JPH05268039A - Output buffer circuit - Google Patents

Output buffer circuit

Info

Publication number
JPH05268039A
JPH05268039A JP4060846A JP6084692A JPH05268039A JP H05268039 A JPH05268039 A JP H05268039A JP 4060846 A JP4060846 A JP 4060846A JP 6084692 A JP6084692 A JP 6084692A JP H05268039 A JPH05268039 A JP H05268039A
Authority
JP
Japan
Prior art keywords
current
circuit
channel
output
buffer circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4060846A
Other languages
Japanese (ja)
Inventor
Eriko Tashiro
絵理子 田代
Yasuhiro Nakajima
保弘 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP4060846A priority Critical patent/JPH05268039A/en
Publication of JPH05268039A publication Critical patent/JPH05268039A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Logic Circuits (AREA)
  • Dram (AREA)

Abstract

PURPOSE:To improve a problem in a conventional buffer circuit that a large current flows to the buffer circuit at charge/discharge of a load capacitance and a level of a power supply and a ground point GND is made unstable thereby causing malfunction because a gm of a transistor (TR) is selected larger to attain a high speed operation of an output. CONSTITUTION:A P-channel transistor(TR) 4 in current mirror connection with a P-channel TR 6 of the output buffer circuit is provided and N-channel TRs 1,3 to control a current flowing to the TRs 6,4 and P-channel TRs 5,2 and an N-channel TR 12 for cut off are provided. An N-channel TR 10 in current mirror connection with the TR 12 is provided, P-channel TRs 7,9 controlling the current flowing to them are provided and N-channel TRs 8,11 for cut off are provided. Furthermore, the buffer circuit acts like a tri-state buffer by adding a logic circuit to the input. Since the output current is controlled by the circuit as above, malfunction due to unstable states in the power supply/ GND level is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は出力バッファ回路に関
し、特に出力電流値を制御可能となる回路を有する出力
バッファ回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an output buffer circuit, and more particularly to an output buffer circuit having a circuit capable of controlling an output current value.

【0002】[0002]

【従来の技術】従来の出力バッファ回路は、図3に示す
様に、入力信号INをインバータ回路18に入力し、そ
の出力を、ソースが定電圧VDDと接続されたPチャネ
ル型トランジスタ(PchTr)6のゲートとソースが
接地GNDに接地されたNチャネル型トランジスタ(N
chTr)12とのゲートに入力し、ドレインを共通と
し、外部に出力する。
2. Description of the Related Art In a conventional output buffer circuit, as shown in FIG. 3, an input signal IN is input to an inverter circuit 18, and its output is a P channel type transistor (PchTr) whose source is connected to a constant voltage VDD. 6 is an N-channel transistor (N
chTr) 12 and a common drain, and output to the outside.

【0003】図3の回路動作を、〔図5〕で説明する。
図3,図5において、入力信号INがローレベル(以下
“L”)の時、インバータ回路18の出力INBはハイ
レベル(以下“H”)で、PchTr6がオフ、Nch
Tr12がオン状態であり、外部端子13の出力oは
“L”となる。
The operation of the circuit shown in FIG. 3 will be described with reference to FIG.
3 and 5, when the input signal IN is at low level (hereinafter "L"), the output INB of the inverter circuit 18 is at high level (hereinafter "H"), PchTr6 is off, and Nch is
The Tr12 is in the ON state, and the output o of the external terminal 13 becomes "L".

【0004】次に、入力信号INが、“L”から“H”
に変化する時、インバータ回路18の出力INBは
“H”から“L”に変化し、PchTr6がオフからオ
ンへ、NchTr12がオンからオフへ変化し、外部端
子13の出力は負荷容量CLを充電しながら、“L”か
ら“H”に変化する。この時、VDDからPchTr6
を通ってCLを充電するためにVDDから過渡的に大電
流Imが流れ出す。入力信号INが“H”を保持する期
間、出力oは“H”を保持している。
Next, the input signal IN changes from "L" to "H".
Output INB of the inverter circuit 18 changes from “H” to “L”, PchTr6 changes from off to on, NchTr12 changes from on to off, and the output of the external terminal 13 charges the load capacitance CL. Meanwhile, it changes from "L" to "H". At this time, VDD to PchTr6
A large current Im transiently flows out from VDD to charge CL through. The output o holds "H" while the input signal IN holds "H".

【0005】また入力信号INが“H”から“L”へ変
化する時、インバータ回路18の出力INBは“L”か
ら“H”となり、PchTr6がオンからオフへ、Nc
hTr12がオフからオンへ変化するのを、外部端子1
3の出力oは、負荷容量CLの電荷を放電しながら
“H”から“L”へ変化する。この時、CLに充電され
た電荷がNchTr12を通ってGNDへ放電され、過
渡的に大電流InがGNDに流れ込む。
When the input signal IN changes from "H" to "L", the output INB of the inverter circuit 18 changes from "L" to "H", the PchTr6 turns from ON to OFF, Nc.
When the hTr12 changes from off to on, the external terminal 1
The output o of 3 changes from “H” to “L” while discharging the charge of the load capacitance CL. At this time, the electric charge charged in CL is discharged to GND through the NchTr 12, and a large current In transiently flows into GND.

【0006】また、図4は、前述の図3の回路と異な
り、入力信号INと制御信号Cとが入力するNAND回
路19と、制御信号C(反転値)を作るインバータ回路
20と、入力信号INと制御信号C(反転値)とが入力
するNOR回路21を、図3のインバータ18の代わり
に用い、PchTr6とNchTr12とを各々制御す
る事により、スリーステートバッファとして動作させる
従来の出力バッファ回路の一例である。
4 is different from the circuit of FIG. 3 described above, the NAND circuit 19 to which the input signal IN and the control signal C are input, the inverter circuit 20 for producing the control signal C (inverted value), and the input signal. A conventional output buffer circuit that operates as a three-state buffer by using a NOR circuit 21 to which IN and a control signal C (inverted value) are input instead of the inverter 18 and controlling PchTr6 and NchTr12 respectively Is an example.

【0007】図4の回路動作は、図6の信号波形図の様
に動作し、図3の回路の同様に、制御信号Cが“H”の
時入力信号INの“L”から“H”、“H”から“L”
への変化時に出力端子13の出力が“L”から“H”、
“H”から“L”へ変化し、過渡的に大電流が定電圧V
DDから、あるいは接地GNDへ流れる。
The circuit operation of FIG. 4 operates as shown in the signal waveform diagram of FIG. 6, and like the circuit of FIG. 3, when the control signal C is "H", the input signal IN is from "L" to "H". , "H" to "L"
Output terminal 13 output changes from "L" to "H",
It changes from "H" to "L", and a large current transiently produces a constant voltage V
Flow from DD or to ground GND.

【0008】[0008]

【発明が解決しようとする課題】近年、出力バッファ
は、高速動作をさせるために、gmを大きく作る傾向に
あり、外部端子の負荷容量を充放電させる時、過渡的に
大電流が流れる。
In recent years, the output buffer tends to have a large gm in order to operate at high speed, and a large current transiently flows when the load capacitance of the external terminal is charged / discharged.

【0009】また、電源ライン,GNDラインは抵抗値
ゼロ・オームであることが理想的であるが、実際には数
オームから数十オームの抵抗がある。
Further, it is ideal that the power supply line and the GND line have a resistance value of zero ohm, but in reality, there is a resistance of several ohms to tens of ohms.

【0010】そのため、出力バッファの充放電時に流れ
る大電流により、電源及びグランドのラインそれぞれに
おいて、電位差が生じる。この電位差により、出力バッ
ファ回路を含めた回路で誤動作を誘発してしまうという
問題点があった。
Therefore, a large current flowing during charging / discharging of the output buffer causes a potential difference between the power supply line and the ground line. There is a problem that this potential difference causes a malfunction in a circuit including the output buffer circuit.

【0011】本発明の目的は、前記問題点を解決し、大
電流による回路の誤動作を誘発しないようにした出力バ
ッファ回路を提供することにある。
An object of the present invention is to solve the above problems and to provide an output buffer circuit in which malfunction of the circuit due to large current is not induced.

【0012】[0012]

【課題を解決するための手段】本発明の出力バッファ回
路の構成は、第1の入力信号を第1の電流源と第2の電
流源とに入力し、前記第1の電流源は第1のカレントミ
ラー回路に接続し、前記第1のカレントミラー回路は外
部端子に接続し、前記第1の入力信号と前記外部端子の
出力信号とを入力する第3の電流源を前記第1のカレン
トミラー回路へ接続し、前記第2の電流源は第2のカレ
ントミラー回路に接続し、前記第2のカレントミラー回
路は前記外部端子に接続し、前記第1の入力信号と前記
外部端子の出力信号とを入力する第4の電流源を前記第
2のカレントミラー回路へ接続することを特徴とする。
According to the structure of the output buffer circuit of the present invention, the first input signal is input to the first current source and the second current source, and the first current source is the first current source. Connected to an external terminal of the first current mirror circuit, and a third current source for inputting the first input signal and an output signal of the external terminal is connected to the first current. A mirror circuit, the second current source is connected to a second current mirror circuit, the second current mirror circuit is connected to the external terminal, and the first input signal and the output of the external terminal are connected. A fourth current source for inputting a signal and is connected to the second current mirror circuit.

【0013】[0013]

【実施例】図1は本発明の第1の実施例の出力バッファ
回路を示す回路図である。
1 is a circuit diagram showing an output buffer circuit according to a first embodiment of the present invention.

【0014】図1において、本発明の第1の実施例の出
力バッファ回路は、入力信号INがNチャネル型トラン
ジスタ(NchTr)1及びNchTr3のゲートへ入
力される。
In FIG. 1, in the output buffer circuit of the first embodiment of the present invention, an input signal IN is input to the gates of N-channel type transistors (NchTr) 1 and NchTr3.

【0015】NchTr2のドレインとNchTr3の
ソースとが接続され、NchTr1のドレインとNch
Tr2のドレインとが接続される。又、PchTr4は
ソースが電源へ接続され、ゲートとドレインがNchT
r1のドレインへ接続される。PchTr6はソースが
電源へ接続され、ゲートがPchTr4のゲートへ接続
される。
The drain of NchTr2 and the source of NchTr3 are connected, and the drain of NchTr1 and the NchTr3 are connected.
The drain of Tr2 is connected. The source of PchTr4 is connected to the power supply, and the gate and drain of NchT4 are connected.
connected to the drain of r1. The source of PchTr6 is connected to the power supply, and the gate is connected to the gate of PchTr4.

【0016】又、PchTr6のドレインは出力端子1
3へ接続されると同時にNchTr3のゲートへ接続さ
れる。PchTr5はゲートが入力信号INが入力さ
れ、ソースが電源,ドレインがPchTr4,Tr6の
ゲートへ接続される。PchTr4とPchTr6とで
カレントミラー回路を構成する。
The drain of PchTr6 is the output terminal 1
3 is connected to the gate of NchTr3 at the same time. The input signal IN is input to the gate of PchTr5, the source is connected to the power supply, and the drain is connected to the gates of PchTr4 and Tr6. A current mirror circuit is configured by PchTr4 and PchTr6.

【0017】入力信号INは、PchTr7及びPch
Tr8のゲートへも入力される。PchTr8のドレイ
ンとPchTr9のソースが接続され、PchTr7の
ドレインとPchTr9のドレインが接続される。又、
NchTr10はソースがGNDへ接続され、ゲートと
ドレインがPchTr7のドレインへ接続される。又、
NchTr12はソースがGNDへ接続され、ゲートが
NchTr10のゲートへ接続される。
The input signal IN is PchTr7 and Pch.
It is also input to the gate of Tr8. The drain of PchTr8 and the source of PchTr9 are connected, and the drain of PchTr7 and the drain of PchTr9 are connected. or,
The source of the NchTr 10 is connected to GND, and the gate and the drain thereof are connected to the drain of the PchTr 7. or,
The NchTr 12 has a source connected to GND and a gate connected to the gate of the NchTr 10.

【0018】又、NchTr12のドレインは、出力端
子13へ接続すると同時に、PchTr9のゲートに接
続される。NchTr11はゲートへ入力信号INが入
力され、ソースがGND,ドレインがNchTr10の
ゲートへ接続される。NchTr10とNchTr12
とでカレントミラー回路を構成する。
The drain of the NchTr 12 is connected to the output terminal 13 and, at the same time, connected to the gate of the PchTr 9. The input signal IN is input to the gate of the NchTr 11, the source is connected to GND, and the drain is connected to the gate of the NchTr 10. NchTr10 and NchTr12
And constitute a current mirror circuit.

【0019】この時、PchTr4とPchTr6との
gmの比を1:xとなる様に、またNchTr10とN
chTr12とのgmの比を1:yとなる様に設計す
る。PchTr5,NchTr2,PchTr8,Nc
hTr11は、それぞれ充分な大きさで設計する。
At this time, the ratio of gm of PchTr4 and PchTr6 is set to 1: x, and NchTr10 and NchTr10 are set to Nm.
The ratio of gm with chTr12 is designed to be 1: y. PchTr5, NchTr2, PchTr8, Nc
Each hTr11 is designed with a sufficient size.

【0020】例えば、外部端子13へ接続する負荷へ、
電流がPchTr6を通して60mAの電流が必要だと
する。又、外部端子13へ接続する負荷から、NchT
r12を通してGNDへ60mAの電流を引き込む必要
があるとすると、PchTr4とPchTr6とのgm
の比を1:10,NchTr7とNchTr9とのgm
の比を1:10とし、又、NchTr1を1mA電流が
流せるトランジスタに、NchTr3を5mA,Pch
Tr7を1mA,PchTr9を5mAそれぞれ流せる
トランジスタとして設計した場合、入力信号INが
“L”から“H”へ変化すると、NchTr1とNch
Tr2とがオンする接点A1のレベルが徐々にGNDレ
ベルになるので、PchTr4とPchTr6とがオ
ン、出力o1が“L”から“H”へ変化し始める。
For example, to a load connected to the external terminal 13,
It is assumed that the current needs to be 60 mA through PchTr6. In addition, from the load connected to the external terminal 13, the NchT
If it is necessary to draw a current of 60 mA to GND through r12, gm of PchTr4 and PchTr6
Ratio of 1:10, gm of NchTr7 and NchTr9
The ratio of 1:10, and NchTr1 is a transistor that can carry a current of 1 mA, NchTr3 is 5 mA, and Pch is Pch.
When Tr7 is designed as a transistor that can flow 1 mA and PchTr9 is 5 mA, when the input signal IN changes from “L” to “H”, NchTr1 and Nch are changed.
The level of the contact A1 at which the Tr2 is turned on gradually becomes the GND level, so that the PchTr4 and the PchTr6 are turned on and the output o1 starts to change from "L" to "H".

【0021】この時NchTr1に流れる電流は1mA
なのでPchTr4に流れる電流は1mA,PchTr
6に流れる電流は、PchTr4のgmをgm1,Pc
hTr4に流れる電流をI1,PchTr6のgmをg
m2,PchTr6に流れる電流をI2とした場合のg
mと電流の関係式,I2=gm2・I1/gm1……
(1)により、PchTr6に流れる電流I2は10m
Aとなる。
At this time, the current flowing through NchTr1 is 1 mA.
Therefore, the current flowing through PchTr4 is 1mA, PchTr
The current flowing in 6 is obtained by changing the gm of PchTr4 to gm1 and Pc.
The current flowing through hTr4 is I1, gm of PchTr6 is g
g when the current flowing through m2 and PchTr6 is I2
Relational expression between m and current, I2 = gm2 · I1 / gm1 ...
Due to (1), the current I2 flowing through PchTr6 is 10 m
It becomes A.

【0022】次に、点o1が“L”から“H”に変化す
るので、NchTr3がオンし、NchTr1に流れる
電流1mAと、NchTr3に流れる電流5mAとによ
り、PchTr4に流れる電流は6mAとなる。
Next, since the point o1 changes from "L" to "H", the NchTr3 is turned on, and the current flowing in the PchTr4 becomes 6 mA due to the current flowing in the NchTr1 of 1 mA and the current flowing in the NchTr3 of 5 mA.

【0023】前記関係式(1)から、PchTr6に流
れる電流は60mAとなり、電源からPchTr6を通
して、外部端子13へ接続する負荷へ60mAの電流を
流せるようになる。
From the above relational expression (1), the current flowing through the PchTr6 is 60 mA, and the current of 60 mA can flow from the power supply to the load connected to the external terminal 13 through the PchTr6.

【0024】また、入力信号INが“H”から“L”に
なる時、NchTr1とNchTr2とがオフし、Pc
hTr5がオンするため、点A1はすみやかに“H”レ
ベルとなり、PchTr4,PchTr6はすみやかに
オフすると同時に、PchTr7とPchTr8とがオ
ンする。点A2は徐々に“H”に変化するので、Nch
Tr10とNchTr12はオンする。点O1は“H”
から“L”へ変化を始める。この時、PchTr7は電
流1mA流せるトランジスタなので、NchTr10は
電流が1mA流れる。gmと電流の関係式(1)によ
り、NchTr12の10mAの電流が流れる。
When the input signal IN changes from "H" to "L", NchTr1 and NchTr2 are turned off, and Pc
Since the hTr5 is turned on, the point A1 is promptly set to the “H” level, the PchTr4 and PchTr6 are quickly turned off, and at the same time, the PchTr7 and PchTr8 are turned on. Since point A2 gradually changes to "H", Nch
Tr10 and NchTr12 are turned on. Point O1 is "H"
Begins to change from "L" to "L". At this time, since PchTr7 is a transistor capable of flowing a current of 1 mA, NchTr10 has a current of 1 mA. According to the relational expression (1) between gm and current, a current of 10 mA of NchTr12 flows.

【0025】次に、点O1は“H”から“L”に変化す
るので、PchTr9はオンする。このことでNchT
r10に流れる電流は6mA、関係式(1)によりNc
hTr12に流れる電流は60mAとなり、外部端子1
3へ接続する負荷から、NchTr12を通してGND
へ60mAの電流引き込むことができる。
Next, since the point O1 changes from "H" to "L", the PchTr9 is turned on. This is NchT
The current flowing through r10 is 6 mA, and according to the relational expression (1), Nc
The current flowing through hTr12 is 60mA, and the external terminal 1
GND from the load connected to 3 through NchTr12
A current of 60 mA can be drawn.

【0026】出力端子13が“L”から“H”へ変化す
る時、まず、NchTr1がオンすることによって、P
chTr6がオンとなる。この時、PchTr6は10
mAの電流が流れる能力なので、この能力により外部端
子13は負荷容量CLを充電し始める。
When the output terminal 13 changes from "L" to "H", first, the NchTr1 is turned on to set P
chTr6 is turned on. At this time, PchTr6 is 10
Since the current is mA, the external terminal 13 starts charging the load capacitance CL with this ability.

【0027】次に、出力端子13が“L”から“H”へ
変化してゆくと、NchTr3がオンとなり、しだいに
多くの電流が流れるようになり、PchTr6もしだい
に多くの電流が流せるようになり、外部端子13の負荷
容量CLの充電が速められる。
Next, when the output terminal 13 changes from "L" to "H", the NchTr3 is turned on, and a large amount of current gradually starts to flow, so that a large amount of current can also flow to the PchTr6. The charging of the load capacitance CL of the external terminal 13 is accelerated.

【0028】以上のように、出力端子O1は急激に
“L”から“H”へ立ち上がらなく、電源からPchT
r6を通して、負荷容量14を充電する電流が過渡的に
流れない。又、出力端子O1が“H”から“L”へ変化
する時、まずPchTr7がオンすることにより、Nc
h12がオンとなる。この時、NchTr12は10m
Aの電流が流れる能力なので、この能力により外部端子
13の負荷容量CLを放電し始める。
As described above, the output terminal O1 does not suddenly rise from "L" to "H", and the PchT from the power supply
The current for charging the load capacitance 14 does not transiently flow through r6. When the output terminal O1 changes from "H" to "L", the PchTr7 is turned on first, and
h12 is turned on. At this time, NchTr12 is 10m
Since the current of A is the ability to flow, the ability starts discharging the load capacitance CL of the external terminal 13.

【0029】次に、出力端子O1が“H”から“L”へ
変化してゆくと、PchTr9がオンとなり、しだいに
多くの電流が流れるようになり、NchTr12もしだ
いに多くの電流が流せるようになり、外部端子13の負
荷容量の放電が速められる。以上のように、出力端子1
3は急激に“H”から“L”へ立ち下がらなく、負荷容
量CLから、NchTr12を通してGNDへ流れる放
電電流が過渡的に流れない。
Next, when the output terminal O1 changes from "H" to "L", the PchTr9 is turned on, and a large amount of current gradually starts to flow, so that a large amount of current can also flow in the NchTr12. Therefore, the discharge of the load capacity of the external terminal 13 is accelerated. As described above, the output terminal 1
3 does not suddenly fall from "H" to "L", and the discharge current flowing from the load capacitance CL to the GND through the NchTr 12 does not transiently flow.

【0030】図2は本発明の第2の実施例の出力バッフ
ァ回路を示す回路図である。図2において、本実施例
は、図1の回路に入力信号INと制御信号C(反転値)
とが入力するNOR回路15と、制御信号Cを作るイン
バータ回路16と、入力信号INと制御信号Cとが入力
するNAND回路17とを、付加回路として追加した。
その他の回路部分は図1と同様である。
FIG. 2 is a circuit diagram showing an output buffer circuit according to the second embodiment of the present invention. 2, in the present embodiment, the input signal IN and the control signal C (inversion value) are added to the circuit of FIG.
The NOR circuit 15 to which is input, the inverter circuit 16 that generates the control signal C, and the NAND circuit 17 to which the input signal IN and the control signal C are input are added as additional circuits.
The other circuit parts are the same as in FIG.

【0031】この付加回路を追加することで、本実施例
は、スリーステートバッファとしても動作可能となり、
また入力信号INの変化時、図1と同様に、外部端子1
3の付加容量CLの充放電電流はしだいに多くの電流が
流せる様に制御できる。
By adding this additional circuit, the present embodiment can also operate as a three-state buffer,
When the input signal IN changes, the external terminal 1
The charging / discharging current of the additional capacitance CL of 3 can be controlled so that a large amount of current can gradually flow.

【0032】[0032]

【発明の効果】以上で説明した様に、本発明は、外部の
負荷容量の充電・放電時の電流値が制御可能となるた
め、過渡的な電流が流れず、このことにより、電源の降
下,GNDの上昇を防ぐことが出来、電源及びGNDの
電位の揺れによる誤動作を防ぐ事ができるという効果を
有する。
As described above, according to the present invention, the current value at the time of charging / discharging the external load capacity can be controlled, so that a transient current does not flow. , GND can be prevented, and malfunction due to fluctuations in the potential of the power supply and GND can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の出力バッファ回路を示
す回路図である。
FIG. 1 is a circuit diagram showing an output buffer circuit according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の回路図である。FIG. 2 is a circuit diagram of a second embodiment of the present invention.

【図3】従来の出力バッファ回路の回路図である。FIG. 3 is a circuit diagram of a conventional output buffer circuit.

【図4】従来のスリーステートの出力バッファ回路を示
す回路図である。
FIG. 4 is a circuit diagram showing a conventional three-state output buffer circuit.

【図5】従来の出力バッファ回路における信号波形図で
ある。
FIG. 5 is a signal waveform diagram in a conventional output buffer circuit.

【図6】従来のスリーステートの出力バッファ回路にお
ける信号波形図である。
FIG. 6 is a signal waveform diagram in a conventional three-state output buffer circuit.

【符号の説明】[Explanation of symbols]

IN 入力信号 O 外部端子の出力信号 1,2,3,10,11,12 Nチャネル型トラン
ジスタ 4,5,6,7,8,9 Pチャネル型トランジスタ 13 外部端子 CL 負荷容量 15,21 NOR回路 17,19 NAND回路 16,18,20 インバータ回路
IN input signal O External terminal output signal 1,2,3,10,11,12 N-channel transistor 4,5,6,7,8,9 P-channel transistor 13 External terminal CL load capacitance 15,21 NOR circuit 17,19 NAND circuit 16,18,20 Inverter circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 8941−5J H03K 19/00 101 F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location 8941-5J H03K 19/00 101 F

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1の入力信号を第1の電流源と第2の
電流源とに入力し、前記第1の電流源は第1のカレント
ミラー回路に接続し、前記第1のカレントミラー回路は
外部端子に接続し、前記第1の入力信号と前記外部端子
の出力信号とを入力する第3の電流源を前記第1のカレ
ントミラー回路へ接続し、前記第2の電流源は第2のカ
レントミラー回路に接続し、前記第2のカレントミラー
回路は前記外部端子に接続し、前記第1の入力信号と前
記外部端子の出力信号とを入力する第4の電流源を前記
第2のカレントミラー回路へ接続することを特徴とする
出力バッファ回路。
1. A first input signal is input to a first current source and a second current source, the first current source is connected to a first current mirror circuit, and the first current mirror is connected. A circuit is connected to an external terminal, a third current source for inputting the first input signal and an output signal of the external terminal is connected to the first current mirror circuit, and the second current source is a second current source. Second current mirror circuit, the second current mirror circuit is connected to the external terminal, and the fourth current source for inputting the first input signal and the output signal from the external terminal is connected to the second current source. An output buffer circuit characterized by being connected to the current mirror circuit of.
【請求項2】 制御信号が入力されるインバータ回路,
前記制御信号と入力信号とが入力されるNOR回路,N
AND回路を入力部分に設けた請求項1記載の出力バッ
ファ回路。
2. An inverter circuit to which a control signal is input,
A NOR circuit to which the control signal and the input signal are input, N
The output buffer circuit according to claim 1, wherein an AND circuit is provided in the input portion.
JP4060846A 1992-03-18 1992-03-18 Output buffer circuit Withdrawn JPH05268039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060846A JPH05268039A (en) 1992-03-18 1992-03-18 Output buffer circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060846A JPH05268039A (en) 1992-03-18 1992-03-18 Output buffer circuit

Publications (1)

Publication Number Publication Date
JPH05268039A true JPH05268039A (en) 1993-10-15

Family

ID=13154144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060846A Withdrawn JPH05268039A (en) 1992-03-18 1992-03-18 Output buffer circuit

Country Status (1)

Country Link
JP (1) JPH05268039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107282A (en) * 1995-10-13 1997-04-22 Nec Corp Output buffer circuit
EP1291585A2 (en) 2001-07-17 2003-03-12 Japan Gore-Tex, Inc. Gas/liquid separation devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107282A (en) * 1995-10-13 1997-04-22 Nec Corp Output buffer circuit
EP1291585A2 (en) 2001-07-17 2003-03-12 Japan Gore-Tex, Inc. Gas/liquid separation devices

Similar Documents

Publication Publication Date Title
US6127841A (en) CMOS buffer having stable threshold voltage
JPH07114359B2 (en) Semiconductor integrated circuit
US5191233A (en) Flip-flop type level-shift circuit
JPH0555837A (en) Slewing-speed increasing circuit
KR900000487B1 (en) Logic gate circuit
JPH04230121A (en) Output circuit for bicmos
US5706006A (en) Operational amplifier incorporating current matrix type digital-to-analog converter
US5057713A (en) Bipolar MOS logic circuit and semiconductor integrated circuit
JPH05268039A (en) Output buffer circuit
JPH0677804A (en) Output circuit
JPH0220917A (en) Driver circuit using bi-cmos
EP0320779B1 (en) Sense amplifier
JP2871902B2 (en) Current cell circuit
JP3037177B2 (en) Delay circuit
JPH05284000A (en) Digital signal output stage circuit
JP2934265B2 (en) Complementary MOS output circuit
JPH06132806A (en) Cmos output buffer circuit
JPH05243937A (en) Signal output circuit
JPH0292017A (en) Output circuit
KR100202184B1 (en) Input circuit
JP3052039B2 (en) Input amplifier circuit
JPH0526370B2 (en)
JPH0668541B2 (en) Test circuit consisting of complementary MOS transistors
JPH0497616A (en) Level shifter circuit
JP3226535B2 (en) Output buffer circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518