JPH0295247A - X-ray spectrochemical analysis by electron beam excitation - Google Patents

X-ray spectrochemical analysis by electron beam excitation

Info

Publication number
JPH0295247A
JPH0295247A JP63248429A JP24842988A JPH0295247A JP H0295247 A JPH0295247 A JP H0295247A JP 63248429 A JP63248429 A JP 63248429A JP 24842988 A JP24842988 A JP 24842988A JP H0295247 A JPH0295247 A JP H0295247A
Authority
JP
Japan
Prior art keywords
sample
rays
primary
ray
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63248429A
Other languages
Japanese (ja)
Other versions
JP2595686B2 (en
Inventor
Yuka Takeuchi
竹内 由佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63248429A priority Critical patent/JP2595686B2/en
Publication of JPH0295247A publication Critical patent/JPH0295247A/en
Application granted granted Critical
Publication of JP2595686B2 publication Critical patent/JP2595686B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To allow the correction of fluorescent excitation by calculation by irradiating the atoms in a sample with primary characteristic X-rays (primary X-rays) by which the atoms are excited to radiate secondary characteristic X-rays (secondary X-rays). CONSTITUTION:The atoms in the sample are irradiated with the primary X-rays and are thereby excited to radiate the secondary X-rays. The effect of the primary X-ray at one point in the sample can be calculated and, therefore, the intensity of the secondary X-rays at the respective points in the sample can be calculated as well. The depth distribution from the sample surface of the secondary X-ray generating intensity can be determined when the radiation intensities of the secondary X-rays at the respective points in the sample are integrated with the layer surface of depth x2 from the sample surface. The intensity of the secondary X-rays is determined if these intensities are integrated by as much as the thickness of the sample. Further, the intensity of the primary X-rays is determined if the intensity distributions phi of the primary X-rays (x1, r1) are integrated form 0 to infinity with x1, r1. The correction of the fluorescent excitation is executed by calculating the intensity ratio of the primary and secondary X-rays.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は試料を電子線照射によって励起し、試料から放
射される試料成分元素の特性X線を測定するX線分光分
析にけおる蛍光励起補正方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention is directed to fluorescence excitation in X-ray spectroscopy in which a sample is excited by electron beam irradiation and characteristic X-rays of sample component elements emitted from the sample are measured. Regarding the correction method.

(従来の技術) 試料を電子線によって励起するX線分光分析では試料の
電子線照射によって発生した1次X線によって試料が励
起されて蛍光X線が放射され、試料成分元素の特性X線
検出強度はこの1次X線と蛍光X線との和となっている
。このうち試料成分元素の濃度に直接関係しているのは
1次X線中のその元素の特性X線強度であって、それと
重なっている蛍光X線強度は試料中の他成分元素の影響
を受け、蛍光X線の影響は試料の成分構成によって異っ
たものとなる。例えば成分元素をA、B。
(Prior art) In X-ray spectroscopy, in which a sample is excited by an electron beam, the sample is excited by the primary X-rays generated by irradiating the sample with an electron beam, and fluorescent X-rays are emitted, allowing characteristic X-ray detection of sample component elements. The intensity is the sum of this primary X-ray and fluorescent X-ray. Of these, what is directly related to the concentration of a sample component element is the characteristic X-ray intensity of that element in the primary X-rays, and the fluorescent X-ray intensity that overlaps with it is influenced by other component elements in the sample. Therefore, the influence of fluorescent X-rays differs depending on the component composition of the sample. For example, the component elements are A and B.

Cとするとき、元素Bの特性X線波長が元素への特性X
線波長より短いとき、元素Bの特性X*は元$Aを励起
して蛍光を発生させるから、元f:への濃度が同じでも
B元素が多い試料と少い試料とでは直接測定される元素
への特性X線強度は前者の方が強くなる。従って共存他
元素の1次X線により励起された蛍光X線に対する補正
が必要となる。これが試料を電子線で励起するX線分光
分析における蛍光補正であるが、従来この蛍光補正は試
料の厚さが充分に厚い塊状試料については方法が提案さ
れているが、薄膜試料の場合に適用できる補正方法は提
案されていない。
C, the characteristic X-ray wavelength of element B is
When shorter than the line wavelength, the property X* of element B excites the element $A and generates fluorescence, so even if the concentration of element f: is the same, it can be directly measured in samples with more and less element B. The characteristic X-ray intensity to the element is stronger in the former case. Therefore, it is necessary to correct the fluorescent X-rays excited by the primary X-rays of other coexisting elements. This is the fluorescence correction in X-ray spectroscopy in which the sample is excited with an electron beam. Conventionally, this fluorescence correction method has been proposed for bulk samples with a sufficiently thick sample thickness, but it has been applied to thin film samples. No possible correction method has been proposed.

即ち試料に電子線を照射して、試料がら放射されるXl
Sを分光するX 49分光分析において、一つの成分元
素の特性X線強度に対する補正には次の3種がある。(
1)電子線の試料中への進入深さ、後方散乱電子の割合
等の影響を受け、電子線の進入深さ、後方散乱電子の割
合等は試料を構成している元素の種類、平均原子番号に
依存しているため、この影響に対する補正は原子番号補
正と呼ばれる。(2)また試第1内で発生した目的元素
の特性X線は他共存元素の原子により吸収されるので、
吸収に対する補正が必要で、これは吸収補正と呼ばれる
。(3)更に共存他元素の特性X線とか連続X線によっ
て目的元素が励起され、見掛上目的元素の特性X線強度
を強めるので、これに対する補正が必要で、この補正は
蛍光補正と呼ばれる。これら三種の補正を合わせてZ 
A F’ ?ili正と呼ぶ。これらの補正は試料の元
素組成が分っておれば計算可能であるが、当初試料の成
分組成は不明であるから、各成分元素の特性X線強度か
ら、第1近似の組成を仮定してZAF補正を計算して第
2近似組成を求め、第2近似に基いて再びZΔF補正の
計算を行うと云う手順を繰返す逐次近似法により正しい
元素組成に到達する。試料厚さが充分大きな試料に対し
ては上記補正を実行する具体的な手法が提案されている
が薄膜試11については具体的な補正手法が提案されて
いない。
That is, by irradiating the sample with an electron beam, the Xl emitted from the sample
In X49 spectroscopic analysis of S, there are three types of corrections for the characteristic X-ray intensity of one component element: (
1) The penetration depth of the electron beam and the proportion of backscattered electrons are affected by the penetration depth of the electron beam into the sample, the proportion of backscattered electrons, etc. Because it is number dependent, correction for this effect is called atomic number correction. (2) Also, since the characteristic X-rays of the target element generated in test 1 are absorbed by atoms of other coexisting elements,
Correction for absorption is required and is called absorption correction. (3) Furthermore, the target element is excited by characteristic X-rays or continuous X-rays of other coexisting elements, apparently increasing the characteristic X-ray intensity of the target element, so correction for this is necessary, and this correction is called fluorescence correction. . Combined with these three types of correction, Z
AF'? I call it ili positive. These corrections can be calculated if the elemental composition of the sample is known, but since the elemental composition of the sample is initially unknown, a first approximation of the composition is assumed based on the characteristic X-ray intensity of each component element. A correct elemental composition is reached by a successive approximation method that repeats the procedure of calculating the ZAF correction to obtain a second approximate composition, and calculating the ZΔF correction again based on the second approximation. A specific method of performing the above correction has been proposed for a sample with a sufficiently large sample thickness, but no specific correction method has been proposed for thin film sample 11.

(発明が解決しようとする課題) 薄膜試料の場合、吸収補正は小さく、薄膜支持体から放
射されるX線による蛍光X線の影響が大きい。本発明は
薄膜試料に適する蛍光補正の方法を提供するものである
(Problems to be Solved by the Invention) In the case of a thin film sample, the absorption correction is small and the influence of fluorescent X-rays due to X-rays emitted from the thin film support is large. The present invention provides a fluorescence correction method suitable for thin film samples.

(課題を解決するための手段) 電子線照射による試料および試料保持体の成分元素の1
次特性X線発生強度分布を試料およびその支持体を含め
て計算し、この計算された1次特性X線発生強度分布に
より、試料および試料保持体の各部からの1次特性X線
による試料各成分元素の2次特性X線発生強度を試料表
面からの深さの関数として計算し、この計算結果を試料
表面から試料の厚さだけ積分した計算上の2次特性X線
強度と上記1次特性X線発生強度分布から求めた計算上
の1次特性X線強度との比率により試料成分元素の実測
特性X線強度に対する蛍光励起補正を行うようにした。
(Means for solving the problem) 1 of the component elements of the sample and sample holder by electron beam irradiation
The secondary characteristic X-ray generation intensity distribution is calculated including the sample and its support, and based on this calculated primary characteristic X-ray generation intensity distribution, each sample is The secondary characteristic X-ray intensity of the component elements is calculated as a function of the depth from the sample surface, and the calculated secondary characteristic Fluorescence excitation correction was performed on the actually measured characteristic X-ray intensity of the sample component element based on the ratio of the calculated primary characteristic X-ray intensity obtained from the characteristic X-ray generation intensity distribution.

(作用〉 試料を電子ビームで照射すると試料からX線が放射され
る。電子は試料内に進入し、試料出原子と衝突してX線
を放出させるので、試料の組成が分っているときは試料
内から発生する成分元素の特性X線の発生強度分布を計
算することができる。この分布を試料面からの深さをX
l、試料面の電子ビーム照射点から試料面に沿う距離を
!・1としてφ(xl、rl)とする。試料内の原子は
この1次特性X線(以後単に1次X線と云う)の照射を
受けて励起され、2次特性X線(蛍光X線、以後単に2
次X線と云う)を放射する。試料内の一点における上記
1次X線の効果は計算可能であり、従って試料的各点の
2次XfI放射強度も計算できる。この試料的各点の2
次X線放射強度を試料表面から深さX2の層面について
積分すると、2次X線発生強度の試料面からの深さ分布
を求めることができ、これを試料の厚さだけ積分すると
2次Xlll11強度I2が求められる。前記した1次
X&Ii!発生強度分布φ(xi、rl)をxl、rl
についてOから無限大まで積分すれば、1&X線強度1
1が求められる。試料について実測される成分元素の特
性X線強度は1次X線と2次X線の強度の和であるが、
その1次X線と2次X fllとの強度の比は上記計算
上の!■と!2との比と同じであるから、上記計算上の
11.12によって蛍光励起補正が可能である。この方
法によると、1次X線は試料および試料膜保持体も含め
て計算され、その1次X線が試料膜に及ばず影響を計算
しているので、任意厚さの試料について蛍光励起補正が
できるのである。
(Effect) When a sample is irradiated with an electron beam, X-rays are emitted from the sample.The electrons enter the sample and collide with the atoms coming out of the sample, emitting X-rays, so when the composition of the sample is known. can calculate the intensity distribution of characteristic X-rays of component elements generated from within the sample.This distribution can be calculated by dividing the depth from the sample surface into
l, the distance along the sample surface from the electron beam irradiation point on the sample surface! - Assume φ(xl, rl) as 1. Atoms in the sample are excited by being irradiated with this primary characteristic X-ray (hereinafter simply referred to as primary
It emits radiation (called X-rays). The effect of the primary X-rays at a point in the sample can be calculated, and therefore the intensity of the secondary XfI radiation at each point on the sample can also be calculated. 2 of each sample point
If the secondary X-ray radiation intensity is integrated over the layer plane at depth X2 from the sample surface, the depth distribution of the secondary X-ray generation intensity from the sample surface can be obtained, and if this is integrated by the sample thickness, the secondary The intensity I2 is determined. The above-mentioned primary X&Ii! The occurrence intensity distribution φ(xi, rl) is xl, rl
If we integrate from O to infinity for 1 & X-ray intensity 1
1 is required. The characteristic X-ray intensity of a component element actually measured for a sample is the sum of the primary and secondary X-ray intensities,
The intensity ratio between the primary X-ray and the secondary X full is calculated as above! ■And! Since the ratio is the same as that of 2, it is possible to correct the fluorescence excitation using the above calculated ratio of 11.12. According to this method, the primary X-ray is calculated including the sample and the sample membrane holder, and the influence of the primary X-ray does not reach the sample membrane is calculated, so fluorescence excitation correction is performed for a sample of arbitrary thickness. This is possible.

上記計算は試料の組成が分っていなければできないが、
試料を電子線で照射したとき試料から放射される特性X
線強度の実測値から、試料成分の定性と第1近似の各成
分濃度を決定し、これを用いて上記計算を行って、上記
実測特性X線強度に蛍光補正を行い、補正された各成分
元素の特性X線強度から第2近似の各成分濃度を決め、
それに基いて前記計算を行って実測特性X線強度に補正
を行い、第3近似の各成分濃度を決める。以下このよう
な手順を繰返すと、第n近似と第n+1近似の成分濃度
の差が目標値以下になる。そこで第n+1近似の成分濃
度を以って試料の定量分析値とすればよい。
The above calculation cannot be performed unless the composition of the sample is known.
Characteristics X emitted from a sample when the sample is irradiated with an electron beam
Determine the qualitative characteristics of the sample components and the first approximate concentration of each component from the measured value of the line intensity, perform the above calculation using this, perform fluorescence correction on the above measured characteristic X-ray intensity, and calculate the corrected each component. Determine the concentration of each component in the second approximation from the characteristic X-ray intensity of the element,
Based on this, the calculation is performed to correct the actually measured characteristic X-ray intensity, and the third approximation of each component concentration is determined. If such a procedure is repeated thereafter, the difference in component concentration between the n-th approximation and the (n+1)-th approximation becomes equal to or less than the target value. Therefore, the n+1th approximate component concentration may be used as the quantitative analysis value of the sample.

(実施例) まずこの実施例で蛍光X線強度を求める計算式について
説明する。第2図でFは試料表面で、試料上の一点Oを
照射している電子のうち一つが図fのような軌跡を画い
て試料面から深さXlにおける一点aに到達し、そこで
試料構成原子から1次X線を放射させたとする。この1
次X線の方向および強度は個々の電子によって異り確率
的に決まるものであるが、多数の電子について平均すれ
ば、全ての方向に均一で、試料の組成および密度によっ
て決まり、深×1と図示r1の関数として表わされる。
(Example) First, a calculation formula for determining fluorescent X-ray intensity in this example will be explained. In Fig. 2, F is the sample surface, and one of the electrons irradiating a point O on the sample traces a trajectory as shown in Fig. f and reaches a point a at a depth Xl from the sample surface, where the sample structure changes. Suppose that an atom emits primary X-rays. This one
The direction and intensity of the secondary X-rays vary depending on the individual electrons and are determined stochastically, but when averaged over many electrons, they are uniform in all directions and are determined by the composition and density of the sample, and are determined by the depth x 1. It is expressed as a function of r1 shown in the figure.

a点を含む微小体債d Vから放射される元素jの1次
X &’il ffiをφj(xl、rl)dVとする
Let φj(xl, rl)dV be the primary X &'il ffi of element j emitted from the microscopic bond dV including point a.

計算の目的は試料を電子線で照射したとき試料から任意
の一方向に放射される1次X!IIi+と、蛍光X線の
強度比を求めることである。全試料面の垂線に対し市の
方向を観測方向としてこの方向で微小角範囲dω内に放
射される1次X線のMlljdwを求める。a点を含む
微小体債dVから立体角〔1ω内に放射される1次X 
49 Mは匂(17、i”t)dVclω で、このX線が試料内をXl/cosqrだけ進んで試
料面から出るので、その間の吸収を考1ばして表面から
放射される量は こ\でρは試料の密度、μは1次X線波長に対する試料
の平均的な質量吸収係数で、各元素の原子の質量吸収係
数をμiとし、各元素の試料中濃度をCiとすると、 μ=Σμ1xci である。
The purpose of the calculation is to calculate the primary X! radiation emitted from the sample in one arbitrary direction when the sample is irradiated with an electron beam. The purpose is to find the intensity ratio of IIi+ and fluorescent X-rays. With the direction of the city as the observation direction with respect to the perpendicular to the entire sample surface, Mlljdw of the primary X-rays emitted within the small angle range dω in this direction is determined. The first-order X radiated within a solid angle [1ω
49 M is (17, i”t)dVclω, and since this X-ray travels through the sample by Xl/cosqr and exits from the sample surface, taking into account the absorption during that time, the amount emitted from the surface is In \, ρ is the density of the sample, μ is the average mass absorption coefficient of the sample for the primary X-ray wavelength, the mass absorption coefficient of the atoms of each element is μi, and the concentration of each element in the sample is Ci, then μ =Σμ1xci.

試料面からの深さxlなる層面で発生し、試料面から1
11の方向に放射されろ1次X線の1illffiは上
式をxlの層面全体について積分して得られる。
It occurs at a layer plane with a depth xl from the sample surface, and 1 from the sample surface.
1illffi of the primary X-rays emitted in the direction 11 is obtained by integrating the above equation over the entire layer plane xl.

この積分て指数関数の項は定数として扱えるから上式で
rの定積分は試料面からの深さXlの層面における1次
X線の総量で深さXlの関数であり、後述する方法によ
り計算される。これをDj(Xl)とすると、試料から
1Vの方向に放射される1次X線強度11jは上式をX
lについて積分で与えられる。
Since this integral and the exponential function term can be treated as a constant, the definite integral of r in the above formula is the total amount of primary be done. If this is Dj (Xl), the primary X-ray intensity 11j emitted from the sample in the direction of 1V is expressed by the above equation
It is given by integral with respect to l.

次に上述した1次X線により励起されて放q+される2
次X 49の量を求める。試料面からの深さXlなる層
面上の一点aから放射される1次X線の深さX2なる層
面上のb点に到達する量は幾何学的な関係量を第2図に
示すように決め、X2面一」−でb点を含む微小面f&
をdsとするとb点を含む微小体Wt d s d x
 2から発生ずる2次X1!A量は、元素jの1次X線
がR方向に単位距離進行する間の元素iに対する2次X
 線発生効率をQ i−jとるすと、1次X線が厚さd
X2の層を通過する距離はdx2/cosQであるから
、c2)式にQ I J CI X 2 / co!I
θを掛けて得られろ。(2)式でR= (xi−x2)
/cost、またX2面内に0点を原点とする極座標(
r 、α)を考えると、dS= td亡dぺ であるから、a点からの1次X線によって潔さX2にお
ける厚さdx2なる層から発生する2次X(4)式で定
積分の項は前述したDj (xi)である。そこで試料
内で発生ずる全1次X線によってx2の層面から発生ず
る2次X線の総量をD2(x2)dx2とすると(4)
式をxlについて積分して このWはa点における1次X線の発生強度φj(xlr
l)に比例し、深さxlおよびx2の2層間の距m (
x l −x 2 )の関数とφj(xlrl)dVと
の積であるから、この関数をF(xix2)とすると、
深さX1厚さdxlの層全体から発生する1次X線によ
って深さX2厚さdx2の層全体から放出される2次X
線の総量Δ(X2)dx2は(3)式を深さxiの面に
沿って放射される1次XIについて積分して得られる。
Next, 2 is excited and emitted by the above-mentioned primary X-ray
Find the quantity of the next X49. The amount of primary X-rays emitted from a point a on the layer surface at depth Xl from the sample surface and reaching point b on the layer surface at depth X2 is a geometrically related quantity as shown in Figure 2. Determine,
Let ds be the microbody Wt d s d x containing point b
Secondary X1 generated from 2! The amount of A is the secondary X-ray for element i while the primary X-ray of element j travels a unit distance in the R direction.
Taking the ray generation efficiency as Q ij, the primary X-ray has a thickness of d
The distance that X2 passes through the layer is dx2/cosQ, so in formula c2), Q I J CI X 2 / co! I
Get it by multiplying by θ. In formula (2), R = (xi-x2)
/cost, and polar coordinates with the origin at the 0 point in the X2 plane (
Considering r, α), since dS = td, dpe, the quadratic X generated from a layer with thickness dx2 at depth X2 due to the primary X-ray from point a is The term is Dj (xi) mentioned above. Therefore, if the total amount of secondary X-rays generated from the layer surface of x2 due to all the primary X-rays generated within the sample is D2 (x2) dx2, (4)
The equation is integrated with respect to xl, and this W is the generated intensity of primary X-rays at point a φj(xlr
l), and the distance m (
Since it is the product of the function x l −x 2 ) and φj(xlrl)dV, if this function is F(xix2),
The secondary X-rays emitted from the entire layer of depth X2 and thickness dx2 by the primary X-rays generated from the entire layer of depth X1 and thickness dxl.
The total amount of lines Δ(X2)dx2 is obtained by integrating equation (3) with respect to the first-order XI emitted along the plane of depth xi.

この積分に当り(3)式の定積分が上記F (xl−x
2)で試料面から平の方向に放射される2次X線強度!
’R−(x−7−λ2)/、、θ であるから、上記定積分は となる。こ\で なる置換を行うと、上の積分は る元素iの1次X線強度)および12iが計算されると
、実測X線強度はI l i +12 iに比例する。
For this integral, the definite integral of equation (3) is the above F (xl-x
2) is the secondary X-ray intensity emitted from the sample surface in a flat direction!
'R-(x-7-λ2)/, θ, so the above definite integral becomes. When the above integral (first-order X-ray intensity of element i) and 12i are calculated, the actual measured X-ray intensity is proportional to I l i +12 i.

そこで元素iの特性X線の実測X線強度をI(7)式の
積分は なる公式により第3項までとってF(xi−x2)は こ\でγ=0.577・・・ 元岑iは元素jだけでなくiも含めて元″Xiより短波
長の特性xmを放出する他の全元素の1次X線により励
起されるので、2次X線の全強度■21は 以上のようにしてl1i(式(1)により求められ上式
最右辺の!iは実測値、Ili、12iは両式によって
計算される値である。
Therefore, the actually measured X-ray intensity of the characteristic X-ray of element i is taken up to the third term using the formula I (7) where the integral is Since i is excited by the primary X-rays of not only element j but also all other elements, including i, which emit characteristic xm with a shorter wavelength than the element "Xi," the total intensity of secondary X-rays ■21 is as follows. In this way, l1i (calculated by equation (1), !i on the right-most side of the above equation is an actual measured value, and Ili and 12i are values calculated by both equations.

次に1次X線強度φj(XI、rl)の求め方の一例を
説明する。これは試料内に入射した電子が試料を構成し
ている原子と衝突を繰返しながら次第にエネルギーを失
いつ\不規則な軌跡を画いて試料内を進行して行く過程
をモンテカルロシミュレーション法によって追跡し、こ
の電子の進行過程の各点で試料の組成と電子のエネルギ
ーによって決まるX線放射確率を掛ける。このような計
算を多数の電子について行うと、試料内の各点における
1次XIの強度が求まる。第3図にシミュレーション演
算のフローチャートを示す。被測定試料は厚さtとし、
それを構成している元素は1からnまでのnf]T[で
ある。これらの元素の濃度の組合せを想定しこれらの元
素の濃度(重量%)をC1,C2・・・Ci・・・Cn
としてシミュレーションを開始する。こ\で添字のiは
成分番号である。試料厚さt、試料を構成している各元
素の電子に対する散乱断面債、イオン化断面積、各元素
の濃度C1,電子の初期エネルギーEo、終末エネルギ
ーE′、シミュレーションを行う回数NO等をコンピュ
ータに入力する(イ)。シミュレーションは例えば10
00から20000個の電子について行う。具体的には
一個の電子を試料に入射させたときの電子の軌跡の追跡
演算を行い、これをNo回繰返すのである。(イ)のス
テップでシミュレーション演算に必要なデータおよびパ
ラメータの入力を終ったら、演算回数N=1としくハ)
、試料に入射させた電子の追跡演算を行う(ニ)。この
演算は電子が先の試料的原子との衝突から次の試料内の
原子と衝突するまでの過程の計算で、先の衝突において
、電子がどの方向に反撥されるかその方向を確率的にき
め、次にどの元素の原子と衝突をするかを下記(8)式
により各構成元素の原子の散乱断面債および各元素の濃
度に関係させて確率的に決定し、下記(9)式により電
子の試料内での平均自由行程だけ電子が進行して、上記
確率的に決定された原子に衝突するものとし、この過程
におけるエネルギーの損耗を下記(10)工(こ\にA
iは元素iの原子量、Ciは元素iの原子の電子に対す
る散乱断面債で、衝突する電子のエネルギーEと、試料
を構成している各元素の原である。
Next, an example of how to obtain the primary X-ray intensity φj (XI, rl) will be explained. This method uses the Monte Carlo simulation method to track the process in which electrons that enter a sample repeatedly collide with the atoms that make up the sample, gradually losing energy, and progress through the sample in an irregular trajectory. At each point in the electron's progress, it is multiplied by the X-ray emission probability determined by the composition of the sample and the energy of the electron. When such calculations are performed for a large number of electrons, the intensity of the first-order XI at each point within the sample is determined. FIG. 3 shows a flowchart of simulation calculations. The sample to be measured has a thickness t,
The elements constituting it are nf]T[ from 1 to n. Assuming the combination of concentrations of these elements, the concentrations (wt%) of these elements are C1, C2...Ci...Cn
Start the simulation as Here, the subscript i is the component number. The sample thickness t, the scattering cross section for electrons of each element constituting the sample, the ionization cross section, the concentration C1 of each element, the initial energy Eo of the electron, the terminal energy E', the number of simulations NO, etc. are entered into the computer. Enter (a). For example, the simulation is 10
This is done for 00 to 20,000 electrons. Specifically, a calculation is performed to trace the trajectory of an electron when it is incident on a sample, and this is repeated no number of times. After inputting the data and parameters necessary for the simulation calculation in step (a), set the number of calculations N = 1 (c)
, Perform tracking calculations for the electrons incident on the sample (d). This calculation calculates the process from the collision of the electron with the previous sample atom to the collision with the next sample atom, and calculates in which direction the electron will be repelled in the previous collision, based on probability. Then, the atom of the element to collide with is determined probabilistically using the following equation (8) in relation to the scattering cross section of the atom of each constituent element and the concentration of each element, and then using the following equation (9). Assume that the electron travels along its mean free path within the sample and collides with the atom determined probabilistically above, and the loss of energy in this process is calculated as follows (10).
i is the atomic weight of element i, Ci is the scattering cross section of the atom of element i for electrons, the energy E of the colliding electrons, and the source of each element constituting the sample.

平均自由行程りはλ単位で 電子が物質内を進行して行くときのエネルギー但し は
試料内の各元素の組成比(重量%)を加味した原子番号
の平均値で 2 = ΣC3・2ぞ  イLL;l(:□’=/で表
わされる。同様にしてAは試料内元素の平均原子量、ρ
は試料密度である。上式の単位はK eVl八でJiは
元素iのイオン化ポテンシャル(eVlである。
The mean free path is the energy when an electron moves through a substance in units of λ. However, it is the average value of the atomic number taking into account the composition ratio (wt%) of each element in the sample. 2 = ΣC3・2. It is expressed as LL;l(:□'=/.Similarly, A is the average atomic weight of the elements in the sample, ρ
is the sample density. The unit in the above equation is K eVl8, and Ji is the ionization potential of element i (eVl).

追跡計算が終わったら、その演算における前後の衝未の
間の電子の試料表面からの深さ方向の進行距離および電
子入射点からの試料面に平行方向の進行距離を前回まで
の深さ方向および試料面と平行方向の進行距離に加算し
て現在の電子の試料面からの深さ位置X1をfan(ホ
)する。この実施例で は次の(へ)のステップで、上記過程で後の衝突におけ
る元′Miの特性X線放射確率を計算し、その結果をメ
モリに入力する。特性X線の放射確率は電子のエネルギ
ーをE1元元素の特性X線放射のための励起エネルギー
をEiとすると、vi=E/Eiに関係し、次式で与え
られるφ′iに比例このφiをxlなる座標データをア
ドレス指定データとするメモリにおいてアドレス内のデ
ータに加算して同アドレスに格納する。次に電子エネル
ギーEがE/E ’か否かチエツクされる(ト)。
After the tracking calculation is completed, calculate the distance traveled by the electron in the depth direction from the sample surface and the distance traveled parallel to the sample surface from the electron incident point between the previous and subsequent strikes in the previous depth direction and the distance traveled parallel to the sample surface from the electron incident point. The current depth position X1 of the electron from the sample surface is fanned by adding it to the traveling distance in the direction parallel to the sample surface. In this embodiment, in the next step, the characteristic X-ray emission probability of the element 'Mi in the subsequent collision is calculated in the above process, and the result is input into the memory. The emission probability of characteristic X-rays is related to vi=E/Ei, where the electron energy is E1 and the excitation energy for characteristic X-ray emission of an element element is Ei, and is proportional to φ′i given by the following equation is added to the data in the address in a memory that uses coordinate data xl as addressing data, and is stored at the same address. Next, it is checked whether the electron energy E is E/E' (T).

E゛は電子の終末エネルギーで今の場合試料中の何れの
元素の原子もイオン化できない限界エネルギーに設定し
ておけばよい。このチエツクがN。
E' is the terminal energy of the electron, and in this case it may be set to a limit energy at which atoms of any element in the sample cannot be ionized. This check is N.

の場合、電子の試料面からの深さxlが<0(表面から
飛び出す)か否かチエツク(チ)、次にXl〉t(試料
を透過)か否かチエツク(す)、全てNoであれば動作
はく二)に戻り、(ト)(チ) (す)の何れかのステ
ップがNoになる迄同じ動作が繰返される。
In the case of , check whether the electron depth xl from the sample surface is <0 (jumps out from the surface), then check whether Xl>t (transmits through the sample), and all answers are No. Then, the operation returns to step 2), and the same operation is repeated until any of steps (g), (ch), and (su) becomes No.

以上のようにして(ト)(チ)(す)の何れかのステッ
プがYESになるとそこで一個の電子について追跡演算
が終わり、N4:N −+−1としくル)、新しいNが
N>Noか否がヂエック(オ)し、NOなら動作は(ハ
)のステップに戻って次の電子について上述した演算が
行われる。が(して例えば10000回の演算が行われ
るとN>Noとなって(オ)のステップがYESとなり
一つの試料についてのモンテカルロシミュレーション演
算が完了したことになる。こ\までの動作でメモリ内に
は各元素毎に試料内の深さ位置xiに対する特性X線放
射度数のヒストダラムが形成されている。これが先の3
1算で用いられるDi (xi)に他ならない。
As described above, when any of steps (G), (C), and (S) becomes YES, the tracking calculation for one electron ends, and the new N becomes N> A check is made to determine whether or not the result is NO. If NO, the operation returns to step (C) and the above-mentioned calculation is performed for the next electron. (For example, if 10,000 calculations are performed, N>No, and step (e) becomes YES, meaning that the Monte Carlo simulation calculation for one sample is completed. For each element, a histodrum of the characteristic X-ray radiance with respect to the depth position xi within the sample is formed.
This is nothing but Di (xi) used in 1 arithmetic.

第1図は本発明方法をコンピュータを用いて実行する場
合の動作のフローチャートである。コンピュータには予
め計算に用いられる各元素の特性値例えば原子番号、質
量吸収系数等が入力しである。分析に先立ち、試料薄膜
の厚さ、保持体の成分組成等のデータを入力(イ)し、
試料の各成分の特性X線強度1iを測定(ロ)する。今
の場合試料成分元素は既知(定性分析ずみ)であり、従
って各成分元素の特性X線強度測定は予め指定された波
長でのX線測定動作である。この測定結果から各成分元
素の第1近似濃度Ciを決める(ハ)。この第1近似濃
度はこの実施例では各成分元素の純品試料の特性X線強
度との比として決定する。次いで演算回数nを1とおき
(ニ)、各成分の第n近似濃度C4:の所に上記Ciを
設定(ホ)して、前記Di (xi)および(′7)式
の12ijの演算(へ)(ト)を行い、前記計算上の各
成分特性X線の1次X線強度11iおよび蛍光X線強度
(2次X線強度)121を算(チ)し、は終了し、NO
であればn+1をnとして動作は(ホ)に戻る。
FIG. 1 is a flowchart of operations when the method of the present invention is executed using a computer. Characteristic values of each element used in calculations, such as atomic number and mass absorption coefficient, are input into the computer in advance. Prior to analysis, input data such as the thickness of the sample thin film and the component composition of the support (A).
Measure the characteristic X-ray intensity 1i of each component of the sample (b). In this case, the sample component elements are known (qualitatively analyzed), and therefore the characteristic X-ray intensity measurement of each component element is an X-ray measurement operation at a predetermined wavelength. From this measurement result, the first approximate concentration Ci of each component element is determined (c). In this embodiment, this first approximate concentration is determined as a ratio of the characteristic X-ray intensity of a pure sample of each component element. Next, set the number of calculations n to 1 (D), set the above Ci at the n-th approximate concentration C4: of each component (E), and calculate the above Di (xi) and 12ij of equation ('7) ( Go to) (g) and calculate the primary X-ray intensity 11i and fluorescent X-ray intensity (secondary X-ray intensity) 121 of each component characteristic X-ray in the calculation (h).
If so, the operation returns to (E) with n+1 set to n.

実測された各成分の特性X線強度1i或は補正された!
 から各成分濃度を決める方法としては例えば本願出願
人によって提案された「特願昭63−186492号X
線分光分析法」を用いることとができる。
The characteristic X-ray intensity 1i of each component was actually measured or corrected!
As a method for determining the concentration of each component from
Line spectroscopy" can be used.

(発明の効果) 本発明によれば薄膜試料で保持体からの1次X線の照射
効果がある場合でも、計算によって蛍光励起補正が可能
であり、特殊な標準試料を用意じなくてもよ(、精度の
良い分析ができる。
(Effects of the Invention) According to the present invention, even if there is an irradiation effect of primary X-rays from the holder on a thin film sample, it is possible to correct the fluorescence excitation by calculation, and there is no need to prepare a special standard sample. (Able to perform accurate analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例における動作のフローチ
ャート、第2図は試料内における2次X線発生のメカニ
ズムを説明するモデル図、第3図は1次X線強度を計算
する動作の一個フローチャートである。 第1図 代理人  弁理士 縣  浩 介
Fig. 1 is a flowchart of the operation in one embodiment of the method of the present invention, Fig. 2 is a model diagram explaining the mechanism of secondary X-ray generation within the sample, and Fig. 3 is a flowchart of the operation for calculating the primary X-ray intensity. This is a flowchart. Figure 1 Agent: Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims]  電子線照射による試料および試料保持体の成分元素の
1次特性X線強度分布を試料およびその支持体を含めて
計算し、この計算された1次特性X線強度分布により、
試料および試料保持体の各部からの1次特性X線による
試料各成分元素の2次特性X線強度を試料表面からの深
さの関数として計算し、この計算結果を試料表面から試
料の厚さだけ積分した計算上の2次特性X線強度と上記
1次特性X線強度分布から求めた計算上の1次特性X線
強度との比率により試料についての試料成分元素の実測
特性X線強度に対する蛍光励起補正を行うことを特徴と
する電子線励起によるX線分光分析方法。
The primary characteristic X-ray intensity distribution of the component elements of the sample and sample holder by electron beam irradiation is calculated, including the sample and its support, and from this calculated primary characteristic X-ray intensity distribution,
The secondary characteristic X-ray intensity of each component element of the sample due to the primary characteristic X-rays from each part of the sample and sample holder is calculated as a function of the depth from the sample surface, and this calculation result is calculated as a function of the depth from the sample surface to the thickness of the sample. The ratio of the calculated secondary characteristic X-ray intensity integrated by An X-ray spectroscopic analysis method using electron beam excitation, characterized by performing fluorescence excitation correction.
JP63248429A 1988-09-30 1988-09-30 X-ray spectroscopy by electron beam excitation Expired - Lifetime JP2595686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63248429A JP2595686B2 (en) 1988-09-30 1988-09-30 X-ray spectroscopy by electron beam excitation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63248429A JP2595686B2 (en) 1988-09-30 1988-09-30 X-ray spectroscopy by electron beam excitation

Publications (2)

Publication Number Publication Date
JPH0295247A true JPH0295247A (en) 1990-04-06
JP2595686B2 JP2595686B2 (en) 1997-04-02

Family

ID=17177993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63248429A Expired - Lifetime JP2595686B2 (en) 1988-09-30 1988-09-30 X-ray spectroscopy by electron beam excitation

Country Status (1)

Country Link
JP (1) JP2595686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011018A (en) * 2013-07-02 2015-01-19 株式会社東芝 Sample analysis method, program, and sample analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3950619B2 (en) * 2000-08-21 2007-08-01 日本電子株式会社 Surface analysis data display method in surface analyzer using electron beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011018A (en) * 2013-07-02 2015-01-19 株式会社東芝 Sample analysis method, program, and sample analyzer

Also Published As

Publication number Publication date
JP2595686B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US7961842B2 (en) X-ray fluorescence spectrometer and program used therein
Vincze et al. A general Monte Carlo simulation of ED-XRF spectrometers. II: Polarized monochromatic radiation, homogeneous samples
US8346521B2 (en) Method of determining the feasibility of a proposed structure analysis process
Gauvin What remains to be done to allow quantitative X-ray microanalysis performed with EDS to become a true characterization technique?
Trojek Iterative Monte Carlo procedure for quantitative X-ray fluorescence analysis of copper alloys with a covering layer
JP3889187B2 (en) X-ray fluorescence analysis method and apparatus
JPH0295247A (en) X-ray spectrochemical analysis by electron beam excitation
JP3010598B2 (en) X-ray spectroscopic analysis method of a sample covered with a thin film
US9651369B1 (en) Method and system for in-situ determination of a chemical composition of films during growth process
TWI274870B (en) Spectrum analyzer and method of spectrum analysis
WO2011159264A1 (en) A thickness determination method
Goponov et al. New method of electron beam transverse size measurement by angular distribution of emission in a thin crystal
JP2730227B2 (en) X-ray depth analysis method
Hu et al. Method for the calculation of the chemical composition of a thin film by Monte Carlo simulation and electron probe microanalysis
JP3132678B2 (en) Thin film sample thickness measurement and elemental quantitative analysis method
Gardner et al. Application of selected mathematical techniques to energy-dispersive X-ray fluorescence analysis
JP2867621B2 (en) Fluorescence excitation correction method for multilayer film
JP3069305B2 (en) X-ray fluorescence analysis method and apparatus
JP2884692B2 (en) Quantitative measurement method of sample coated with vapor deposited film
Lankosz et al. Quantitative analysis of individual particles by x‐ray microfluorescence spectrometry
Novikov Modern Scanning Electron Microscopy. 1. Secondary Electron Emission
Cheung X-ray powder diffraction as a non-destructive tool for characterising laser wakefield betatron radiation
JPH01219550A (en) Formation of calibration line for x-ray spectral analysis
Wählisch et al. Reference-free X-ray fluorescence analysis using well-known polychromatic synchrotron radiation
JP3331696B2 (en) X-ray quantitative analysis method for granular samples