-ray analysis
CN108180846A (en) * 2017-11-30 2018-06-19 广州兴森快捷电路科技有限公司 Organic guarantor welds the process control method of film and film thickness acquisition methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009537811A (en) * 2006-05-16 2009-10-29 オックスフォード インストルメンツ アナリティカル リミテッド A method to determine the feasibility of the proposed structural analysis process
JP2007178445A (en) * 2007-03-05 2007-07-12 Jeol Ltd Quantitative analysis method in sample analyzer
US9349572B2 (en) 2014-03-20 2016-05-24 Hitachi High-Tech Science Corporation Energy dispersive X-ray analyzer and method for energy dispersive X-ray analysis
CN108180846A (en) * 2017-11-30 2018-06-19 广州兴森快捷电路科技有限公司 Organic guarantor welds the process control method of film and film thickness acquisition methods

Also Published As

Publication number Publication date
JP3132678B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
JPH10123071A (en) Method and equipment for x ray analysis
JP2000329712A (en) Data processor for x-ray fluorescence analysis
JPH0526826A (en) Method for measuring thickness of thin film sample and quantitatively analyzing element
JP3010598B2 (en) X-ray spectroscopic analysis method of a sample covered with a thin film
Bekkers et al. Multilayer and thin film analysis using FPMulti software
JP2004132753A (en) Method for analyzing compositional profile of solid surface layer in thickness direction
JP3569734B2 (en) X-ray fluorescence analyzer
JP3059403B2 (en) X-ray analysis method and apparatus
JP2890598B2 (en) X-ray analysis of multi-layer film
JP2732460B2 (en) X-ray fluorescence analysis method
JP3291253B2 (en) X-ray fluorescence analyzer
JP2645227B2 (en) X-ray fluorescence analysis method
JP2003107020A (en) Fluorescent x-ray analysis method for thin film
JP2867621B2 (en) Fluorescence excitation correction method for multilayer film
JP2819716B2 (en) X-ray spectroscopy for thin film determination and film thickness measurement
JPH0326947A (en) Quantitative analysis based on x-ray spectrometry
JPH0295247A (en) X-ray spectrochemical analysis by electron beam excitation
JP2853257B2 (en) Simultaneous measurement method of composition and density of thin film sample by EPMA
JP2617251B2 (en) X-ray fluorescence analysis method
WO2022091598A1 (en) Fluorescent x-ray analysis device
JPH0763712A (en) Method and apparatus for bias correction in fluorescent x-ray analysis
JP2725417B2 (en) X-ray quantitative analysis method
Ang et al. Measurement of the Σ−→ ne−¯ v and Σ−→ nμ−¯ v rates
JPH0484743A (en) Quantitative analysis method by x-ray spectroscopy
JP3399861B2 (en) X-ray analyzer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees