JPH05267442A - Dielectric isolating substrate and its manufacture - Google Patents

Dielectric isolating substrate and its manufacture

Info

Publication number
JPH05267442A
JPH05267442A JP9244492A JP9244492A JPH05267442A JP H05267442 A JPH05267442 A JP H05267442A JP 9244492 A JP9244492 A JP 9244492A JP 9244492 A JP9244492 A JP 9244492A JP H05267442 A JPH05267442 A JP H05267442A
Authority
JP
Japan
Prior art keywords
substrate
groove
insulating film
single crystal
dielectric isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9244492A
Other languages
Japanese (ja)
Other versions
JP3157595B2 (en
Inventor
Minehiro Nemoto
峰弘 根本
Naoki Sakurai
直樹 櫻井
Yoshitaka Sugawara
良孝 菅原
Mutsuhiro Mori
森  睦宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP09244492A priority Critical patent/JP3157595B2/en
Publication of JPH05267442A publication Critical patent/JPH05267442A/en
Application granted granted Critical
Publication of JP3157595B2 publication Critical patent/JP3157595B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To enable the wire breaking of wiring and micronization while materializing high breakdown strength. CONSTITUTION:A groove 10, where the angle theta between the sidewall 19 and the main surface is obtuse (>90 deg.C), is dug in the surface of a substrate where at least a lead wire 18 and an n<+>-buried layer 15 cross each other, and an oxide film 26 is made in the groove 10 and on the main surface of a single crystal Si island 12 so that the exposed face may be nearly flat. The oxide film 26 is a laminate consisting of the thick oxide film 26a made inside the groove 10 and the thin oxide film 26b made uniformly on the surface of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体分離基板および
その製造方法に係り、特に、高耐圧化と微細化とを両立
した誘電体分離基板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric isolation substrate and a method for manufacturing the same, and more particularly to a dielectric isolation substrate that achieves both high breakdown voltage and miniaturization and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図8は、従来の誘電体分離基板11を利
用したダイオードの断面図である。
2. Description of the Related Art FIG. 8 is a sectional view of a diode using a conventional dielectric isolation substrate 11.

【0003】このダイオードは、n- 型多結晶Si支持
基板14の主表面に誘電体薄膜13を介して埋め込まれ
たSi単結晶島12に、ボロン(B)等のp型ドーパン
ドによってp+ 型領域81を形成し、さらに、リン
(P)等のn型ドーパンドによってn+ 型領域82を形
成して構成されている。
This diode is a p + -type by a p-type dopant such as boron (B) in a Si single crystal island 12 embedded in a main surface of an n -type polycrystalline Si supporting substrate 14 via a dielectric thin film 13. A region 81 is formed, and an n + -type region 82 is further formed by an n-type dopant such as phosphorus (P).

【0004】このような構成のダイオードに図示の如く
電圧を印加すると、基板表面の酸化膜16上に形成され
た引き出し配線18の電界効果によって、Si単結晶島
12の主表面に空乏層が広がり、これが誘電体薄膜13
を周回してチャネル(図示せず)を形成してしまう。
When a voltage is applied to the diode having such a structure as shown in the figure, a depletion layer spreads on the main surface of the Si single crystal island 12 due to the electric field effect of the lead wiring 18 formed on the oxide film 16 on the substrate surface. , This is the dielectric thin film 13
To form a channel (not shown).

【0005】この結果、上記した従来技術では、チャネ
ルによってp型領域81と他の領域とが電気的に接続さ
れてしまったり、電界集中を引き起こして高耐圧が得ら
れないという問題があった。
As a result, in the above-mentioned conventional technique, there is a problem that the p-type region 81 is electrically connected to other regions by the channel, or electric field concentration is caused so that a high breakdown voltage cannot be obtained.

【0006】そこで、このチャネルを止めるために、S
i単結晶島12の底部および側壁部に不純物濃度の高い
+ 埋込層15を形成する構造が知られている。ところ
が、n+ 埋込層15を形成すると、このn+ 埋込層15
と引き出し配線18とが交差する基板表面部において電
界集中が起こり、耐圧が低下するという問題が新たに生
じてしまう。
Therefore, in order to stop this channel, S
A structure is known in which an n + buried layer 15 having a high impurity concentration is formed on the bottom and side walls of the i single crystal island 12. However, when the n + buried layer 15 is formed, the n + buried layer 15
The electric field concentration occurs on the substrate surface where the lead wire 18 intersects with the lead wire 18, and the breakdown voltage is newly reduced.

【0007】このような問題を解決するためには、配線
18による電界効果の影響を無視できる程度に酸化膜1
6を厚くすればよい。しかしながら、酸化膜16を厚く
すると基板表面の段差が大きくなるので、微細化が難し
くなったり、段差部において断線が起こりやすくなって
信頼性が低下してしまうという問題があった。
In order to solve such a problem, the oxide film 1 is made so that the influence of the electric field effect by the wiring 18 can be ignored.
6 should be thickened. However, if the oxide film 16 is thickened, the steps on the surface of the substrate become large, so that there are problems that miniaturization becomes difficult, and that disconnection easily occurs at the steps and the reliability deteriorates.

【0008】これらの問題点を解決するものとして、例
えば特開昭60-208842 号公報では、図9に示したよう
に、厚い酸化膜16aを、その表面が他の領域の酸化膜
16表面と同一平面となるように、厚い酸化膜16aの
大部分を基板内部に埋設する構造が提案されている。
To solve these problems, for example, in Japanese Patent Laid-Open No. 60-208842, as shown in FIG. 9, a thick oxide film 16a is formed on the surface of the oxide film 16 in another region. A structure has been proposed in which most of the thick oxide film 16a is embedded inside the substrate so as to be flush with each other.

【0009】図7は、厚い酸化膜16aを基板内部に埋
設して基板表面を平坦化した場合(実線)と、厚い酸化
膜16aを基板表面に突出させた場合(破線)との、酸
化膜16の膜厚と最小加工寸法との関係を表した図であ
る。
FIG. 7 shows an oxide film when the thick oxide film 16a is embedded inside the substrate to flatten the substrate surface (solid line) and when the thick oxide film 16a is projected to the substrate surface (broken line). It is a figure showing the relationship between the film thickness of 16 and the minimum processing dimension.

【0010】このように、厚い酸化膜16aを基板内部
に埋設する構造を採用することにより、十分な耐圧を維
持しながら、表面段差の小さい基板が得られ、微細化お
よび信頼性の向上が可能になった。
As described above, by adopting the structure in which the thick oxide film 16a is buried inside the substrate, a substrate having a small surface step can be obtained while maintaining a sufficient breakdown voltage, and miniaturization and improvement of reliability are possible. Became.

【0011】[0011]

【発明が解決しようとする課題】ところが、本発明の発
明等が更に詳細に検討したところ、上記した構造では酸
化膜16の厚い部分と薄い部分との段差がSi単結晶1
2内において大きくなり、しかも段差部の側面19が基
板の主表面に対して垂直になるため、酸化膜16底部の
角の部分20(図9参照)で電界の集中が生じ、十分な
耐圧が得られないことがわかった。
However, when the invention of the present invention was examined in more detail, in the above-described structure, the step between the thick portion and the thin portion of the oxide film 16 is the Si single crystal 1
2 and the side surface 19 of the step portion is perpendicular to the main surface of the substrate, the electric field is concentrated at the corner portion 20 (see FIG. 9) of the bottom portion of the oxide film 16 and a sufficient breakdown voltage is obtained. I found that I could not get it.

【0012】本発明の目的は、上記した従来技術の問題
点を解決して、高耐圧化を実現しながら、信頼性の向
上、微細化を可能にした誘電体分離基板およびその製造
方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a dielectric isolation substrate capable of improving reliability and miniaturization while realizing a high breakdown voltage, and a manufacturing method thereof. To do.

【0013】[0013]

【課題を解決するための手段】上記した目的を達成する
ために、本発明では、半導体支持基板の主表面に誘電体
薄膜を介して埋め込まれた多数の単結晶島内に半導体素
子を形成してなる誘電体分離基板において、基板表面に
おいて半導体素子と接続され、単結晶島外まで延長され
た引き出し配線と、少なくとも引き出し配線と第1導電
型高濃度埋込層とが交差する基板表面に搾設され、側壁
と基板表面とのなす角度が鈍角である溝と、前記溝内を
含む基板上に形成され、その主表面が略平坦な絶縁膜と
を具備した。
In order to achieve the above object, in the present invention, a semiconductor element is formed in a large number of single crystal islands embedded in a main surface of a semiconductor supporting substrate through a dielectric thin film. In the dielectric isolation substrate, the extraction wiring connected to the semiconductor element on the surface of the substrate and extended to the outside of the single crystal island and at least the extraction wiring intersects with the first-conductivity-type high-concentration buried layer. And a groove having an obtuse angle between the side wall and the substrate surface, and an insulating film formed on the substrate including the inside of the groove and having a substantially flat main surface.

【0014】[0014]

【作用】上記した構成によれば、溝内には比較的厚い絶
縁膜が形成されるので引き出し電極が発生する電界によ
る空乏層の発生を防止でき、しかも、単結晶島内部での
厚い絶縁膜の側面と基板表面とのなす角度が鈍角となっ
て電界集中が緩和されるので耐圧が向上する。また、基
板表面が平坦化されて段差がなくなるので信頼性が向上
し、微細化が可能になる。
According to the above-mentioned structure, since a relatively thick insulating film is formed in the groove, it is possible to prevent the depletion layer from being generated by the electric field generated by the extraction electrode, and the thick insulating film is formed inside the single crystal island. The angle between the side surface of the substrate and the surface of the substrate becomes an obtuse angle, and the electric field concentration is relieved, so that the breakdown voltage is improved. Further, since the surface of the substrate is flattened and steps are eliminated, reliability is improved and miniaturization becomes possible.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しながら
詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0016】図1は、本発明の一実施例であるダイオー
ドの断面図であり、前記と同一の符号は同一または同等
部分を表している。
FIG. 1 is a cross-sectional view of a diode which is an embodiment of the present invention, and the same reference numerals as those used above represent the same or equivalent portions.

【0017】本実施例では、引き出し配線18とn+
込層15とが交差する基板表面に、側壁19と主表面と
の成す角度θが鈍角(>90°)の溝10が搾設されて
おり、当該溝10内および単結晶Si島12の主表面に
は、その露出面が略平坦となるように酸化膜26が形成
されている。
In this embodiment, a groove 10 having an obtuse angle (> 90 °) between the side wall 19 and the main surface is squeezed in the substrate surface where the lead wiring 18 and the n + buried layer 15 intersect. Thus, an oxide film 26 is formed in the groove 10 and on the main surface of the single crystal Si island 12 so that the exposed surface thereof is substantially flat.

【0018】本実施例によれば、引き出し配線18によ
る電界が酸化膜26の厚い部分26aに阻まれ、n+
込層15内に生じる電界集中が緩和されるので耐圧が向
上する。また、酸化膜26aが基板内部に埋設されてい
るので、基板表面の段差が無くなって断線が発生しにく
くなり、信頼性が向上して微細加工も可能になる。
According to the present embodiment, the electric field due to the lead wiring 18 is blocked by the thick portion 26a of the oxide film 26, and the electric field concentration generated in the n + buried layer 15 is relaxed, so that the breakdown voltage is improved. Further, since the oxide film 26a is embedded inside the substrate, the step on the surface of the substrate is eliminated, disconnection is less likely to occur, reliability is improved, and fine processing becomes possible.

【0019】さらに、溝10の側壁19と主表面との成
す角度θが鈍角なので、溝10底部での酸化膜26端部
への電界集中を緩和することができるようになる。
Further, since the angle θ formed between the side wall 19 of the groove 10 and the main surface is an obtuse angle, the electric field concentration at the end of the oxide film 26 at the bottom of the groove 10 can be alleviated.

【0020】図2は、本発明の第2実施例であるダイオ
ードの断面図であり、前記と同一の符号は同一または同
等部分を表している。
FIG. 2 is a sectional view of a diode which is a second embodiment of the present invention, and the same symbols as those used above represent the same or equivalent portions.

【0021】本実施例では、引き出し配線18とn+
込層15とが交差する基板表面に深さが2階段の溝10
aが形成され、当該溝10a内および単結晶Si島12
の主表面に、その露出面が略平坦な酸化膜36が形成さ
れている。
In this embodiment, the groove 10 having a depth of two steps is formed on the substrate surface where the lead wiring 18 and the n + buried layer 15 intersect.
a is formed in the groove 10a and the single crystal Si island 12 is formed.
An oxide film 36 whose exposed surface is substantially flat is formed on the main surface of the.

【0022】このような酸化膜36は、後に図3に関し
て詳述するように、例えば、LOCOS(Local Oxidation of
Silicon)法による酸化膜形成を繰り返し行って厚い酸
化膜36aおよび比較的厚い酸化膜36bを形成した
後、さらに基板表面に薄い酸化膜36cを均一に形成す
ることによって得ることができる。
Such an oxide film 36 is, for example, LOCOS (Local Oxidation of) as will be described later in detail with reference to FIG.
This can be obtained by repeatedly forming an oxide film by the Silicon method to form a thick oxide film 36a and a relatively thick oxide film 36b, and then uniformly forming a thin oxide film 36c on the substrate surface.

【0023】また、本実施例では、引き出し配線18下
の単結晶島12内に、単結晶島12端部への電界集中を
緩和するためのn+ 拡散層17が形成されている。
In this embodiment, the n + diffusion layer 17 is formed in the single crystal island 12 under the lead wiring 18 to reduce the electric field concentration at the end of the single crystal island 12.

【0024】本実施例によれば、前記同様、配線18に
よる電界集中の緩和、基板表面の段差が小さくなること
に起因した信頼線の向上等が達成される。さらに、本実
施例によれば、特に拡散層17を設けたことにより、引
き出し配線18下の単結晶島12端部への電界集中が緩
和されるので、耐圧がさらに向上する。
According to this embodiment, similarly to the above, relaxation of the electric field concentration by the wiring 18 and improvement of the reliability line due to the small step on the substrate surface are achieved. Further, according to the present embodiment, since the diffusion layer 17 is provided in particular, the electric field concentration on the end portion of the single crystal island 12 under the lead wiring 18 is relieved, so that the breakdown voltage is further improved.

【0025】図3は、前記図2に関して説明した誘電体
分離基板の製造方法を示した断面図である。ここでは、
従来の誘電体分離基板の製造方法の説明は省き、Si単
結晶島12主面の鏡面研磨が完了した後の工程から説明
する。
FIG. 3 is a sectional view showing a method of manufacturing the dielectric isolation substrate described with reference to FIG. here,
A description of a conventional method for manufacturing a dielectric isolation substrate will be omitted, and description will be given from the step after the mirror polishing of the main surface of the Si single crystal island 12 is completed.

【0026】初めに、全面に酸化膜を形成した後に溝1
0を搾設する領域の酸化膜を除去してマスクパターン3
1を形成する[同図(a) ]。
First, after forming an oxide film on the entire surface, the groove 1 is formed.
The mask pattern 3 is formed by removing the oxide film in the region where 0 is compressed.
1 is formed [(a) in the figure].

【0027】次いで、例えばKOHのようなアルカリ系
エッチング液でエッチングを行って基板表面に溝10a
を形成する。[100]基板を用いた場合、溝10aの
側壁19と基板主表面との成す角度θは125.3°と
なる。また、溝10aの深さは、後の工程で堆積させる
酸化膜36の膜厚の約55%以上とすることが望まし
い。
Next, the groove 10a is formed on the substrate surface by etching with an alkaline etching solution such as KOH.
To form. When the [100] substrate is used, the angle θ between the side wall 19 of the groove 10a and the main surface of the substrate is 125.3 °. The depth of the groove 10a is preferably about 55% or more of the film thickness of the oxide film 36 deposited in a later step.

【0028】エッチング後、マスク材として使用した酸
化膜31を除去する。この際、誘電体薄膜13の端部1
3aが残るようにエッチング量をコントロールする。こ
れは、誘電体薄膜13の端部13aまでエッチングして
しまうと、この後のLOCOS 法による酸化膜形成時に、酸
化膜の成長速度に差が生じて基板表面に段差が生じてし
まうためである。
After the etching, the oxide film 31 used as the mask material is removed. At this time, the end portion 1 of the dielectric thin film 13
The etching amount is controlled so that 3a remains. This is because if the end portion 13a of the dielectric thin film 13 is also etched, a difference in the growth rate of the oxide film will occur during the subsequent formation of the oxide film by the LOCOS method, resulting in a step on the substrate surface. ..

【0029】以上のようにして溝10aを形成後、リン
等のn形不純物を打ち込んで熱拡散させ、n形領域17
aを形成する[同図(b) ]。
After the groove 10a is formed as described above, n-type impurities such as phosphorus are implanted and thermally diffused to form the n-type region 17
a is formed [(b) in the figure].

【0030】次いで、酸素雰囲気中で応力緩和用の酸化
膜34を全面に形成し、更に、基板表面および溝10a
の側壁19、換言すれば、溝10aの底部の除く全面に
保護膜としてナイトライド膜35を形成する[同図(c)
]。
Next, an oxide film 34 for stress relaxation is formed on the entire surface in an oxygen atmosphere, and further, the substrate surface and the groove 10a are formed.
A nitride film 35 is formed as a protective film on the side wall 19 of the above, in other words, on the entire surface excluding the bottom of the groove 10a [FIG.
].

【0031】次いで、LOCOS 法によって厚い酸化膜36
aを溝10a内部に形成する。この長時間の酸化によっ
て、前記打ち込まれたn形不純物17aは更に拡散さ
れ、接合深さの深い拡散層17となる[同図(d) ]。
Then, a thick oxide film 36 is formed by the LOCOS method.
a is formed inside the groove 10a. By the oxidation for a long time, the implanted n-type impurities 17a are further diffused to form a diffusion layer 17 having a deep junction depth [(d) in the figure].

【0032】次いで、LOCOS 法による酸化膜形成を更に
行い、比較的厚い酸化膜36bを形成する[同図(e)
]。
Next, an oxide film is further formed by the LOCOS method to form a relatively thick oxide film 36b [FIG.
].

【0033】以後、従来技術と同様に全面に薄い酸化膜
36cを形成した後、予定箇所に開口部を設けて引き出
し配線18を接続する。
After that, a thin oxide film 36c is formed on the entire surface similarly to the conventional technique, and then an opening is provided at a predetermined position to connect the lead wiring 18.

【0034】以上のようなプロセスで作成された基板
は、高耐圧を得るために必要な厚い酸化膜36aを形成
したにもかかわらず、表面段差が非常に小さく微細加工
が可能となる。上記した方法で試作した例では、厚い酸
化膜36aの厚みが約4μm、薄い酸化膜36bの厚み
約2μmの場合、基板表面上の段差を1μm以下に抑え
ることができた。
The substrate manufactured by the above process has a very small surface level difference and can be microfabricated although the thick oxide film 36a required to obtain a high breakdown voltage is formed. In the example produced by the above method, when the thickness of the thick oxide film 36a is about 4 μm and the thickness of the thin oxide film 36b is about 2 μm, the step on the substrate surface can be suppressed to 1 μm or less.

【0035】図4は、本発明の第3実施例の断面図であ
り、前記と同一の符号は同一または同等部分を表してい
る。
FIG. 4 is a sectional view of a third embodiment of the present invention, in which the same reference numerals as those used above denote the same or equivalent portions.

【0036】本実施例では、引き出し配線18の延長方
向に向かって段階的に深くなる溝10cを形成したあ
と、例えばLOCOS 法による酸化膜形成を繰り返すことに
より酸化膜42を形成している。明らかな様に、本実施
例によっても前記と同様の効果が達成される。
In this embodiment, the oxide film 42 is formed by repeating the formation of the oxide film by, for example, the LOCOS method, after forming the groove 10c which becomes deeper stepwise in the extension direction of the lead wiring 18. Obviously, the same effects as the above can be achieved by this embodiment as well.

【0037】図5は、本発明の第4実施例の断面図であ
り、前記と同一の符号は同一または同等部分を表してい
る。
FIG. 5 is a sectional view of the fourth embodiment of the present invention, in which the same reference numerals as those used above represent the same or equivalent portions.

【0038】本実施例では、溝10d内にLOCOS 法によ
り厚い酸化膜51を形成した後、熱酸化法に比べて成膜
速度が著しく速い化学的蒸着法を用いて絶縁膜52を堆
積させ、絶縁膜を形成している。本実施例によれば、製
造時間が短縮されるので生産性が向上する。
In this embodiment, after the thick oxide film 51 is formed in the groove 10d by the LOCOS method, the insulating film 52 is deposited by the chemical vapor deposition method whose film formation rate is significantly higher than that of the thermal oxidation method. An insulating film is formed. According to this embodiment, since the manufacturing time is shortened, the productivity is improved.

【0039】図6は、本発明の第5の実施例の断面図で
あり、前記と同一の符号は同一または同等部分を表して
いる。
FIG. 6 is a cross-sectional view of the fifth embodiment of the present invention, in which the same symbols as those used above represent the same or equivalent portions.

【0040】本実施例では、溝10eの底部に酸化膜6
1を形成した後、保護用の薄い酸化膜62を溝の側壁に
一様に被着し、その上に、熱もしくは化学的処理によっ
て硬化する有機材料、例えばポリイミド63等を塗布し
て絶縁膜を形成している。
In this embodiment, the oxide film 6 is formed on the bottom of the groove 10e.
1 is formed, a thin oxide film 62 for protection is evenly deposited on the side wall of the groove, and an organic material that is cured by heat or chemical treatment, for example, polyimide 63 is applied to form an insulating film. Is formed.

【0041】本実施例によれば、熱酸化法に比べて絶縁
膜の堆積が容易であるばかりでなく、絶縁膜が柔らかい
粘性のため表面段差の緩和に大きな効果がある。
According to this embodiment, the insulating film can be deposited more easily than the thermal oxidation method, and the insulating film has a soft viscosity, which is effective in alleviating the surface step.

【0042】なお、上記した各実施例では、本発明をダ
イオードの形成された誘電体分離基板を例にして説明し
たが、本発明はこれのみに限定されず、MOSトランジ
スタやバイポーラトランジスタなど、他の半導体装置が
単結晶島内に形成される誘電体分離基板にも同様に適用
することが可能である。
In each of the above-described embodiments, the present invention has been described by taking the dielectric isolation substrate on which the diode is formed as an example, but the present invention is not limited to this. The semiconductor device can be similarly applied to a dielectric isolation substrate in which a single crystal island is formed.

【0043】[0043]

【発明の効果】上記したように、本発明によれば以下の
ような効果が達成される。 (1) 引き出し配線による電界効果の影響が、厚い酸化膜
により緩和されるので耐圧が向上する。 (2) 厚い酸化膜が基板内部に埋設されているので、基板
表面の段差が無くなって断線が発生しにくくなり、信頼
性が向上して微細加工も可能になる。 (3) 厚い酸化膜が埋設される溝の側壁と主表面との成す
角度θが鈍角なので、溝底部の酸化膜端部への電界集中
が緩和されて耐圧が更に向上する。 (4) 引き出し配線下の単結晶端部に高濃度拡散層を形成
したので、引き出し配線下の単結晶島12端部への電界
集中が緩和されて耐圧がさらに向上する。
As described above, according to the present invention, the following effects can be achieved. (1) Since the influence of the electric field effect due to the lead wiring is mitigated by the thick oxide film, the breakdown voltage is improved. (2) Since the thick oxide film is embedded inside the substrate, the steps on the substrate surface are eliminated, the disconnection is less likely to occur, the reliability is improved, and the fine processing is enabled. (3) Since the angle θ formed between the sidewall of the groove in which the thick oxide film is buried and the main surface is an obtuse angle, the electric field concentration on the oxide film end of the groove bottom is relaxed and the breakdown voltage is further improved. (4) Since the high-concentration diffusion layer is formed at the end of the single crystal under the lead-out wiring, the electric field concentration on the end of the single crystal island 12 under the lead-out wiring is relaxed, and the breakdown voltage is further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】 本発明の第2実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】 図2の製造方法を示した断面図である。FIG. 3 is a cross-sectional view showing the manufacturing method of FIG.

【図4】 本発明の第3実施例の断面図である。FIG. 4 is a sectional view of a third embodiment of the present invention.

【図5】 本発明の第4実施例の断面図である。FIG. 5 is a sectional view of a fourth embodiment of the present invention.

【図6】 本発明の第5実施例の断面図である。FIG. 6 is a sectional view of a fifth embodiment of the present invention.

【図7】 酸化膜の膜厚と最小加工寸法との関係を示し
た図である。
FIG. 7 is a diagram showing a relationship between a film thickness of an oxide film and a minimum processing dimension.

【図8】 従来技術の断面図である。FIG. 8 is a cross-sectional view of a conventional technique.

【図9】 従来技術の断面図である。FIG. 9 is a cross-sectional view of a conventional technique.

【符号の説明】[Explanation of symbols]

10…溝、11…誘電体分離基板、12…n- 形単結晶
領域、13…誘電体薄膜、14…多結晶Si,15…n
+ 埋込層、16、26、36、42、51、61…酸化
膜、17…n形拡散領域、18…引き出し配線、19…
側壁、34…応力緩和用の酸化膜、35…ナイトライド
膜、63…ポリイミド、81…p+ 形領域、82…n+
形領域
10 ... groove, 11 ... dielectric isolation substrate, 12 ... n - form a single crystal region, 13 ... dielectric thin film, 14 ... polycrystal Si, 15 ... n
+ Buried layer, 16, 26, 36, 42, 51, 61 ... Oxide film, 17 ... N-type diffusion region, 18 ... Lead wiring, 19 ...
Side wall, 34 ... Oxide film for stress relaxation, 35 ... Nitride film, 63 ... Polyimide, 81 ... P + type region, 82 ... N +
Shape area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 睦宏 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mutsuhiro Mori 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Laboratory, Hitachi, Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 半導体支持基板の主表面に誘電体薄膜を
介して埋め込まれた多数の第1導電型半導体単結晶島内
に半導体素子を形成してなる誘電体分離基板において、 前記単結晶島内部で誘電体薄膜と接するように形成され
た第1導電型高濃度埋込層と、 基板表面において半導体素子と接続され、単結晶島外ま
で延長された引き出し配線と、 少なくとも前記引き出し配線と第1導電型高濃度埋込層
とが交差する基板表面に搾設され、その側壁と基板表面
とのなす角度が鈍角である溝と、 前記溝内を含む基板上に形成され、その主表面が略平坦
な絶縁膜とを具備したことを特徴とする誘電体分離基
板。
1. A dielectric isolation substrate having semiconductor elements formed in a large number of first conductivity type semiconductor single crystal islands embedded in a main surface of a semiconductor supporting substrate via a dielectric thin film, wherein the inside of the single crystal island is formed. A high-concentration buried layer of the first conductivity type formed in contact with the dielectric thin film, a lead wire connected to the semiconductor element on the surface of the substrate and extended outside the single crystal island, and at least the lead wire and the first lead wire. A groove that is squeezed on the surface of the substrate where the conductive high-concentration buried layer intersects, and the side wall and the surface of the substrate form an obtuse angle, and is formed on the substrate including the inside of the groove, the main surface of which is substantially A dielectric isolation substrate comprising a flat insulating film.
【請求項2】 前記溝の深さは、引き出し配線の延長方
向に階段状に深くなることを特徴とする請求項1記載の
誘電体分離基板。
2. The dielectric isolation substrate according to claim 1, wherein the depth of the groove is increased stepwise in the extension direction of the lead wiring.
【請求項3】 少なくとも前記引き出し配線下の単結晶
島内には、単結晶島端部への電界集中を緩和する第1導
電型高濃度拡散層が形成されたことを特徴とする請求項
1または請求項2記載の誘電体分離基板。
3. A high-concentration diffusion layer of the first conductivity type, which relaxes electric field concentration at the edge of the single crystal island, at least in the single crystal island under the lead-out wiring. The dielectric isolation substrate according to claim 2.
【請求項4】 前記絶縁膜は、半導体支持基板の主表面
より下に埋設された部分の厚みが、主表面より上に露出
した部分の厚みより厚いことを特徴とする請求項1ない
し請求項3のいずれかに記載の誘電体分離基板。
4. The insulating film, wherein a thickness of a portion buried below the main surface of the semiconductor supporting substrate is thicker than a thickness of a portion exposed above the main surface. 3. The dielectric isolation substrate according to any one of 3 above.
【請求項5】 前記絶縁膜は、溝内に形成された第1の
絶縁膜と第1の絶縁膜表面を含む基板表面に均一に形成
された第2の絶縁膜との積層膜であることを特徴とする
請求項1ないし請求項4のいずれかに記載の誘電体分離
基板。
5. The insulating film is a laminated film of a first insulating film formed in a groove and a second insulating film uniformly formed on a substrate surface including the surface of the first insulating film. The dielectric isolation substrate according to any one of claims 1 to 4, characterized in that.
【請求項6】 前記第1の絶縁膜は熱酸化膜であること
を特徴とする請求項5記載の誘電体分離基板。
6. The dielectric isolation substrate according to claim 5, wherein the first insulating film is a thermal oxide film.
【請求項7】 前記第2の絶縁膜は、熱酸化膜、CVD
膜、および印刷技術によって被着された有機膜のいずれ
かであることを特徴とする請求項5または請求項6記載
の誘電体分離基板。
7. The second insulating film is a thermal oxide film, CVD
The dielectric isolation substrate according to claim 5 or 6, which is either a film or an organic film deposited by a printing technique.
【請求項8】 第2の絶縁膜と溝の側壁との間には保護
膜が形成されたことを特徴とする請求項5ないし請求項
7のいずれかに記載の誘電体分離基板。
8. The dielectric isolation substrate according to claim 5, wherein a protective film is formed between the second insulating film and the side wall of the groove.
【請求項9】 前記溝の深さは、第1の絶縁膜の膜厚の
約55%であることを特徴とする請求項5ないし請求項
8のいずれかに記載の誘電体分離基板。
9. The dielectric isolation substrate according to claim 5, wherein the depth of the groove is about 55% of the film thickness of the first insulating film.
【請求項10】 半導体支持基板の主表面に誘電体薄膜
を介して埋め込まれた多数の第1導電型半導体単結晶島
内に半導体素子を形成してなる誘電体分離基板の製造方
法において、 単結晶露出面の鏡面研磨を終了後、少なくとも後に形成
される引き出し配線と第1導電型高濃度埋込層とが交差
する基板表面に、側壁と基板表面とのなす角度が鈍角で
ある溝を形成する工程と、 前記溝内を含む基板上に絶縁膜を形成して基板主表面を
平坦化する工程と、 絶縁膜に設けた開口部で半導体素子と接続され、単結晶
島外まで延長された引き出し配線を形成する工程とを具
備したことを特徴とする誘電体分離基板の製造方法。
10. A method for manufacturing a dielectric isolation substrate, comprising: forming a semiconductor element in a large number of first conductivity type semiconductor single crystal islands embedded in a main surface of a semiconductor supporting substrate via a dielectric thin film, wherein the single crystal is formed. After the mirror-polishing of the exposed surface is completed, a groove having an obtuse angle between the side wall and the substrate surface is formed at least on the substrate surface where the lead wiring formed later and the first-conductivity-type high-concentration buried layer intersect. A step of forming an insulating film on the substrate including the inside of the groove to planarize the main surface of the substrate, and a step of connecting to the semiconductor element through an opening provided in the insulating film and extending to the outside of the single crystal island A method of manufacturing a dielectric isolation substrate, comprising the step of forming wiring.
【請求項11】 半導体支持基板の主表面に誘電体薄膜
を介して埋め込まれた多数の第1導電型半導体単結晶島
内に半導体素子を形成してなる誘電体分離基板の製造方
法において、 単結晶露出面の鏡面研磨を終了後、少なくとも後に形成
される引き出し配線と第1導電型高濃度埋込層とが交差
する基板表面に、引き出し配線の延長方向に階段状に深
くなって側壁と基板表面とのなす角度が鈍角の溝を形成
する工程と、 前記溝内を含む基板上に絶縁膜を形成して基板主表面を
平坦化する工程と、 絶縁膜に設けた開口部で半導体素子と接続され、単結晶
島外まで延長された引き出し配線を形成する工程とを具
備したことを特徴とする誘電体分離基板の製造方法。
11. A method for manufacturing a dielectric isolation substrate, comprising a semiconductor element formed in a large number of first conductivity type semiconductor single crystal islands embedded in a main surface of a semiconductor supporting substrate via a dielectric thin film, wherein the single crystal is formed. After finishing the mirror polishing of the exposed surface, at least on the substrate surface where the lead-out wiring formed later and the first-conductivity-type high-concentration buried layer intersect, the side wall and the substrate surface are deepened stepwise in the extension direction of the lead-out wiring. A step of forming a groove having an obtuse angle with, a step of forming an insulating film on the substrate including the inside of the groove to flatten the main surface of the substrate, and an opening provided in the insulating film for connecting to a semiconductor element And a step of forming a lead wiring extended to the outside of the single crystal island.
【請求項12】 前記溝形成後、少なくとも引き出し配
線下の単結晶島内に、単結晶島端部への電界集中を緩和
する第1導電型高濃度拡散層を形成する工程をさらに具
備したことを特徴とする請求項10または請求項11記
載の誘電体分離基板の製造方法。
12. After the formation of the groove, the method further comprises the step of forming a first-conductivity-type high-concentration diffusion layer that alleviates the electric field concentration at the end of the single crystal island at least in the single crystal island under the lead wiring. The method for manufacturing a dielectric isolation substrate according to claim 10 or 11, which is characterized by the following.
【請求項13】 前記絶縁膜を形成する工程は、 前記溝内に比較的厚い第1の絶縁膜を形成する工程と、 前記第1の絶縁膜表面を含む基板上に、第2の絶縁膜を
均一に形成して基板表面を平坦化する工程とより成るこ
とを特徴とする請求項10ないし請求項12のいずれか
に記載の誘電体分離基板の製造方法。
13. The step of forming the insulating film includes the step of forming a relatively thick first insulating film in the groove, and the second insulating film on the substrate including the surface of the first insulating film. 13. The method for manufacturing a dielectric isolation substrate according to claim 10, further comprising the step of uniformly forming the substrate to flatten the surface of the substrate.
【請求項14】 前記溝内に第1の絶縁膜を形成する工
程は、 溝底部を除く溝側壁および基板表面に保護膜を被着する
工程と、 溝底部で露出した基板表面にLOCOS 法により酸化膜を形
成する工程とから成ることを特徴とする請求項13記載
の誘電体分離基板の製造方法。
14. The step of forming a first insulating film in the groove includes a step of depositing a protective film on the groove side wall and the substrate surface excluding the groove bottom, and a LOCOS method on the substrate surface exposed at the groove bottom. 14. The method for manufacturing a dielectric isolation substrate according to claim 13, further comprising the step of forming an oxide film.
JP09244492A 1992-03-19 1992-03-19 Dielectric separation substrate Expired - Fee Related JP3157595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09244492A JP3157595B2 (en) 1992-03-19 1992-03-19 Dielectric separation substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09244492A JP3157595B2 (en) 1992-03-19 1992-03-19 Dielectric separation substrate

Publications (2)

Publication Number Publication Date
JPH05267442A true JPH05267442A (en) 1993-10-15
JP3157595B2 JP3157595B2 (en) 2001-04-16

Family

ID=14054586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09244492A Expired - Fee Related JP3157595B2 (en) 1992-03-19 1992-03-19 Dielectric separation substrate

Country Status (1)

Country Link
JP (1) JP3157595B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872884A1 (en) * 1997-04-14 1998-10-21 Harris Corporation Method and semiconductor device having maximum terminal voltage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872884A1 (en) * 1997-04-14 1998-10-21 Harris Corporation Method and semiconductor device having maximum terminal voltage

Also Published As

Publication number Publication date
JP3157595B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
US5442223A (en) Semiconductor device with stress relief
US5474952A (en) Process for producing a semiconductor device
US6188104B1 (en) Trench DMOS device having an amorphous silicon and polysilicon gate
US4963505A (en) Semiconductor device and method of manufacturing same
KR920001033B1 (en) Manufacturing method of semiconductor device
US4593459A (en) Monolithic integrated circuit structure and method of fabrication
JPH11111710A (en) Semiconductor device and its manufacture
US6433400B1 (en) Semiconductor fabrication employing barrier atoms incorporated at the edges of a trench isolation structure
KR100314347B1 (en) Semiconductor device and its manufacturing method
KR100319615B1 (en) Isolation method in seconductor device
JP2850527B2 (en) Semiconductor device and manufacturing method thereof
US4633290A (en) Monolithic CMOS integrated circuit structure with isolation grooves
JP3157595B2 (en) Dielectric separation substrate
JPH0687480B2 (en) Method for manufacturing semiconductor device
JPS6310895B2 (en)
JPS62229880A (en) Semiconductor device and manufacture thereof
JPH04103127A (en) Method of separating element for semiconductor device
KR100268890B1 (en) Semiconductor device and method for fabricating the same
JP3450095B2 (en) Semiconductor device and manufacturing method thereof
JPH0298939A (en) Manufacture of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JP2723539B2 (en) Master slice type semiconductor device
JP2000021970A (en) Manufacture of semiconductor device
KR0151260B1 (en) Method of forming a field oxide film
JP2674570B2 (en) SO1 substrate and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080209

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090209

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees