JPH05267593A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05267593A
JPH05267593A JP6264792A JP6264792A JPH05267593A JP H05267593 A JPH05267593 A JP H05267593A JP 6264792 A JP6264792 A JP 6264792A JP 6264792 A JP6264792 A JP 6264792A JP H05267593 A JPH05267593 A JP H05267593A
Authority
JP
Japan
Prior art keywords
gate
channel fet
type
bipolar transistor
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6264792A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuda
匡志 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6264792A priority Critical patent/JPH05267593A/en
Publication of JPH05267593A publication Critical patent/JPH05267593A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To realize equipping a p-channel FET with a p-type gate to contrive to accelerate a device without increasing the number of production processes in a Bi-CMOS process. CONSTITUTION:A Bi-CMOS process for forming a bipolar transistor and CMOS device on the same substrate has a production process for sticking a conductive film on the substrate and simultaneously patterning the conductive film to form the base leading electrode 15 of the bipolar transistor and the gate 16 of a p-channel FET and a production process for simultaneously introducing a p-type impurity into the base-leading electrode and the gate under the same conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り,特にバイポーラ素子とCMOS素子を同一基板上に形
成するBi-CMOS プロセスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a Bi-CMOS process for forming a bipolar element and a CMOS element on the same substrate.

【0002】近年, 半導体装置の高速化, 微細化が進む
につれて, Bi-CMOS プロセスにおいてはpチャネル電界
効果トランジスタ(FET) 性能向上が大変重要となってき
た。そのためにゲート電極のp型化が採用されている。
本発明はこのプロセスに利用できる。
In recent years, as the speed and miniaturization of semiconductor devices have advanced, it has become very important to improve the performance of p-channel field effect transistor (FET) in the Bi-CMOS process. Therefore, the p-type gate electrode is adopted.
The present invention can be used for this process.

【0003】[0003]

【従来の技術】従来, FET のゲートはpチャネル, nチ
ャネルに関係なくn型ゲートを使用していた。また, Bi
-CMOS プロセスではバイポーラトランジスタのベース引
き出し電極に接続するため,基板にp型不純物を拡散さ
せて外部ベース領域を形成している。
2. Description of the Related Art Conventionally, n-type gates have been used as FET gates regardless of whether they are p-channel or n-channel. Also, Bi
-In the CMOS process, p-type impurities are diffused into the substrate to form the external base region in order to connect to the base extraction electrode of the bipolar transistor.

【0004】一方, 高速性が要求されるBi-CMOS プロセ
スでは, 高速性のボトルネックとなっているpチャネル
FET の性能向上が重要である。pチャネルFET の性能向
上には, ゲート長の縮小, Vthを低くする等の方法があ
るが, 従来のn型のゲート電極では短チャネル効果に弱
く, また Vthのばらつきも大きくなる。その1つの手段
として,短チャネル効果に強い分だけしきい値電圧 Vth
を低く設計できるp型ゲート化という方法が採用されて
いる。
On the other hand, in the Bi-CMOS process that requires high speed, the p-channel which is the bottleneck of high speed
Improving FET performance is important. To improve the performance of the p-channel FET, there are methods such as reduction of the gate length and reduction of V th , but the conventional n-type gate electrode is weak against the short channel effect and the variation of V th becomes large. As one of the means, the threshold voltage V th is strong enough to withstand the short channel effect.
A method called p-type gating that can be designed to be low is adopted.

【0005】[0005]

【発明が解決しようとする課題】従来例のBi-CMOS プロ
セスでは, pチャネルFET のp型ゲート化を実現するに
はnチャネルFET のn型ゲートと, pチャネルFET のp
型ゲートを別々の工程で作製しなければならなかった。
In the conventional Bi-CMOS process, in order to realize the p-type gate of the p-channel FET, the n-type gate of the n-channel FET and the p-type of the p-channel FET can be realized.
The mold gate had to be made in separate steps.

【0006】本発明はBi-CMOS プロセスで工程数を増加
させないで,pチャネルFET のp型ゲート化を実現し,
デバイスの高速化をはかることを目的とする。
The present invention realizes a p-type gate of a p-channel FET without increasing the number of steps in the Bi-CMOS process,
The purpose is to speed up the device.

【0007】[0007]

【課題を解決するための手段】上記課題の解決は,バイ
ポーラトランジスタとCMOS素子とを同一基板上に形成す
るBi-CMOS プロセスにおいて,該基板上に導電膜を被着
し, 該導電膜を同時にパターニングして該バイポーラト
ランジスタのベース引き出し電極15とpチャネルFET の
ゲート16を形成する工程と, 該ベース引き出し電極と該
ゲートにp型不純物を同一条件で同時に導入する工程と
を有する半導体装置の製造方法により達成される。
[Means for Solving the Problems] To solve the above problems, in a Bi-CMOS process in which a bipolar transistor and a CMOS element are formed on the same substrate, a conductive film is deposited on the substrate and the conductive film is simultaneously formed. Manufacture of a semiconductor device including a step of patterning to form a base extraction electrode 15 of the bipolar transistor and a gate 16 of a p-channel FET, and a step of simultaneously introducing a p-type impurity into the base extraction electrode and the gate under the same conditions. Achieved by the method.

【0008】[0008]

【作用】本発明では,バイポーラトランジスタのベース
引き出し用ポリシリコン膜のp型不純物の拡散と, 同一
マスクを用い同一条件でpチャネルFET のゲート拡散を
行うことにより, 工程数の削減を図っている。
In the present invention, the number of steps is reduced by diffusing the p-type impurity in the polysilicon film for drawing out the base of the bipolar transistor and by diffusing the gate of the p-channel FET under the same conditions using the same mask. ..

【0009】[0009]

【実施例】図1(A),(B) ,図2(C),(D) は本発明の実施
例を説明する図である。図1(A) において,1はp型シ
リコン(Si)基板, 3はバイポーラトランジスタ用 n+
込層, 4は素子分離用 p+ 埋込層, 5はpチャネルFET
用 n+ 埋込層,6はnチャネルFET 用 p+ 埋込層, 7は
ノンドープのエピタキシャルSi層, 8は素子分離用のp
型領域, 9はフィールド絶縁間で熱酸化による二酸化シ
リコン(SiO2)膜,10はゲート絶縁膜等のSiO2膜, 11はバ
イポーラトランジスタ用のnウエル, 12はpチャネルFE
T 用のnウエル, 13はnチャネルFET 用のpウエル, 14
はパターントランジスタ用の n+ 型のコレクタコンタク
ト領域である。
1 (A), 1 (B), 2 (C) and 2 (D) are views for explaining an embodiment of the present invention. In FIG. 1 (A), 1 is a p-type silicon (Si) substrate, 3 is an n + buried layer for a bipolar transistor, 4 is a p + buried layer for element isolation, and 5 is a p-channel FET.
N + buried layer, 6 p + buried layer for n-channel FET, 7 undoped epitaxial Si layer, 8 p for element isolation
Type region, 9 is a silicon dioxide (SiO 2 ) film by thermal oxidation between field insulations, 10 is a SiO 2 film such as a gate insulation film, 11 is an n well for a bipolar transistor, 12 is a p-channel FE
N-well for T, 13 is p-well for n-channel FET, 14
Is an n + type collector contact region for the pattern transistor.

【0010】ここまでは, Bi-CMOS プロセスの通常の工
程により作製する。図1(B) において,基板上に厚さ30
00Åのノンドープのポリシリコン膜を成長し,パターニ
ングしてベース引き出し電極15, pチャネルFET のゲー
ト16, nチャネルFET のゲート17を形成し,レジストマ
スクを用いてベース引き出し電極15とpチャネルFET の
ゲート16にはp型不純物として硼素イオン(B+ ) を注入
し,後工程の熱処理により活性化して p+ 型化する。
Up to this point, it is manufactured by the normal process of the Bi-CMOS process. In Fig. 1 (B), the thickness of 30
A non-doped polysilicon film of 00Å is grown and patterned to form a base extraction electrode 15, a gate 16 of a p-channel FET, a gate 17 of an n-channel FET, and a resist mask is used to form a base extraction electrode 15 and a p-channel FET. Boron ions (B + ) are implanted into the gate 16 as a p-type impurity, and activated by a heat treatment in a later step to become a p + type.

【0011】ここで, B+ の注入条件の一例は, エネル
ギー 35 KeV, ドーズ量3E15cm-2である。次いで, 別の
レジストマスクを用いてnチャネルFET のゲート17にn
型不純物を導入して n+ 型化する。
Here, an example of the B + implantation conditions is an energy of 35 KeV and a dose of 3E15 cm -2 . Then, using another resist mask, n
By introducing impurity to n + -type reduction.

【0012】次いで,ベース引き出し電極15とpチャネ
ルFET のゲート16とnチャネルFETのゲート17上に, 層
間絶縁膜として気相成長(CVD) によるSiO2膜18を形成す
る。図2(C) において,バイポーラトランジスタのベー
ス形成領域の層間絶縁膜18を開口しベース領域19を形成
し,熱拡散により p+ 型ベース引き出し電極15より不純
物を拡散して外部ベース領域20を形成する。
Next, a SiO 2 film 18 is formed as an interlayer insulating film by vapor phase epitaxy (CVD) on the base extraction electrode 15, the gate 16 of the p-channel FET and the gate 17 of the n-channel FET. In FIG. 2C, the interlayer insulating film 18 in the base formation region of the bipolar transistor is opened to form the base region 19, and the impurity is diffused from the p + -type base extraction electrode 15 by thermal diffusion to form the external base region 20. To do.

【0013】次いで,ゲート16に自己整合してイオン注
入によりpチャネルFET のp型ソースドレイン領域21を
形成する。次いで,ゲート17に自己整合してイオン注入
によりnチャネルFET のn型ソースドレイン領域22を形
成する。この場合,通常ゲートの側壁絶縁膜をマスクに
した注入法を利用して図示のようなLDD(オフセット)構
造に形成される。
Next, the p-type source / drain region 21 of the p-channel FET is formed by self-alignment with the gate 16 by ion implantation. Then, the n-type source / drain region 22 of the n-channel FET is formed by self-alignment with the gate 17 by ion implantation. In this case, the LDD (offset) structure as shown in the drawing is usually formed by using the implantation method using the sidewall insulating film of the gate as a mask.

【0014】図2(D) において,基板上の酸化膜の所要
箇所を開口し,厚さ1000Åのノンドープのポリシリコン
膜を成長し,パターニングしてエミッタ電極23, コレク
タ電極24, nチャネルFET のソースドレイン電極25を形
成し,n型不純物を導入してn+ 型化する。
In FIG. 2 (D), a required portion of the oxide film on the substrate is opened, a 1000-Å-thick non-doped polysilicon film is grown, and patterned to form the emitter electrode 23, collector electrode 24, and n-channel FET. A source / drain electrode 25 is formed, and an n-type impurity is introduced to make it an n + type.

【0015】この後同様にして, pチャネルFET のソー
スドレインを引き出す。以下, 通常の工程を経て, Bi-C
MOS デバイスを完成させる。
After this, similarly, the source and drain of the p-channel FET are pulled out. After that, through the normal process, Bi-C
Complete the MOS device.

【0016】[0016]

【発明の効果】本発明によれば, Bi-CMOS プロセスで工
程数を増加させないで,pチャネルFET のp型ゲート化
を実現し, デバイスの高速化をはかることができた。
According to the present invention, the p-type gate of the p-channel FET can be realized without increasing the number of steps in the Bi-CMOS process, and the device speed can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を説明する図(1)FIG. 1 is a diagram for explaining an embodiment of the present invention (1)

【図2】 本発明の実施例を説明する図(2)FIG. 2 is a diagram explaining an embodiment of the present invention (2)

【符号の説明】[Explanation of symbols]

1 Si基板3 バイポーラトランジスタ用 n+ 埋込層 4 素子分離用 p+ 埋込層 5 pチャネルFET 用 n+ 埋込層 6 nチャネルFET 用 p+ 埋込層 7 エピタキシャルSi層 8 素子分離用のp型領域 9 フィールド絶縁間でSiO2膜 10 ゲート絶縁膜等でSiO2膜 11 バイポーラトランジスタ用のnウエル 12 pチャネルFET 用のnウエル 13 nチャネルFET 用のpウエル 14 パターントランジスタ用の n+ 型のコレクタコンタ
クト領域 15 ベース引き出し電極 16 pチャネルFET のゲート 17 nチャネルFET のゲート 18 層間絶縁膜でCVD SiO2膜 19 ベース領域 20 外部ベース領域 21 pチャネルFET のp型ソースドレイン領域 22 nチャネルFET のn型ソースドレイン領域 23 エミッタ電極 24 コレクタ電極 25 nチャネルFET のソースドレイン電極
1 Si substrate 3 n + buried layer for bipolar transistor 4 p + buried layer for element isolation 5 + n + buried layer for p channel FET 6 p + buried layer for n channel FET 7 epitaxial Si layer 8 for element isolation p-type region 9 fields for p-well 14 pattern transistors for n-well 13 n-channel FET of the SiO 2 film 11 for n-well 12 p-channel FET of the bipolar transistor in the SiO 2 film 10 gate insulating film or the like between the insulating n + Type collector contact region 15 Base extraction electrode 16 p-channel FET gate 17 n-channel FET gate 18 Interlayer insulation film CVD SiO 2 film 19 base region 20 external base region 21 p-channel FET p-type source / drain region 22 n-channel N-type source / drain region of FET 23 emitter electrode 24 collector electrode 25 source / drain electrode of n-channel FET

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バイポーラトランジスタとCMOS素子とを
同一基板上に形成するBi-CMOS プロセスにおいて,該基
板上に導電膜を被着し, 該導電膜を同時にパターニング
して該バイポーラトランジスタのベース引き出し電極(1
5)とpチャネルFET のゲート(16)を形成する工程と, 該ベース引き出し電極と該ゲートにp型不純物を同一条
件で同時に導入する工程とを有することを特徴とする半
導体装置の製造方法。
1. In a Bi-CMOS process for forming a bipolar transistor and a CMOS device on the same substrate, a conductive film is deposited on the substrate, and the conductive film is simultaneously patterned to form a base lead electrode of the bipolar transistor. (1
5) and a step of forming a gate (16) of a p-channel FET, and a step of simultaneously introducing a p-type impurity into the base extraction electrode and the gate under the same condition.
JP6264792A 1992-03-18 1992-03-18 Manufacture of semiconductor device Withdrawn JPH05267593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6264792A JPH05267593A (en) 1992-03-18 1992-03-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6264792A JPH05267593A (en) 1992-03-18 1992-03-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05267593A true JPH05267593A (en) 1993-10-15

Family

ID=13206336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6264792A Withdrawn JPH05267593A (en) 1992-03-18 1992-03-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05267593A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669621B2 (en) 2010-06-24 2014-03-11 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669621B2 (en) 2010-06-24 2014-03-11 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP3095564B2 (en) Semiconductor device and method of manufacturing semiconductor device
EP0234054B1 (en) Method of manufacturing a bipolar transistor
EP0166167B1 (en) A process for manufacturing a semiconductor device comprising p-channel and n-channel misfets
US5340756A (en) Method for producing self-aligned LDD CMOS, DMOS with deeper source/drain and P-base regions and, bipolar devices on a common substrate
US4816423A (en) Bicmos process for forming shallow npn emitters and mosfet source/drains
US5101257A (en) Semiconductor device having merged bipolar and MOS transistors and process for making the same
JP2509690B2 (en) Semiconductor device
JP2953425B2 (en) Method for manufacturing semiconductor device
US4877748A (en) Bipolar process for forming shallow NPN emitters
US5059546A (en) BICMOS process for forming shallow NPN emitters and mosfet source/drains
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH05267593A (en) Manufacture of semiconductor device
KR930008022B1 (en) Semiconductor device
JP2573319B2 (en) Method for manufacturing semiconductor device
US5597757A (en) Method of manufacturing a semiconductor device including bipolar and MOS transistors
JP3104294B2 (en) Method for manufacturing Bi-CMOS integrated circuit
JPH0481336B2 (en)
JPH056961A (en) Manufacture of semiconductor device
JP2937338B2 (en) Semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPS6249664A (en) Manufacture of semiconductor device
JPH1131814A (en) Manufacture of semiconductor device
JP2508857B2 (en) Method for manufacturing semiconductor device
JPH04127538A (en) Semiconductor device and manufacture thereof
JPH0737994A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518