JPH01219550A - Formation of calibration line for x-ray spectral analysis - Google Patents

Formation of calibration line for x-ray spectral analysis

Info

Publication number
JPH01219550A
JPH01219550A JP63045287A JP4528788A JPH01219550A JP H01219550 A JPH01219550 A JP H01219550A JP 63045287 A JP63045287 A JP 63045287A JP 4528788 A JP4528788 A JP 4528788A JP H01219550 A JPH01219550 A JP H01219550A
Authority
JP
Japan
Prior art keywords
sample
electron
probability
characteristic
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63045287A
Other languages
Japanese (ja)
Other versions
JPH0750044B2 (en
Inventor
Yuka Takeuchi
竹内 由佳
Hideto Komi
秀人 古味
Takeshi Araki
武 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63045287A priority Critical patent/JPH0750044B2/en
Publication of JPH01219550A publication Critical patent/JPH01219550A/en
Publication of JPH0750044B2 publication Critical patent/JPH0750044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To form a calibration line without using any standard sample by tracing the migration process of an electron when an electron is made incident on a virtual sample whose concentration is already known by a simulating method based on probability arithmetic as to many electrons. CONSTITUTION:When the electron is accelerated and made incident on a sample, the electron travels while repeatedly colliding against and repelling an atom. constituting the sample. The track of this electron in the sample is determined on a probability basis and can be simulated by a computer. This simulation is carried out many times to find the probability that the characteristic X rays of a target element to be determined is radiated by the electron at certain depth from the sample surface. In the relational graph of the found X-ray radiation probability and the depth from the sample surface, the integration of the probability from depth 0 to depth (t) is proportional to the characteristic X-ray radiation intensity of the target element of the sample. The concentration of the target element, on the other hand, is assumed previously, so the relation between the assumed concentration and the radiation intensity of the characteristic X rays is found and the calibration line can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線分光法による定量分析を行う場合の検量線
作成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for creating a calibration curve when performing quantitative analysis by X-ray spectroscopy.

(従来の技術) 定量分析を行う場合通常は、定量しようとする元素の濃
度訝知の幾つかの標準試料を用いて検量線を作成するか
、定量しようとする元素の純物質に対するX線強度と被
測定試料における目的元素のX線強度との比に補正演算
を施すか何れかの方法が用いられている。
(Prior art) When performing quantitative analysis, usually a calibration curve is created using several standard samples with unknown concentrations of the element to be quantified, or the X-ray intensity of the pure substance of the element to be quantified is calculated. A method is used in which a correction calculation is performed on the ratio of the X-ray intensity of the target element and the X-ray intensity of the target element in the sample to be measured.

(発明が解決しようとする課題) 上述した検量線法は濃度の異る幾つかの標準試料を用意
しなければならないが、標準試料の作成は困難な場合が
多い。また薄膜試料においては励起用電子線の透過割合
が増加しX線発生量が低下するので、薄膜の標準試料を
作らねばならないが、これは塊状の標準試料を作るより
困難である。純物質とのX線強度比に補正演算を施す方
法は共存元素の影響を逐次近似によって算定して行くも
ので計算が大へん面倒である。
(Problems to be Solved by the Invention) The above-described calibration curve method requires the preparation of several standard samples with different concentrations, but it is often difficult to prepare the standard samples. Furthermore, in a thin film sample, the transmission rate of the excitation electron beam increases and the amount of X-rays generated decreases, so it is necessary to make a thin film standard sample, but this is more difficult than making a bulk standard sample. The method of performing a correction calculation on the X-ray intensity ratio with that of a pure substance involves calculating the influence of coexisting elements by successive approximations, which is extremely troublesome to calculate.

本発明は標準試料を用いないで検量線を作成する方法を
提供しようとするもので、これによって上述した従来方
法の問題点は解消される。
The present invention aims to provide a method for creating a calibration curve without using standard samples, thereby solving the problems of the conventional method described above.

(課題を解決するための手段) 定量しようとする元素の濃度既知の仮想試料について、
電子を入射させたときその電子が試料内を試料構成原子
との衝突を繰返しながら移動してエネルギーを失って行
く過程を矛数の電子について確率演算に基づくシミュレ
ーション法によって追跡し、定量目的の元素の特性X腺
が放射される確率を試料面からの深さの関数として求め
その関数を試料表面から被測定試料のjワさと等しい深
さまで積分する演算を定量しようとする元素の複数種類
の濃度の場合について行い、上記積分結果とそれに対応
する目的元′lf:濃度とによって5検量線を作成する
ようにした。
(Means for solving the problem) For a virtual sample whose concentration of the element to be quantified is known,
When an electron is introduced, the process in which the electron moves through the sample through repeated collisions with the sample's constituent atoms and loses energy is traced using a simulation method based on probability calculation for a large number of electrons, and the process is used to trace the process in which the electron loses energy by repeatedly colliding with sample constituent atoms. Concentrations of multiple types of elements to be quantified by calculating the probability that the characteristic 5 calibration curves were created using the above integration results and the corresponding target element 'lf:concentration.

(作用) 加速された電子が試料に入射すると第4図に示すように
その電子は試料を構成している原子と衝突して反撥され
、又別の原子に衝突すると云う過程を繰返し試料内に不
規則な軌跡を画きながら進行し、その間に次第にエネル
ギーを失って行く。
(Function) When accelerated electrons enter a sample, as shown in Figure 4, the electrons collide with the atoms that make up the sample, are repelled, and then collide with other atoms, a process that repeats itself inside the sample. It moves along an irregular trajectory, gradually losing energy.

このように衝突を繰返して進行して行く電子の試料内で
の軌跡は磁率的に決まるもので、コンピュータによりシ
ミュレートすることができる。このようなシミュレーシ
ョンの方法はモンテカルロシミュレーション法と呼ばれ
るものである。」−述したシミュレーションを多数回行
うと、試料面がら成る深さの所で電子が定量しようとす
る目的の元素の特性X線を放射させる確率が求められる
。このようにして求められたXJ1i!放射確率Piと
試料面からの深さとの関係は第3図のようになる。この
図で深さOからtまでの確率の積分は厚さtの試料の目
的元素の特性X線放射強度に比例している。他方目的元
素の濃度は予め仮定しているから、仮定した濃度と特性
X線の放射強度との関係が求められたことになり、検f
fl線を作成することができる。
The trajectory of electrons within a sample, which progress through repeated collisions, is determined by magnetic properties and can be simulated by a computer. Such a simulation method is called a Monte Carlo simulation method. ” - By performing the above-mentioned simulation many times, the probability that electrons emit characteristic X-rays of the target element to be quantified at the depth of the sample surface can be determined. XJ1i obtained in this way! The relationship between the radiation probability Pi and the depth from the sample surface is shown in FIG. In this figure, the integral of the probability from depth O to t is proportional to the characteristic X-ray radiation intensity of the target element in the sample of thickness t. On the other hand, since the concentration of the target element is assumed in advance, the relationship between the assumed concentration and the characteristic X-ray radiation intensity has been determined, and the test f
fl line can be created.

以上の方法は仮想試料についての理論的計算で実際に目
的元素の色々な濃度の濃度跋知の試料を必要としない。
The above method is a theoretical calculation for a virtual sample and does not actually require samples with various concentrations of the target element.

また試料表面から任意深さまでの部分でのX線発生確率
をR1算しているので、薄膜試料に対しても適用可能な
結果が得られるものである。
Furthermore, since the probability of X-ray generation at an arbitrary depth from the sample surface is calculated by R1, results applicable to thin film samples can also be obtained.

(実施例) 第1図は本発明の一実施例における検量作成動作のフロ
ーチャートである。被測定試料は厚さtの薄膜でそれを
構成している元素は1からnまでのnflである。これ
らの元素の色l/な濃度の組合せをもつKfllの試料
を想定しこれら各試料毎の元素の濃度(重量%)をCk
l、Ck2・・・Ck nとしてシミュレーションを開
始する。こ\で添字のkは試料番号である。試料厚さt
、試料を構成している各元素の原子の電子に対する散乱
断面積。
(Embodiment) FIG. 1 is a flowchart of a calibration preparation operation in an embodiment of the present invention. The sample to be measured is a thin film with a thickness of t, and the elements constituting it are nfl from 1 to n. Assuming a sample of Kfll with a combination of colors and concentrations of these elements, the concentration (wt%) of the element for each sample is Ck.
1, Ck2...Ck n, and start the simulation. Here, the subscript k is the sample number. sample thickness t
, the scattering cross section for electrons of atoms of each element making up the sample.

イオン化断面積、各試料毎の各元素の濃度Cki、i子
の初期エネルギーEo、終末エネルギーE゛、シミュレ
ーションを行う回数No等をコンピュータに入力する(
イ)。シミュレーションは例えば1000から2000
0個の電子について行う。具体的には一個の電子を試料
に入射させたときの電子の軌跡の追跡演算を行い、これ
をN0回繰り返すのである。(イ)のステップでシミ1
、レーション演算に必要なデータおよびパラメータの入
力を終ったら、試料番号1c = 1としく口)、演算
回数N=1としくハ)、&(料に入射させた電子の追跡
演算を行う(二〉。この演算は電子が先の試料内原子と
の衝突から次に試料内の原子と衝突する迄の過程の計算
で、先の衝突において、電子がどの方向に反撥されるか
その方向を確率的に決め、次にどの元素の原子と衝突を
するかを下記(1)式により各構成元素の原子の散乱断
面積および各元素の濃度に関係させて確率的に決定し、
下記0式により電子の試料内での平均自由行程だけ電子
が進行して、上記確率的に決定された原子に衝突するも
のとし、この過程におけるエネ・ルギーの損耗を下記(
3)式によって算定すると云う演算でで、piは こ\にAiは元素1の原子量、σiは元!iの原子の電
子に対する散乱断面積で、衝突する電子のエネルギーE
と、試料を構成している各1元素の原子番号ziによっ
て決まり、 但しβiはスクリーニングパラメータで、である。
Input into the computer the ionization cross section, the concentration Cki of each element for each sample, the initial energy Eo of the i-son, the final energy E゛, the number of simulations, etc. (
stomach). For example, the simulation is from 1000 to 2000.
Perform for 0 electrons. Specifically, when one electron is made incident on a sample, the trajectory of the electron is tracked and calculated, and this is repeated N0 times. Stain 1 in step (a)
, After inputting the data and parameters necessary for the ration calculation, perform the sample number 1c = 1 and the number of calculations N = 1 and perform the trace calculation of the electrons incident on the sample (2). 〉.This calculation calculates the process from the first collision of an electron with an atom in the sample to the next collision with an atom in the sample, and calculates the probability in which direction the electron will be repelled in the previous collision. Next, the atoms of the elements to collide with are determined probabilistically using the following equation (1) in relation to the scattering cross section of the atoms of each constituent element and the concentration of each element.
It is assumed that the electron advances by the mean free path within the sample according to the following equation 0 and collides with the atom determined probabilistically above, and the loss of energy in this process is calculated as follows (
3) It is calculated by the formula, where pi is the atomic weight of element 1, and σi is the element! The scattering cross section for the electron of atom i, the energy of the colliding electron E
is determined by the atomic number zi of each element constituting the sample, where βi is a screening parameter.

電子が物質内を進行して行くときのエネルギー・・・(
3) ミ 但し詞は試料内の各元素の組成比(,11%)を加味し
た原子番号の平均値で zl=ΣC1zi  但しΣC1=1 で表わされる。同様にしてXは試料内元素の平均原子量
、ρは試料密度である。
The energy when an electron moves through a substance...
3) The proviso is the average value of the atomic number, taking into account the composition ratio (,11%) of each element in the sample, and is expressed as zl=ΣC1zi, where ΣC1=1. Similarly, X is the average atomic weight of the elements in the sample, and ρ is the sample density.

上式の単位はK e V / AでJiは元素iのイオ
ン化ポテンシャル(eV)である。
The unit of the above formula is K e V / A, and Ji is the ionization potential (eV) of element i.

追跡計算が終わったら、その演算における前後の衝突の
間の電子の試料表面からの深さ方向の進行距離を前回ま
での深さ方向進行距離に加算して現在の電子の試料面か
らの深さ位flidを計算(ホ)する。この実施例では
次の(へ)のステップで、上記過程で後の衝突における
元素iの特性X線放射確率を計算し、その結果をメモリ
に入力する。
When the tracking calculation is completed, the distance traveled by the electron in the depth direction from the sample surface between the previous and subsequent collisions in that calculation is added to the distance traveled in the depth direction up to the previous time to determine the current depth of the electron from the sample surface. Calculate the position flid (e). In this embodiment, in the next step, the characteristic X-ray emission probability of element i in the subsequent collision is calculated in the above process, and the result is input into the memory.

特性X線の放射確率は電子のエネルギーをE1元元素の
特性X!llI放射のための励起エネルギーをEiとす
ると、V r = E / E tに関係し、次式で与
このφiを第2図のメモリマツプに示すように、メモリ
内でに番目の試料の元素iのエリヤにおいて試料面から
の深さdに対応するアドレス内のデータに加算して同ア
ドレスに格納する。次に電子エネルギーEがEVE”か
否かチエツクされる(ト)。Eoは電子の終末エネルギ
ーで今の場合試料中の何れの元素の原子もイオン化でき
ない限界エネルギーに設定しておけばよい。このグーニ
ックがNoの場合、電子の試料面からの深さdが(1<
0(表面から飛び出す)か否かチエツク(チ)、次にd
ot (試料を透過)か否かチエツク(す)シ、全てN
oであれば動作は(ニ)に戻り、(ト)(チ)(す〉の
何れかのステップがNoになる迄同じ動作が繰返される
The radiation probability of characteristic X-rays is the energy of the electron, which is the characteristic When the excitation energy for llI radiation is Ei, it is related to V r = E / E t and is given by the following equation. As shown in the memory map of Fig. 2, the element i of the sample in the memory is is added to the data in the address corresponding to the depth d from the sample surface in the area and stored at the same address. Next, it is checked whether the electron energy E is "EVE" or not (T).Eo is the terminal energy of the electron, and in this case, it should be set to the limit energy at which atoms of any element in the sample cannot be ionized. When the goonic is No, the depth d of the electron from the sample surface is (1<
Check if it is 0 (pops out from the surface), then d
ot (transmits through the sample) or not, all N.
If o, the operation returns to (d), and the same operation is repeated until any of steps (g), (ch), and (s) becomes no.

以上のようにして(ト)(チ)(す)の何れかのステッ
プがYESになるとそこで一個の電子についての追跡演
算が終わり、NをN+1としくル)、新しいNがN>N
oか否かチエツク(オ)し、NOなら動作は(ハ)のス
テップに戻って次の電子について上述した演算が行われ
る。か(して例えば1000回の演算が行われるとN>
N。
As described above, when any of steps (g), (ch), and (su) becomes YES, the tracking calculation for one electron ends, and the new N becomes N>N.
It is checked (o) whether or not it is o, and if no, the operation returns to step (c) and the above-mentioned calculation is performed for the next electron. (For example, if 1000 operations are performed, N>
N.

となって(オ)のステップがYESとなり一つの試料に
ついてのモンテカルロシミュレーション演算が完了した
ことになるので、次の(ワ)のステップでに+1を新し
いkとし、そのkがk>Kか否かチエツクく力)し、N
oなら動作は(ロ)のステップに戻り、次の試料につい
てモンテカルロシミュレーション演算が行われる。この
ようにして、l(>Kとなったら想定した全試料につい
てのモンテカルロシミュレーションが終る。こ\までの
動作でメモリ内には各試料につき各元″Ig毎に試料表
面からの深さに対する特性X線放射強度のヒストグラム
が形成されているので、最後(ヨ)のステップで上記メ
モリ内に形成された各試料毎の各元素の特性X線放射強
度ヒストグラムを試料面からの深さによるX線の吸収?
+i iEを行って夫々積分する。これは厚さtの種々
な組成の試料の各元素の特性X線放射強度の相互比率を
示す相対値で、このようにして計算された一つの試料の
一つの特件X線の相対強度と上記試料と同じ組成をもつ
実際の一つの試料による上記特性X線の実測強度との比
が求まれば、他試料、他元素についても夫々の特性X線
の相対強度に上記比を掛けることで、夫々の相対強度を
実測強度に換算することができる。例えば今定量目的の
元素iの濃度が上記した仮想試料のi番目とに@目の濃
度Cji(!:Ckiとの中間濃度C1°であるような
試料が標準として入手できたとする。元素iの濃度とそ
の特性X線の上記計算上の相対強度との関係を与える検
量線は上述したシミュレーションの計算によって求めら
れているので、濃度C1°のときの特性X線の計算上の
相対強度1(Ci’)が求められる。他方上記標準試料
の元素iの特性X線の実測強度をto(Ci’)とする
と、計算値と実測値との換算比率へが決められる。上述
計算によって求められた特性X腺の相対強度にこの換算
比率を掛けて、濃度毎にプロットすれば求める検量線が
得られる。標準試料としては定量しようとする元素の濃
度100%の試料を用い濃度100%の試料についても
上述したシミュレーションを行ってその元素の特性X線
の相対強度を計算しておくのが試料入手の面からも前述
したシミュレーションの演算が簡単になると云う面から
も便利である。
Therefore, step (E) is YES and the Monte Carlo simulation calculation for one sample has been completed, so in the next step (W), +1 is set as a new k and whether or not k>K is determined. Check the power) and N
If o, the operation returns to step (b), and Monte Carlo simulation calculations are performed for the next sample. In this way, when l(>K), the Monte Carlo simulation for all the assumed samples is completed.With the operations up to this point, the memory stores the characteristics of each element ``Ig'' against the depth from the sample surface for each sample. Since the histogram of the X-ray radiation intensity has been formed, the characteristic X-ray radiation intensity histogram of each element for each sample formed in the memory in the last step (Y) can be converted to the X-ray intensity histogram according to the depth from the sample surface. Absorption of?
+i iE and integrate each. This is a relative value indicating the mutual ratio of the characteristic X-ray radiation intensity of each element in samples of various compositions with thickness t, and the relative intensity of one characteristic X-ray of one sample calculated in this way. Once the ratio of the measured intensity of the characteristic X-rays of one actual sample with the same composition as the above sample is found, the relative intensity of each characteristic X-ray of other samples and other elements can be multiplied by the above ratio. , the respective relative intensities can be converted into actually measured intensities. For example, suppose that we have obtained a sample as a standard in which the concentration of element i to be quantified is an intermediate concentration C1° between the i-th and @th concentration Cji (!: Cki) of the above virtual sample. The calibration curve that gives the relationship between the concentration and the calculated relative intensity of the characteristic X-ray is obtained by the above-mentioned simulation calculation, so the calculated relative intensity of the characteristic Ci') is calculated.On the other hand, if the actually measured intensity of the characteristic X-ray of element i in the standard sample is to(Ci'), then the conversion ratio between the calculated value and the measured value is determined. The required calibration curve can be obtained by multiplying the relative intensity of the characteristic It is convenient to perform the above-mentioned simulation and calculate the relative intensity of the characteristic X-rays of the element, both from the standpoint of obtaining samples and from the standpoint of simplifying the calculations of the simulation.

元素によっては純品が入手し難い場合があるが、上記し
たAは近似的にはシミュレーション計算に用いられた仮
想試料内の他元素間でも適用できるので、上記へを求め
るための試料内の元素は必ずしも被測定試料において定
量しようとする元素である必要はな(、標準試料として
は被測定試料を構成している他元素の濃度既知のものを
用いてもよい。また上側では試料を構成している元素全
部について特性X線放射強度を計算しているが、(へ)
のステップは定量しようとする元素だけについて行って
おけばよい(但し、シミュレーション演算そのものは試
料構成元素全てのパラメータが必要である。) 第5図は本発明方法を金−鋼合金に適用した場合の計算
値と実測値との一致程度を示すグラフで、縦軸は金或は
銅100%の場合のX!1!i1程度の計算値、実測値
を夫々1として地濃度の場合のX線強度の計算値、実測
値を表しており、両者の一致は良好である。
Although it may be difficult to obtain pure products for some elements, A above can be applied approximately to other elements in the virtual sample used for simulation calculations, so does not necessarily have to be the element to be quantified in the sample to be measured (the standard sample may also be one with a known concentration of other elements that make up the sample to be measured. I am calculating the characteristic X-ray radiation intensity for all the elements.
It is sufficient to perform this step only for the element to be quantified (however, the simulation calculation itself requires parameters for all elements constituting the sample.) Figure 5 shows the case where the method of the present invention is applied to a gold-steel alloy. This is a graph showing the degree of agreement between the calculated value and the measured value. The vertical axis is X! for 100% gold or copper. 1! The calculated value and the actual value of the X-ray intensity in the case of ground concentration are expressed with the calculated value and the actual value of approximately i1 being 1, respectively, and the agreement between the two is good.

(発明の効果) 本発明によれば、多種の濃度既知の標準試料を用意しな
くても検量線を作ることができ、また任意厚さの試料に
対応する検量線を作ることができるので、薄膜試料につ
いても容易にX線分光法による定量分析ができる。
(Effects of the Invention) According to the present invention, a calibration curve can be created without preparing standard samples with various known concentrations, and a calibration curve corresponding to samples of arbitrary thickness can be created. Even thin film samples can be easily analyzed quantitatively by X-ray spectroscopy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すフローチャート、第2
図は同実施例におけるメモリの一部構成を示すメモリマ
ツプ、第3図は本発明方法により求められる試料の表面
がらの深さとその深さにおける特性X線放射確率との関
係のグラフ、第4図は試料内に入射した電子の軌跡を示
す図、第5図は本発明方法による計算値と実測値との比
較図である。 代理人  弁理士 縣  浩 介 35図 ALL重逼%。 △  電t 4々−イJ1
FIG. 1 is a flowchart showing one embodiment of the present invention, and FIG.
The figure is a memory map showing a partial configuration of the memory in the same example. Figure 3 is a graph of the relationship between the depth of the surface particles of a sample determined by the method of the present invention and the characteristic X-ray emission probability at that depth. Figure 4 5 is a diagram showing the trajectory of electrons incident into the sample, and FIG. 5 is a diagram comparing calculated values by the method of the present invention and actually measured values. Agent: Hiroshi Agata, Patent Attorney Figure 35: ALL weighted %. △ Electric t 4-i J1

Claims (1)

【特許請求の範囲】[Claims] 定量しようとする元素の濃度を決めた仮想試料について
、電子を入射させたときその電子が試料内を試料構成原
子との衝突を繰返しながら移動してエネルギーを失って
行く過程を多数の電子について確率演算に基くシミュレ
ーション法によって追跡し、入射電子が試料表面から指
定深さまで進行する間に定量目的の元素の特性X線が放
射される確率を求める演算を上記元素の複数種類の濃度
の場合について行い、上記確率とそれに対応する上記目
的元素濃度とによって検量線を作成することを特徴とす
るX線分光分析における検量線作成方法。
For a virtual sample whose concentration of the element to be quantified has been determined, when an electron is incident, the process in which the electron moves through the sample while repeatedly colliding with sample constituent atoms and loses energy is calculated for a large number of electrons. Tracking is performed using a simulation method based on calculations, and calculations are performed to determine the probability that characteristic X-rays of the element to be quantified will be emitted while the incident electrons travel from the sample surface to a specified depth for multiple concentrations of the above elements. A method for creating a calibration curve in X-ray spectroscopy, characterized in that a calibration curve is created using the above-mentioned probability and the above-mentioned target element concentration corresponding to the probability.
JP63045287A 1988-02-27 1988-02-27 Method for creating calibration curve in X-ray spectroscopic analysis Expired - Lifetime JPH0750044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045287A JPH0750044B2 (en) 1988-02-27 1988-02-27 Method for creating calibration curve in X-ray spectroscopic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045287A JPH0750044B2 (en) 1988-02-27 1988-02-27 Method for creating calibration curve in X-ray spectroscopic analysis

Publications (2)

Publication Number Publication Date
JPH01219550A true JPH01219550A (en) 1989-09-01
JPH0750044B2 JPH0750044B2 (en) 1995-05-31

Family

ID=12715098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045287A Expired - Lifetime JPH0750044B2 (en) 1988-02-27 1988-02-27 Method for creating calibration curve in X-ray spectroscopic analysis

Country Status (1)

Country Link
JP (1) JPH0750044B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118456A (en) * 1989-09-30 1991-05-21 Shimadzu Corp X-ray spectrochemical analysis method
JP2003536084A (en) * 2000-06-07 2003-12-02 ケーエルエー−テンカー・コーポレーション Thin film thickness measurement using electron beam induced X-ray microanalysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03118456A (en) * 1989-09-30 1991-05-21 Shimadzu Corp X-ray spectrochemical analysis method
JP2003536084A (en) * 2000-06-07 2003-12-02 ケーエルエー−テンカー・コーポレーション Thin film thickness measurement using electron beam induced X-ray microanalysis

Also Published As

Publication number Publication date
JPH0750044B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
Dokshitzer et al. Hard processes in quantum chromodynamics
Vincze et al. A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers—I: Unpolarized radiation, homogeneous samples
Monreal Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces
Cao et al. Combined effect of QCD resummation and QED radiative correction to W boson observables at the Tevatron
Llovet et al. PENEPMA: A Monte Carlo programme for the simulation of X-ray emission in EPMA
Omar et al. A model for the energy and angular distribution of x rays emitted from an x‐ray tube. Part I. Bremsstrahlung production
Ritchie Efficient simulation of secondary fluorescence via NIST DTSA-II Monte Carlo
Bobovnikov et al. Improved constraints on the mixing and mass of Z′ bosons from resonant diboson searches at the LHC at s= 13 TeV and predictions for Run II
Lecointre et al. Multiple ionization of C+, N+ and O+ ions by fast electron impact
JPH01219550A (en) Formation of calibration line for x-ray spectral analysis
Gumberidze et al. Shell-and subshell-resolved projectile excitation of hydrogenlike Au 78+ ions in relativistic ion-atom collisions
Chase et al. X-ray spectrum of a laser-produced iron plasma
Achasov et al. Measurement of the e^+ e^-→ K^+ K^-π^ 0 e+ e-→ K+ K-π 0 cross section with the SND detector: The SND Collaboration
Baranov Development of detailed ROOT geometry for the inner tracker detectors in the BM@ N experiment
Doverspike et al. Total electron detachment cross sections for collisions of negative halogen ions with various molecules for energies around threshold
Boos et al. Higgs and top production in the reaction γe→ v bb̅ W at TeV linear collider energies
Dapor et al. Monte Carlo simulation of positron-stimulated secondary electron emission from solids
JP3010598B2 (en) X-ray spectroscopic analysis method of a sample covered with a thin film
Jablonski Modeling of elastic and inelastic electron backscattering from surfaces
WO2011159264A1 (en) A thickness determination method
JP2595686B2 (en) X-ray spectroscopy by electron beam excitation
JPH0235345A (en) X-ray spectroscopic analysis method
Ershov et al. Laser photolysis of perfluoroalkyl iodides
Mertens et al. Coupling of multiple Coulomb scattering with energy loss and straggling in HZETRN
JP2867621B2 (en) Fluorescence excitation correction method for multilayer film