JPH05267284A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05267284A
JPH05267284A JP6483992A JP6483992A JPH05267284A JP H05267284 A JPH05267284 A JP H05267284A JP 6483992 A JP6483992 A JP 6483992A JP 6483992 A JP6483992 A JP 6483992A JP H05267284 A JPH05267284 A JP H05267284A
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor substrate
heat
carbon
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6483992A
Other languages
Japanese (ja)
Inventor
Tadayoshi Shiraishi
忠義 白石
Munetaka Oda
宗隆 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6483992A priority Critical patent/JPH05267284A/en
Publication of JPH05267284A publication Critical patent/JPH05267284A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form on a semiconductor surface an insulation film of good quality excellent in the resistance to hot carriers, by forming an oxide film by thermal oxidation of the surface of a semiconductor substrate and thereafter heat- treating the semiconductor substrate in a gaseous atmosphere containing carbon, thereby reducing the interface level and fixed charge. CONSTITUTION:In a manufacture of a semiconductor device which includes a process for oxidizing the surface of a semiconductor substrate thereby to form an oxide film, after the formation of the oxide film, the semiconductor substrate is heat-treated in a gaseous atmosphere containing carbon. For instance, if the oxide film is formed on a silicon substrate, after washing with a chemical liquid as the conventional pretreatment, the oxide film is formed to a thickness of 200 Angstrom by an oxygen gas diluted with nitrogen. Thereafter the oxidizing atmosphere is changed from the oxygen gas diluted with nitrogen to a carbon dioxide gas, and a heat treatment is carried out. The temperature of the heat treatment is set to 900 deg.C. In this case, the measurement of the concentration distribution of carbon elements in the oxide film using SIMS provides a result as shown, for instance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はMOS集積回路等の半導
体装置の製造方法に関し、特にMOSFETのゲート絶
縁膜等の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device such as a MOS integrated circuit, and more particularly to a method for forming a gate insulating film of a MOSFET.

【0002】[0002]

【従来の技術】従来、MOS型半導体装置のゲート絶縁
膜としては、通常の薬液洗浄(RCA洗浄またはHF洗
浄等)後、希釈酸素雰囲気中においてシリコン基板を酸
化して形成した酸化膜をゲート絶縁膜として用いてい
た。
2. Description of the Related Art Conventionally, as a gate insulating film of a MOS type semiconductor device, an oxide film formed by oxidizing a silicon substrate in a diluted oxygen atmosphere after usual chemical cleaning (RCA cleaning or HF cleaning) is used as a gate insulating film. It was used as a film.

【0003】[0003]

【発明が解決しようとする課題】近年、MOS型半導体
装置の微細化に伴う短チャンネル化は、ドレイン端での
電界を増大させ、この部分で発生するホットキャリアを
激増させる。このホットキャリアが高エネルギーでゲー
ト酸化膜へ注入され、ゲート酸化膜中の捕獲中心に捕獲
され、その結果、相互コンダクタンス(gm )、閾値電
圧(Vth)等のデバイス特性が変動する。このように酸
化膜のホットキャリア耐性は、MOS型半導体装置の微
細化に伴い低下する。
In recent years, the shortening of the channel associated with the miniaturization of the MOS type semiconductor device increases the electric field at the drain end, and the hot carriers generated at this part increase drastically. This hot carrier is injected into the gate oxide film with high energy and is trapped in the trap center in the gate oxide film, and as a result, device characteristics such as mutual conductance (g m ) and threshold voltage (V th ) change. As described above, the hot carrier resistance of the oxide film decreases with the miniaturization of the MOS semiconductor device.

【0004】従来の高温酸化で形成した酸化膜−シリコ
ン(Si)界面には多数の構造欠陥、即ち捕獲中心が存
在する。特に、界面付近にあるシリコン原子の不飽和結
合手は界面準位として働く。一方、酸化膜中にある不飽
和結合手は固定電荷となり電子の捕獲中心として作用す
る。また、捕獲中心としては、上記不飽和シリコン原子
のほかにSi−H結合、Si−OH結合などがある。こ
れらの構造欠陥は捕獲中心として働き、ホットキャリア
耐性を劣化させる。
A large number of structural defects, that is, trap centers, exist at the oxide film-silicon (Si) interface formed by conventional high temperature oxidation. In particular, the unsaturated bond of the silicon atom near the interface acts as an interface state. On the other hand, the unsaturated bonds in the oxide film become fixed charges and act as electron trap centers. In addition to the unsaturated silicon atom, the trap center includes Si-H bond, Si-OH bond, and the like. These structural defects act as traps and deteriorate the hot carrier resistance.

【0005】また、MOSデバイスの微細化に伴うゲー
ト酸化膜の薄膜化は、酸化膜にかかる電界を増大させ
る。酸化膜中の固定電荷や酸化膜−シリコン(Si)界
面の界面準位が高電界の影響を受け、その結果、酸化膜
の耐圧不良が激しくなる。
The thinning of the gate oxide film accompanying the miniaturization of MOS devices increases the electric field applied to the oxide film. The fixed electric charge in the oxide film and the interface state of the oxide film-silicon (Si) interface are affected by the high electric field, and as a result, the breakdown voltage of the oxide film becomes severe.

【0006】一方、特開昭61−193456号では、
シリコン基板をH2 雰囲気で熱処理し、基板表面を酸化
して熱酸化膜を形成することにより、不飽和結合手にH
を結合させる技術が示されている。しかし、SiとHと
の結合力は弱く、捕獲中心の除去によるホットキャリア
耐性の向上には不十分であった。
On the other hand, in JP-A-61-193456,
By heat-treating the silicon substrate in an H 2 atmosphere and oxidizing the surface of the substrate to form a thermal oxide film, the unsaturated bonds are H
Techniques for combining are shown. However, the bonding force between Si and H was weak, and it was insufficient to improve the hot carrier resistance by removing the trap centers.

【0007】本発明の課題は、このような従来技術の問
題点を解決することにある。
An object of the present invention is to solve the above problems of the prior art.

【0008】[0008]

【課題を解決するための手段】半導体基板の表面の熱酸
化により酸化膜を形成する工程を含む半導体装置の製造
方法において、酸化膜形成後に、炭素を含むガス雰囲気
中で半導体基板を熱処理することを特徴とする。
In a method of manufacturing a semiconductor device including a step of forming an oxide film by thermal oxidation of a surface of a semiconductor substrate, after the oxide film is formed, the semiconductor substrate is heat-treated in a gas atmosphere containing carbon. Is characterized by.

【0009】[0009]

【作用】本発明によれば、酸化膜形成後において、炭素
元素を含むガス雰囲気中で半導体基板を熱処理すること
により、酸化膜中に炭素元素を拡散させることができ
る。炭素原子はSi原子に比べて原子半径が小さく、加
えて、炭素とSiとの結合力は、水素とSiとの結合力
より大きい。このため、捕獲中心として働く不飽和結合
手を炭素元素で終端、またはSi−H結合、Si−OH
結合を炭素元素で置換し、Si−C結合とすることで、
捕獲中心を減少させることができる。
According to the present invention, the carbon element can be diffused in the oxide film by heat-treating the semiconductor substrate in the gas atmosphere containing the carbon element after the oxide film is formed. Carbon atoms have a smaller atomic radius than Si atoms, and in addition, the bonding force between carbon and Si is larger than the bonding force between hydrogen and Si. Therefore, the unsaturated bond functioning as a trap center is terminated by a carbon element, or Si—H bond, Si—OH.
By substituting the bond with a carbon element to form a Si-C bond,
The trap centers can be reduced.

【0010】[0010]

【実施例】以下、本発明を実施例に基づき詳細に説明す
る。本発明の半導体製造方法により、例えばシリコン基
板上に酸化膜を形成する場合、通常の前処理として薬液
洗浄を行なった後、窒素希釈の酸素ガスにより酸化膜を
200Åの厚さに形成した。
EXAMPLES The present invention will be described in detail below based on examples. According to the semiconductor manufacturing method of the present invention, for example, when an oxide film is formed on a silicon substrate, a chemical cleaning is performed as a normal pretreatment, and then the oxide film is formed to a thickness of 200 Å by nitrogen-diluted oxygen gas.

【0011】この後、酸化雰囲気を窒素希釈の酸素ガス
から窒素希釈の二酸化炭素ガスに切り換え、熱処理をし
た。ガス流量は、酸素および二酸化炭素をそれぞれ毎分
9リットルおよび1リットルずつで行なった。また、熱
処理温度は900℃とした。
After that, the oxidizing atmosphere was changed from nitrogen-diluted oxygen gas to nitrogen-diluted carbon dioxide gas, and heat treatment was performed. The gas flow rate was 9 liters and 1 liter of oxygen and carbon dioxide per minute, respectively. The heat treatment temperature was 900 ° C.

【0012】また、この二酸化炭素ガスによる熱処理時
に、紫外線を照射し、炭素元素の酸化膜中への拡散を促
進した。光源には低圧水銀灯を使用した。
Further, during the heat treatment with the carbon dioxide gas, ultraviolet rays were irradiated to promote the diffusion of carbon element into the oxide film. A low pressure mercury lamp was used as the light source.

【0013】その後、シリコン基板にアルミ電極を蒸着
してMOSキャパシタを作製し、酸化膜の初期絶縁耐圧
を測定した。図1に本発明により作製したMOSキャパ
シタの初期絶縁耐ヒストグラムを示す。図2には従来法
により作製したMOSキャパシタの初期絶縁耐圧ヒスト
グラムを示す。この結果より、本発明により初期絶縁耐
圧Cモード不良率が高電界側にシフトしており、本発明
の効果が確認された。
Then, an aluminum electrode was vapor-deposited on a silicon substrate to produce a MOS capacitor, and the initial withstand voltage of the oxide film was measured. FIG. 1 shows an initial dielectric strength histogram of a MOS capacitor manufactured according to the present invention. FIG. 2 shows an initial withstand voltage histogram of a MOS capacitor manufactured by the conventional method. From these results, the initial breakdown voltage C mode defect rate was shifted to the high electric field side by the present invention, and the effect of the present invention was confirmed.

【0014】次に、この電気的特性を評価したMOSキ
ャパシタの酸化膜中の炭素元素の濃度分布をSIMS
(二次イオン質量分析)を用いて測定した。その結果を
図3に示す。酸化膜表面と酸化膜−シリコン(Si)界
面近傍に1%〜15at.%の炭素元素が分布してい
た。
Next, the concentration distribution of the carbon element in the oxide film of the MOS capacitor whose electrical characteristics are evaluated is shown by SIMS.
It was measured using (secondary ion mass spectrometry). The result is shown in FIG. 1% to 15 at. In the vicinity of the oxide film surface and the oxide film-silicon (Si) interface. % Carbon element was distributed.

【0015】なお、本発明は上記実施例に限定されるも
のではなく、種々の変形が可能である。例えば、実施例
では二酸化炭素の割合を10%で行なったが、0.5〜
100%の範囲であればよい。また、炭素元素を含むガ
ス雰囲気として二酸化炭素ガスを使用したが、一酸化炭
素ガス等の炭素元素を含むガスを使用してもよい。また
炭素元素の酸化膜中への拡散を促進させるための光源に
は、低圧水銀灯を使用したが、高圧水銀灯やエキシマレ
ーザ等の波長180〜450nmを発する紫外光源であ
ればよい。また、熱処理温度は800〜1100℃の間
で行っても良い。
The present invention is not limited to the above embodiment, but various modifications can be made. For example, in the examples, carbon dioxide was used at a rate of 10%.
It may be in the range of 100%. Although carbon dioxide gas is used as the gas atmosphere containing carbon element, a gas containing carbon element such as carbon monoxide gas may be used. Although a low pressure mercury lamp was used as a light source for promoting diffusion of carbon element into the oxide film, an ultraviolet light source emitting a wavelength of 180 to 450 nm such as a high pressure mercury lamp or an excimer laser may be used. The heat treatment temperature may be 800 to 1100 ° C.

【0016】[0016]

【発明の効果】以上のように本発明によれば、捕獲中心
として働く不飽和結合手およびSi−H結合、Si−O
H結合が低減されるようになるので、界面準位、固定電
荷が低減され、ホットキャリア耐性に優れた高品質な絶
縁膜を半導体表面上に形成することができる。また、酸
化膜中の固定電荷や酸化膜−シリコン(Si)界面の界
面準位を低下させることにより、薄膜酸化膜の絶縁耐圧
を向上させることができる。
As described above, according to the present invention, an unsaturated bond that acts as a trap center, a Si-H bond, and a Si-O bond.
Since the H bond is reduced, the interface state and fixed charges are reduced, and a high-quality insulating film having excellent hot carrier resistance can be formed on the semiconductor surface. In addition, the withstand voltage of the thin oxide film can be improved by lowering the fixed charges in the oxide film and the interface state of the oxide film-silicon (Si) interface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により酸化膜を形成し電気的特性を評価
したMOSキャパシタの初期絶縁耐圧ヒストグラム。
FIG. 1 is a histogram of initial withstand voltage of a MOS capacitor in which an oxide film is formed according to the present invention and electrical characteristics are evaluated.

【図2】従来例により酸化膜を形成し電気的特性を評価
したMOSキャパシタの初期絶縁耐圧ヒストグラム。
FIG. 2 is a histogram of initial withstand voltage of a MOS capacitor in which an oxide film is formed and electrical characteristics are evaluated by a conventional example.

【図3】本発明により酸化膜を形成し電気的特性を評価
したMOSキャパシタの酸化膜中の炭素元素の濃度分布
をSIMS(二次イオン質量分析)を用い測定した結果
を示すグラフ。
FIG. 3 is a graph showing the results of measurement by SIMS (secondary ion mass spectrometry) of the concentration distribution of the carbon element in the oxide film of the MOS capacitor in which the oxide film was formed and the electrical characteristics were evaluated according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面を酸化することにより
酸化膜を形成する工程を含む半導体装置の製造方法にお
いて、前記酸化膜形成後に、炭素を含むガス雰囲気中で
前記半導体基板を熱処理することを特徴とする半導体装
置の製造方法。
1. A method of manufacturing a semiconductor device including a step of forming an oxide film by oxidizing the surface of a semiconductor substrate, wherein after the oxide film is formed, the semiconductor substrate is heat-treated in a gas atmosphere containing carbon. A method of manufacturing a semiconductor device, which is characterized.
【請求項2】 前記炭素を含むガス雰囲気中で前記半導
体基板を熱処理するに際し、紫外線を照射することを特
徴とする請求項1記載の半導体装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein ultraviolet rays are irradiated when the semiconductor substrate is heat-treated in a gas atmosphere containing carbon.
JP6483992A 1992-03-23 1992-03-23 Manufacture of semiconductor device Pending JPH05267284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6483992A JPH05267284A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6483992A JPH05267284A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05267284A true JPH05267284A (en) 1993-10-15

Family

ID=13269810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6483992A Pending JPH05267284A (en) 1992-03-23 1992-03-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05267284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781394B1 (en) * 1999-02-05 2007-11-30 꼼미사리아 아 레네르지 아토미끄 Zirconium and niobium alloy comprising erbium, preparation method and component containing said alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781394B1 (en) * 1999-02-05 2007-11-30 꼼미사리아 아 레네르지 아토미끄 Zirconium and niobium alloy comprising erbium, preparation method and component containing said alloy

Similar Documents

Publication Publication Date Title
JP4091265B2 (en) Semiconductor device and manufacturing method thereof
KR20020077126A (en) Semiconductor device and complementary semiconductor device
JP2002353218A (en) Method for improved plasma nitridation of ultra thin gate dielectric
JPH08507175A (en) Semiconductor device containing deuterium atoms
US6204205B1 (en) Using H2anneal to improve the electrical characteristics of gate oxide
JPH0964037A (en) Manufacture of semiconductor device
JP2001332547A (en) Semiconductor device and its manufacturing method
JPS626350B2 (en)
JPH11274489A (en) Field-effect transistor and its manufacture
JP2003142483A (en) Method of forming extremely thin oxynitride gate dielectric highly doped with nitrogen
JPH11103050A (en) Semiconductor device and manufacture thereof
JPH10209147A (en) Manufacture of semiconductor device
JPH0730113A (en) Manufacture of mos transistor
JPH1012609A (en) Semiconductor device and its manufacture
JPH05267284A (en) Manufacture of semiconductor device
JP2004207560A (en) Semiconductor device and its manufacturing method
JP2001185548A (en) Semiconductor device and manufacturing method thereof
Mitani et al. Highly reliable gate oxide under Fowler-Nordheim electron injection by deuterium pyrogenic oxidation and deuterated poly-Si deposition
JP3533377B2 (en) Method of forming oxide film on semiconductor substrate surface and method of manufacturing semiconductor device
JP4076638B2 (en) Manufacturing method of semiconductor device
JP3041066B2 (en) Insulating film forming method
JP2779996B2 (en) Method for manufacturing semiconductor device
US6949804B2 (en) Semiconductor device with gate dielectric film having an oxide film and an oxynitride film
US20040241948A1 (en) Method of fabricating stacked gate dielectric layer
KR20000021246A (en) Method for forming insulating film for semiconductor device using deuterium oxide or deuterium