JP3331696B2 - X-ray quantitative analysis method for granular samples - Google Patents

X-ray quantitative analysis method for granular samples

Info

Publication number
JP3331696B2
JP3331696B2 JP23557593A JP23557593A JP3331696B2 JP 3331696 B2 JP3331696 B2 JP 3331696B2 JP 23557593 A JP23557593 A JP 23557593A JP 23557593 A JP23557593 A JP 23557593A JP 3331696 B2 JP3331696 B2 JP 3331696B2
Authority
JP
Japan
Prior art keywords
sample
characteristic
rays
ray
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23557593A
Other languages
Japanese (ja)
Other versions
JPH0763714A (en
Inventor
由佳 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP23557593A priority Critical patent/JP3331696B2/en
Publication of JPH0763714A publication Critical patent/JPH0763714A/en
Application granted granted Critical
Publication of JP3331696B2 publication Critical patent/JP3331696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はX線マイクロアナライザ
のような電子ビームを試料上の一点に集中照射して試料
から放射されるX線を分光し、試料上の電子ビーム照射
点の分析を行う装置による粒状試料の元素定量を行う方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray microanalyzer that focuses an electron beam on a point on a sample, disperses the X-rays emitted from the sample, and analyzes an electron beam irradiation point on the sample. The present invention relates to a method for performing elemental quantification of a granular sample using a device for performing the method.

【0002】[0002]

【従来の技術】塊状試料のX線による元素定量分析とし
て従来からZAF法と呼ばれる方法が用いられている。
この方法は試料中の定量しようとする元素の純品試料の
特性X線強度と実試料の特性X線強度の比から単純比例
で目的元素の濃度の第1近似を求め、共存他元素の組成
を仮定して、励起線の試料内での減衰,それら他元素に
よる上記特性X線の吸収,他元素が放出するX線による
目的元素の蛍光X線等による補正を行って目的元素の濃
度の第2近似値を得、以下同様の計算を繰り返して逐次
近似法により目的元素の定量値を求めるものである。粒
状試料の電子線照射によるX線分光定量分析について
も、従来上述したZAF法が用いられていたが、良好な
分析結果は得難いものであった。
2. Description of the Related Art Conventionally, a method called ZAF method has been used as an elemental quantitative analysis of a massive sample by X-rays.
This method obtains the first approximation of the concentration of the target element in simple proportion from the ratio of the characteristic X-ray intensity of the pure sample and the characteristic X-ray intensity of the actual sample of the element to be quantified. Assuming that the concentration of the target element is reduced, the attenuation of the excitation ray in the sample, the absorption of the characteristic X-rays by the other elements, the fluorescent X-rays of the target element by the X-rays emitted by the other elements, and the like are performed. The second approximation value is obtained, the same calculation is repeated thereafter, and the quantitative value of the target element is obtained by the successive approximation method. For the X-ray spectroscopic quantitative analysis of the granular sample by electron beam irradiation, the above-described ZAF method has been used conventionally, but good analysis results have been difficult to obtain.

【0003】[0003]

【発明が解決しようとする課題】粒状試料に対して良好
な結果が得られるX線による定量分析方法を提供するこ
とである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for quantitative analysis by X-ray which can obtain good results for a granular sample.

【0004】[0004]

【課題を解決するための手段】粒状の実試料の大きさを
観測し、定量分析すべき粒子を選定し、それと略同径の
球状試料モデルを考え、その試料モデルの元素組成比を
仮定し、所定の加速電圧で加速された一個の電子を上記
試料モデルに入射させたときの試料内での上記電子の軌
跡のシミュレーション計算を行って、上記電子の試料モ
デル内での運動中に放射される成分元素の特性X線の上
記試料モデルの球外に出るまでの吸収を考えた強度を計
算し、上記計算を多数個の電子について行った上、成分
元素の特性X線強度の総和から成分元素の特性X線の相
互強度比を求め、他方上記選定した実試料について上記
所定の加速電圧で加速された電子ビームを照射したとき
の試料成分元素の特性X線の相互強度比を実測し、上記
計算によって求める各成分の特性X線の相互強度比が上
記実測値と一致するように当初の組成比を修正して上記
計算繰り返し、両者が一致したときの仮定組成比を以て
試料の定量分析結果とする。
[Means for Solving the Problems] Observing the size of a granular real sample, selecting particles to be quantitatively analyzed, considering a spherical sample model having substantially the same diameter as that, and assuming the element composition ratio of the sample model. Performing a simulation calculation of the trajectory of the electrons in the sample when one electron accelerated at a predetermined acceleration voltage is incident on the sample model, and is radiated during the movement of the electrons in the sample model. Calculate the intensity of the characteristic X-ray of the component element considering the absorption until it goes out of the sphere of the sample model, perform the above calculation for many electrons, and calculate the component from the sum of the characteristic X-ray intensity of the component element. Determine the mutual intensity ratio of characteristic X-rays of the element, and on the other hand, measure the mutual intensity ratio of characteristic X-rays of the component elements of the sample when the selected actual sample is irradiated with the electron beam accelerated at the predetermined acceleration voltage, Calculated by the above calculation The iteration mutual intensity ratio of the characteristic X-ray of each component by modifying the composition ratio of the initial to match the measured values, the quantitative analysis results of the samples with a hypothetical composition ratio when match.

【0005】[0005]

【作用】図1の球Sは粒状試料に対して考えた試料の球
状モデルで半径をrとする。矢印eはこのモデルに入射
する電子を示す。この電子の加速電圧は実試料について
分析を行うときの電子ビームの加速電圧で、これが前記
所定電圧である。試料内に入射した電子は試料内の原子
との衝突を繰り返し、ジグザグの軌跡を画きながら次第
にエネルギーを失って試料内で停止(試料に吸収)し、
或はその前に粒子外に出る。このようなジグザグ軌跡
は、試料を構成している成分元素の組成が分かっている
と、モンテカルロ法を用いたシミュレーション計算によ
って計算することが出来る。またこの電子が試料内での
運動の過程で試料内原子と衝突して特性X線を放出させ
る状況も上記シミュレーションの計算で求められる。試
料内で発生した各元素の特性X線については、そのX線
が検出方向において試料外に出るまでの他の原子による
吸収が元素組成が仮定してあることによって計算でき
る。これらの計算方法は既知である。そこで上述した計
算を多数回繰り返し、毎回放出される各元素の特性X線
の計算上の強度の総和の比は考えた球状モデルにおいて
観測されるであろう各成分元素の特性X線の強度比であ
り、もしこれが実試料について実測された各成分元素の
特性X線強度の比と一致しておれば、始めに仮定した組
成比が正しかったと云うことになる。実際上始めから組
成比について正しい仮定ができるとは限らないが、仮定
を修正しながら上記計算を繰り返せば、正しい結果に到
達できる。
The sphere S in FIG. 1 is a spherical model of a sample considered for a granular sample, and the radius is r. Arrow e indicates electrons incident on this model. The electron accelerating voltage is the accelerating voltage of the electron beam when the actual sample is analyzed, and this is the predetermined voltage. Electrons that enter the sample repeatedly collide with atoms in the sample, gradually lose energy while drawing a zigzag trajectory, and stop in the sample (absorb by the sample).
Or go out of the particle before that. Such a zigzag locus can be calculated by a simulation calculation using the Monte Carlo method if the composition of the component elements constituting the sample is known. In addition, the situation where the electrons collide with atoms in the sample during the movement in the sample and emit characteristic X-rays can also be obtained by the calculation of the simulation. Regarding the characteristic X-ray of each element generated in the sample, the absorption by other atoms until the X-ray goes out of the sample in the detection direction can be calculated by assuming the element composition. These calculation methods are known. Therefore, the above calculation is repeated many times, and the ratio of the sum of the calculated intensities of the characteristic X-rays of each element emitted each time is the intensity ratio of the characteristic X-rays of each component element which will be observed in the spherical model considered. If this matches the ratio of the characteristic X-ray intensities of the respective component elements actually measured for the actual sample, it means that the initially assumed composition ratio was correct. In practice, it is not always possible to make a correct assumption about the composition ratio from the beginning, but if the above calculation is repeated while correcting the assumption, a correct result can be achieved.

【0006】[0006]

【実施例】本発明方法は試料の直径が10μm程度であ
る場合に最も好適に適用される。試料粒子の直径は試料
を走査型電子顕微鏡像によって観測することによって直
接求める。即ち試料の走査型電子顕微鏡像の観察によっ
て定量分析をすべき粒子を選定し、その粒子を電子光学
系の光軸上に移動させて、電子ビームを集中照射し、放
出されるX線を分光するのである。粒径が10μm程度
であると、照射した電子ビームは基板まで殆ど到達しな
いから基板の影響を考える必要が無く、本発明の適用が
簡単になる。前述したシミュレーション計算を行うに当
たっては試料の元素組成比を先に仮定する必要がある。
この仮定は真実に近いほど計算の繰り返し数が少なくて
すむ。この実施例では、定量分析すべき粒状の被測定試
料に含まれる各成分元素の特性X線強度と、粒状とは限
らない形状をした標準試料の成分元素の特性X線強度と
の比から比例計算で各成分の最初の仮定濃度を決める。
その後前述した計算を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention is most suitably applied when the diameter of a sample is about 10 μm. The diameter of the sample particles is determined directly by observing the sample with a scanning electron microscope image. That is, the particles to be quantitatively analyzed are selected by observing a scanning electron microscope image of the sample, the particles are moved on the optical axis of the electron optical system, the electron beam is intensively irradiated, and the emitted X-rays are spectrally analyzed. You do it. When the particle size is about 10 μm, the irradiated electron beam hardly reaches the substrate, so there is no need to consider the influence of the substrate, and the application of the present invention is simplified. In performing the above-described simulation calculation, it is necessary to first assume the element composition ratio of the sample.
The closer this assumption is to the truth, the less the number of repetitions of the calculation. In this example, the proportional X-ray intensity of the characteristic X-ray intensity of each component element included in the granular sample to be quantitatively analyzed and the characteristic X-ray intensity of the component element of the standard sample having a shape that is not necessarily granular is proportional to the ratio. Determine the first assumed concentration of each component in the calculation.
Thereafter, the above-described calculation is performed.

【0007】図2は上述した計算を実行する場合の手順
を示すフローチャートである。計算の開始に当たっては
次のパラメータをコンピュータに入力しておく。電子
を構成している元素、電子加速電圧(上記した被測定
試料および標準試料についての実測時に用いた加速電
圧)、粒子径(走査型電子顕微鏡像により求めた
値)、粒子の成分元素の組成比(上述した被測定試料
と標準試料の実測から求めた仮定値)、その他。コン
ピュータには予め各元素の原子の色々なエネルギーの電
子に対する弾性衝突の断面積,非弾性衝突(特性X線を
放出させる衝突)の断面積、各元素の他元素の特性X線
に対する吸収率,色々なエネルギーの電子の試料内部進
行中の単位進行距離当たりのエネルギー損失率等のデー
タが格納してある。シミュレーションを行うのに、この
実施例では、電子は図1において球の頂上P点に入射さ
せる(フローチャートのイ)。シミュレーションは次の
ように行う。試料球(図1)Sの電子の散乱前の位置点
A(この点は計算の開始時にはP点である)に対して散
乱後の電子の行程をモンテカルロ法で決める。即ち散乱
の方位θを乱数によって決め、進行距離lは試料の組成
が仮定してあるので、電子のエネルギーから平均自由行
程を計算してこれをlとする(ハ)。かくしてB点が決
まるので(ニ)、B点が試料球の内か外かを判定(ホ)
する。判定がYES即ちB点が球内の場合、A点で散乱
され、B点で他の原子と衝突するまでの過程で放出され
たX線の発生量を求める(ヘ)。このX線の発生量の計
算についてのシミュレーションの仕方は幾通りかある。
例えばB点の原子の元素種別、弾性衝突か非弾性衝突か
を元素組成,各元素の原子の各衝突の断面積から確率的
に一つに決める方法である。この実施例では、電子の
A,B間の行程中に連続X線や各元素の特性X線が放出
されるものとして、連続X線や各成分元素の特性X線が
上記した確率によって按分された割合で放出されるもの
として、一回の衝突によるX線強度を求めている。この
X線の発生点をA,Bの中間点として(ト)、その点か
ら検出方向に向かうX線が試料球を出る迄のX線の吸収
を計算する(チ)。B点における衝突での電子のエネル
ギーの消耗を計算(リ)し、電子の残りのエネルギーが
特性X線の発生に充分か判定(ヌ)し、エネルギーが充
分(YES)なら動作は(ロ)に戻り、B点をA点と考
えて上述した動作を繰り返す。この判定がNOなら一回
のシミュレーション計算は終わりで、シミュレーション
が所定回繰り返されたか判定(ル)し、NOなら動作は
イに戻り、YESならシミュレーション終了で、今まで
の計算で求まった各成分元素の特性X線の強度の総和を
求め、それらの強度の相互比を算定する。
FIG. 2 is a flowchart showing a procedure for executing the above-described calculation. Before starting the calculation, the following parameters are input to the computer. Elements constituting electrons, electron accelerating voltage (acceleration voltage used for actual measurement of the above-mentioned sample to be measured and standard sample), particle diameter (value obtained from a scanning electron microscope image), composition of component elements of particles Ratio (assumed value obtained from actual measurement of the sample to be measured and the standard sample described above), and others. In the computer, the cross-sectional area of elastic collision with electrons of various energies of atoms of each element, the cross-sectional area of inelastic collision (collision that emits characteristic X-rays), the absorptivity of each element for characteristic X-rays, Data such as the energy loss rate per unit traveling distance of electrons of various energies traveling inside the sample are stored. In order to perform the simulation, in this embodiment, electrons are made incident on a point P on the top of the sphere in FIG. 1 (a in the flowchart). The simulation is performed as follows. The electron path after scattering is determined by Monte Carlo method with respect to a position point A (this point is point P at the start of the calculation) of the sample sphere (FIG. 1) S before the electron scattering. That is, the scattering direction θ is determined by a random number, and since the traveling distance l is assumed to be the composition of the sample, the mean free path is calculated from the energy of the electron and is set to l (c). Since point B is thus determined (d), it is determined whether point B is inside or outside the sample sphere (e).
I do. When the determination is YES, that is, when the point B is inside the sphere, the amount of X-rays scattered at the point A and emitted in the process of colliding with other atoms at the point B is obtained (f). There are several simulation methods for calculating the amount of X-ray generation.
For example, there is a method of stochastically determining one as the element type of the atom at the point B, whether it is an elastic collision or an inelastic collision, from the element composition and the cross-sectional area of each collision of the atoms of each element. In this embodiment, assuming that continuous X-rays and characteristic X-rays of the respective elements are emitted during the process between electrons A and B, the continuous X-rays and characteristic X-rays of the respective constituent elements are proportionally distributed according to the above-mentioned probability. As a result, the X-ray intensity due to one collision is determined. The point at which this X-ray is generated is defined as the midpoint between A and B (g), and the absorption of the X-ray from that point until the X-ray traveling in the detection direction leaves the sample sphere is calculated (h). The energy consumption of the electrons in the collision at point B is calculated (R), and it is determined whether the remaining energy of the electrons is sufficient to generate characteristic X-rays (N). If the energy is sufficient (YES), the operation is (B). And the above operation is repeated with the point B considered as the point A. If this determination is NO, one simulation calculation is completed, and it is determined whether the simulation has been repeated a predetermined number of times (NO). If NO, the operation returns to step A. If YES, the simulation ends, and each component obtained by the previous calculation is calculated. The sum of the characteristic X-ray intensities of the elements is determined, and the mutual ratio of the intensities is calculated.

【0008】前記(ホ)のステップで判定がNOのと
き、即ちA点で散乱された電子が試料球外に出てしまっ
た場合、直線ABの球Sとの交点Rを求め(オ)前記
(ヘ)の場合と同様にして距離AR間の各X線の発生強
度を計算(ワ)し、ARの中点R’をX線発生点として
観測方向のX線の吸収を計算(カ)して、動作は(ル)
に行く。
If the determination in step (e) is NO, that is, if the electrons scattered at point A go out of the sample sphere, the intersection R of the straight line AB with the sphere S is determined (e). As in the case of (f), the intensity of each X-ray generated between the distances AR is calculated (W), and the X-ray absorption in the observation direction is calculated using the midpoint R 'of the AR as the X-ray generation point (F). And the operation is (Le)
go to.

【0009】上述のようにして所定回数のシミュレーシ
ョン計算によって求まった各成分元素の特性X線の強度
比と試料についての実測強度比と比較し、両者が一致す
るように始めに仮定した成分組成比を修正し、上述した
シミュレーションを再度行う。このような動作を繰り返
し、計算上のX線強度比と実測強度比との差が許容範囲
に納まった所で計算を終わり、最終的に仮定された組成
比を定量値とする。
The intensity ratio of characteristic X-rays of each component element obtained by the simulation calculation of a predetermined number of times as described above is compared with the actually measured intensity ratio of the sample, and the component composition ratio initially assumed so that the two coincide. Is corrected, and the above-described simulation is performed again. Such operations are repeated, and the calculation is completed when the difference between the calculated X-ray intensity ratio and the actually measured intensity ratio falls within an allowable range, and the finally assumed composition ratio is used as a quantitative value.

【0010】[0010]

【発明の効果】粒状の試料に対して粒状の標準試料を得
ることは困難で、粒状の標準試料で検量線を作って定量
すると云う方法が適用できず、この方法によることがで
きても、他の共存元素の種類や組成比によって検量線は
異ったものとなる。塊状試料の場合、共存他元素の組成
比の違いの影響はZAF法で補正されるが、粒状試料の
場合ZAF法も良好な結果を与えない。本発明によれ
ば、入手の困難な粒状の標準試料が不要であって、標準
試料としては粒状ではない一般的な形状の標準試料で十
分であり、ZAF法によらず、しかも良好な定量結果を
得ることができる。
As described above, it is difficult to obtain a granular standard sample for a granular sample, and the method of making a calibration curve with the granular standard sample and quantifying it cannot be applied. The calibration curve differs depending on the type and composition ratio of other coexisting elements. In the case of a lump sample, the effect of the difference in the composition ratio of other coexisting elements is corrected by the ZAF method. However, in the case of a granular sample, the ZAF method does not give a good result. According to the present invention, a granular standard sample that is difficult to obtain is unnecessary, and a standard sample having a general shape that is not granular is sufficient as the standard sample. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】球状の試料モデル内の電子の運動軌跡の図FIG. 1 is a diagram of an electron trajectory in a spherical sample model.

【図2】本発明方法を実行する場合の手順を示すフロー
チャート
FIG. 2 is a flowchart showing a procedure for executing the method of the present invention.

【符号の説明】[Explanation of symbols]

S 球状の試料モデル e 入射電子 S spherical sample model e incident electron

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−219550(JP,A) 特開 平2−35345(JP,A) 特開 平4−43944(JP,A) 特開 平4−42037(JP,A) 特開 平4−249741(JP,A) 特開 平3−172744(JP,A) 特開 平5−26826(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 23/225 ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-1-219550 (JP, A) JP-A-2-35345 (JP, A) JP-A-4-43944 (JP, A) JP-A-4-43 42037 (JP, A) JP-A-4-249741 (JP, A) JP-A-3-172744 (JP, A) JP-A-5-26826 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 23/225

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒状の実試料の大きさを観測し、定量分析
すべき粒子を選定し、それと略同径の球状試料モデルを
考え、その試料モデルの元素組成比を仮定し、所定の加
速電圧で加速された一個の電子を上記試料モデルに入射
させたときの試料内での上記電子の軌跡のシミュレーシ
ョン計算を行って、上記電子の試料モデル内での運動中
に放射される成分元素の特性X線の上記試料モデルの球
外に出るまでの吸収を考えた強度を計算し、上記計算を
多数個の電子について行った上、成分元素の特性X線強
度の総和から成分元素の特性X線の相互強度比を求め、
他方上記選定した実試料について上記所定の加速電圧で
加速された電子ビームを照射したときの試料成分元素の
特性X線の相互強度比を実測し、上記計算によって求め
る各成分の特性X線の相互強度比が上記実測値と一致す
るように当初の組成比を修正して上記計算繰り返し、両
者が一致したときの仮定組成比を以て分析値とすること
を特徴とする粒状試料のX線による定量分析方法。
1. Observing the size of a granular actual sample, selecting particles to be quantitatively analyzed, considering a spherical sample model having substantially the same diameter as the sample, assuming the element composition ratio of the sample model, and performing a predetermined acceleration. By performing a simulation calculation of the trajectory of the electrons in the sample when one electron accelerated by voltage is incident on the sample model, the component elements emitted during the movement of the electrons in the sample model are calculated. Calculate the intensity of characteristic X-rays in consideration of the absorption until the sample model goes out of the sphere, perform the above calculation for many electrons, and calculate the characteristic X of the component element from the sum of the characteristic X-ray intensities of the component elements. Find the mutual intensity ratio of the lines,
On the other hand, when the selected actual sample is irradiated with the electron beam accelerated at the predetermined acceleration voltage, the mutual intensity ratio of the characteristic X-rays of the component elements of the sample is actually measured, and the mutual intensity ratio of the characteristic X-rays of each component obtained by the above calculation is calculated. Quantitative analysis by X-ray of a granular sample, wherein the initial composition ratio is corrected so that the intensity ratio matches the actual measurement value, and the above calculation is repeated. Method.
JP23557593A 1993-08-28 1993-08-28 X-ray quantitative analysis method for granular samples Expired - Fee Related JP3331696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23557593A JP3331696B2 (en) 1993-08-28 1993-08-28 X-ray quantitative analysis method for granular samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23557593A JP3331696B2 (en) 1993-08-28 1993-08-28 X-ray quantitative analysis method for granular samples

Publications (2)

Publication Number Publication Date
JPH0763714A JPH0763714A (en) 1995-03-10
JP3331696B2 true JP3331696B2 (en) 2002-10-07

Family

ID=16988026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23557593A Expired - Fee Related JP3331696B2 (en) 1993-08-28 1993-08-28 X-ray quantitative analysis method for granular samples

Country Status (1)

Country Link
JP (1) JP3331696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6787773B1 (en) * 2000-06-07 2004-09-07 Kla-Tencor Corporation Film thickness measurement using electron-beam induced x-ray microanalysis

Also Published As

Publication number Publication date
JPH0763714A (en) 1995-03-10

Similar Documents

Publication Publication Date Title
US7961842B2 (en) X-ray fluorescence spectrometer and program used therein
Gauvin et al. Quantification of spherical inclusions in the scanning electron microscope using Monte Carlo simulations
CN111353259B (en) Metal secondary electron emission coefficient calculation method
Reinhardt et al. Reference-free quantification of particle-like surface contaminations by grazing incidence X-ray fluorescence analysis
JP2002039976A (en) Method for correcting measured data of electron beam micro-analyzer
JP3331696B2 (en) X-ray quantitative analysis method for granular samples
JP3177599B2 (en) Pattern formation method
JP2004020196A (en) Analysis method using propagation line, and apparatus for the same
US11282670B1 (en) Slice depth reconstruction of charged particle images using model simulation for improved generation of 3D sample images
EP3885758A1 (en) Analysis method and x-ray fluorescence analyzer
JP3010598B2 (en) X-ray spectroscopic analysis method of a sample covered with a thin film
Korotkova et al. New method for determining energies of cosmic-ray nuclei
Gauvin Quantitative X-ray microanalysis of heterogeneous materials using Monte Carlo simulations
Bentabet et al. Backscattering coefficients and mean penetration depths of 1–4 keV electron scattering in solids
Radzimski et al. Image simulation using Monte Carlo methods: Electron beam and detector characteristics
JP2595686B2 (en) X-ray spectroscopy by electron beam excitation
JP2000235009A (en) Particle analyzing device by means of electron probe microanalyzer
JP2900532B2 (en) Quantitative measurement method for samples with large irregularities
Raeymaekers et al. Determination of thickness of flat particles by automated electron microprobe analysis
Newbury et al. Simulating electron-excited energy dispersive X-ray spectra with the NIST DTSA-II open-source software platform
Lankosz et al. Quantitative analysis of individual particles by x‐ray microfluorescence spectrometry
JP3174396B2 (en) Method and apparatus for measuring electron energy loss fine structure
Czyzycki et al. Quantitative elemental analysis of individual particles with the use of micro‐beam X‐ray fluorescence method and Monte Carlo simulation
RU2770409C1 (en) Method for determining the size of the focal spot of the accelerator braking radiation
RU2761014C1 (en) Method for determining accelerator brake radiation focal spot size

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120726

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees