JPH05266888A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH05266888A
JPH05266888A JP4059956A JP5995692A JPH05266888A JP H05266888 A JPH05266888 A JP H05266888A JP 4059956 A JP4059956 A JP 4059956A JP 5995692 A JP5995692 A JP 5995692A JP H05266888 A JPH05266888 A JP H05266888A
Authority
JP
Japan
Prior art keywords
manganese dioxide
positive electrode
active material
electrolytic
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4059956A
Other languages
Japanese (ja)
Inventor
Toshina Saeki
俊奈 佐伯
Tomoya Watanabe
朋也 渡邊
Yuji Mototani
祐司 元谷
Shuji Tsuchida
周二 土田
Junichi Asaoka
準一 浅岡
Kazumitsu Jibiki
和光 地引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4059956A priority Critical patent/JPH05266888A/en
Publication of JPH05266888A publication Critical patent/JPH05266888A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline battery improved in terms of the moldability of a pellet used for a positive electrode mix. CONSTITUTION:An alkaline battery has manganese dioxide as a positive electrode active material used for a positive electrode mix 1, and a gelated negative electrode 2 using zinc alloy powder as a negative electrode active material and comprising the mixture of the powder with a gelated alkaline electrolyte. The electrolytic current density of the manganese dioxide for the mixture is 2 to 3-A/m<2>, compared with 0.5 to 1.2A/m<2> pertaining to ordinary manganese dioxide, and the mixing rate thereof is 20 to 40wt% relative to the ordinary manganese dioxide. As a result, the moldability of a pellet can be improved without any drop of discharge performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はアルカリ電池に関し、特
に正極活物質に電解電流密度の異なる二酸化マンガンを
混合することによりこれを加圧してなるペレットの成型
性を向上させたアルカリ電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline battery, and more particularly to an alkaline battery in which manganese dioxide having a different electrolysis current density is mixed with a positive electrode active material to improve the moldability of a pellet formed by pressing the manganese dioxide.

【0002】[0002]

【従来の技術】従来この種のアルカリ電池においては、
正極活物質である二酸化マンガンに炭素材料、主として
黒鉛を5〜15重量%添加して正極合剤とし、これを円
筒形電池においては、円筒状に加圧成型し電池に用いて
いた。
2. Description of the Related Art Conventionally, in this type of alkaline battery,
A carbon material, mainly 5 to 15% by weight of graphite was added to manganese dioxide which is a positive electrode active material to obtain a positive electrode mixture, which was used in a cylindrical battery under pressure molding.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな加圧成型された正極合剤ペレットは、充填量を多く
するため、高圧成型を行わないとその強度が十分に得ら
れず、電池の組み立て工程中、特にペレット輸送工程に
おいてペレット同志のぶつかり合いにより押しつぶされ
ることがある。また、この問題を解決するために、さら
に高圧成型を行うと、成型機にかなりの負担がかかる。
However, since such a pressure-molded positive electrode material mixture pellet has a large filling amount, its strength cannot be sufficiently obtained unless high-pressure molding is performed, so that the battery is assembled. During the process, especially in the pellet transportation process, the pellets may be crushed due to collision between the pellets. Further, if high pressure molding is performed to solve this problem, a considerable load is applied to the molding machine.

【0004】本発明はこのような問題を解決するもので
あり、正極合剤ペレットの成型圧力を増加させずに電池
の放電特性を損なうことなく、正極合剤ペレットの強度
を向上させ電池組立工程における問題を解決するアルカ
リ電池を提供することを目的とする。
The present invention solves such a problem by improving the strength of the positive electrode material mixture pellet without increasing the molding pressure of the positive electrode material mixture pellet and without impairing the discharge characteristics of the battery. It is an object of the present invention to provide an alkaline battery that solves the above problem.

【0005】[0005]

【課題を解決するための手段】この問題を解決するため
本発明のアルカリ電池は、二酸化マンガンを正極活物
質、負極活物質として亜鉛合金粉、電解液としてアルカ
リ水溶液を用いたアルカリ電池において、正極活物質と
して電解電流密度が0.5〜1.2A/m2の電解二酸
化マンガンに対し2.0〜3.0A/m2の電解二酸化
マンガンを重量比20〜40重量%の範囲で混合させた
正極合剤を用いる。
In order to solve this problem, the alkaline battery of the present invention is an alkaline battery using manganese dioxide as a positive electrode active material, a zinc alloy powder as a negative electrode active material, and an alkaline aqueous solution as an electrolyte. As an active material, electrolytic manganese dioxide having an electrolytic current density of 0.5 to 1.2 A / m 2 and electrolytic manganese dioxide of 2.0 to 3.0 A / m 2 were mixed in a weight ratio of 20 to 40% by weight. A positive electrode mixture is used.

【0006】[0006]

【作用】この構成により、正極活物質として電解電流密
度が0.5〜1.2A/m2の電解二酸化マンガンにた
いし2.0〜3.0A/m2の電解二酸化マンガンを重
量比で20〜40重量%の範囲で混合させ正極合剤とす
ることにより、加圧された正極合剤ペレットの強度を向
上させ電池組立工程における問題を解決することが可能
となる。この作用効果は十分に解明されていないが以下
のように推定される。
With this structure, as the positive electrode active material, electrolytic manganese dioxide having an electrolytic current density of 0.5 to 1.2 A / m 2 is used in a weight ratio of electrolytic manganese dioxide of 2.0 to 3.0 A / m 2. By mixing in the range of 20 to 40% by weight to form the positive electrode mixture, it becomes possible to improve the strength of the pressed positive electrode mixture pellets and solve the problem in the battery assembly process. This effect is not fully understood, but it is presumed as follows.

【0007】二酸化マンガンの電解電流密度を高くする
と二酸化マンガンの緻密性がなく粗な状態になり表面積
が増加する。その結果、二酸化マンガンの表面の凹凸が
増加して正極合剤としてペレット状に加圧成型した場合
二酸化マンガン同士の接触性が向上しその強度が向上す
る。
When the electrolytic current density of manganese dioxide is increased, the manganese dioxide is not dense and is in a rough state, so that the surface area is increased. As a result, the unevenness of the surface of manganese dioxide is increased, and when the positive electrode mixture is pressure-molded into pellets, the contactability between manganese dioxides is improved and the strength thereof is improved.

【0008】上記の如く、本発明は正極活物質である二
酸化マンガンにその電解電流密度より高い電解電流密度
で電解した二酸化マンガンを混合しこれを正極合剤に用
いることで電池組立工程特に加圧成型したペレットの輸
送工程における問題を解決させることが可能となる。
As described above, according to the present invention, manganese dioxide, which is a positive electrode active material, is mixed with manganese dioxide electrolyzed at an electrolysis current density higher than its electrolysis current density, and the mixture is used as a positive electrode mixture. It becomes possible to solve the problems in the transportation process of the molded pellets.

【0009】[0009]

【実施例】以下、本発明の一実施例のアルカリ電池につ
いて図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An alkaline battery according to an embodiment of the present invention will be described below with reference to the drawings.

【0010】図1において、1は正極合剤、2はゲル状
負極、3はセパレータ、4は集電子、5は正極キャッ
プ、6は金属ケース、7は電池の外装缶、8は樹脂封口
体、9は底板である。まず加圧成型された図2に示すペ
レットの強度向上の効果と放電特性に対する影響を混合
する二酸化マンガンの電解電流密度および混合率につい
て調べた。初めにペレットの強度向上の影響について説
明する。
In FIG. 1, 1 is a positive electrode mixture, 2 is a gelled negative electrode, 3 is a separator, 4 is a current collector, 5 is a positive electrode cap, 6 is a metal case, 7 is a battery outer can, and 8 is a resin sealing body. , 9 are bottom plates. First, the effect of improving the strength of the pressure-molded pellets shown in FIG. 2 and the effect on the discharge characteristics were examined with respect to the electrolytic current density and mixing rate of manganese dioxide. First, the effect of improving the strength of the pellet will be described.

【0011】実験方法は図2で示した一定成型圧力で加
圧成型されたペレットを作り電解、ペレットの横方向か
ら圧力を加えペレットが破壊したときの圧力を測定し
た。なお、混合させる二酸化マンガン電解電流密度は
0.5〜1.2A/m2の二酸化マンガン(A)に対し
2,3,4A/m2のそれぞれの電解二酸化マンガン
(B)について混合率はA:B=10:0,9:1,
8:2,6:4,4:6,0:10まで変化させた。こ
の破壊されるときの圧力を測定した結果を表1に示し
た。
In the experimental method, pressure-molded pellets were prepared at a constant molding pressure shown in FIG. 2, and pressure was applied from the side of the electrolyzed pellets to measure the pressure when the pellets were broken. The manganese dioxide electrolytic current density to be mixed is 0.5 to 1.2 A / m 2 of manganese dioxide (A), and the mixing ratio is 2,3,4 A / m 2 of electrolytic manganese dioxide (B). : B = 10: 0, 9: 1,
It was changed to 8: 2, 6: 4, 4: 6, 0:10. The results of measuring the pressure at the time of breaking are shown in Table 1.

【0012】[0012]

【表1】 [Table 1]

【0013】ここで表中の数字は現状の二酸化マンガン
をペレットに成型し、これを破壊したときの圧力を10
0とし、これに対する指数を示している。表1から明ら
かなように二酸化マンガンを電解する電解電流密度を高
くするに従い加圧成型されるペレットの破壊したときの
圧力が高くなっていくことがわかる。また混合率につい
ては、10重量%以下の混合率では現状のものに比べ、
電解電流密度を高くしてもペレットを破壊したときの圧
力に差は見られなかった。しかしながら混合率を20重
量%以上に増やすとペレットを破壊したときの圧力に差
が見られる。さらに混合率を増加するに従いペレットを
破壊したときの圧力が増加していくのがわかる。
Here, the numbers in the table represent the pressure when the current manganese dioxide was molded into pellets and the pellets were broken.
It is set to 0 and the index for this is shown. As is clear from Table 1, the pressure at the time of breakage of the pressure-molded pellets increases as the electrolytic current density for electrolyzing manganese dioxide increases. Regarding the mixing ratio, a mixing ratio of 10% by weight or less
No difference was found in the pressure when the pellets were broken even if the electrolytic current density was increased. However, when the mixing ratio is increased to 20% by weight or more, there is a difference in pressure when the pellets are broken. It can be seen that the pressure when the pellets are broken increases as the mixing ratio increases.

【0014】この傾向は、Aの電解二酸化マンガンの電
解電流密度が0.5および1.2A/m2の場合でも同
じであった。次に放電性能に対する影響について説明す
る。実験方法は図1で示したアルカリ電池を試作し、そ
の電池の放電を行い特性に対する影響を調べた。また、
混合する二酸化マンガン電解電流密度は、0.5A/m
2〜1.2A/m2の電解二酸化マンガン(A)に対し
2,3,4A/m2のそれぞれの電解二酸化マンガン
(B)について混合率はA:B=10:0,9:1,
8:2,6:4,4:6,0:10まで変化させた。こ
のときの放電性能の結果を表2に示した。
This tendency was the same when the electrolytic current density of the electrolytic manganese dioxide A was 0.5 and 1.2 A / m 2 . Next, the influence on the discharge performance will be described. As an experimental method, the alkaline battery shown in FIG. 1 was prototyped, and the battery was discharged to examine the influence on the characteristics. Also,
The mixed manganese dioxide electrolysis current density is 0.5 A / m.
2 mixing ratio for ~1.2A / m 2 of electrolytic manganese dioxide (A) for each of the electrolytic manganese dioxide of 2,3,4A / m 2 (B) is A: B = 10: 0,9: 1,
It was changed to 8: 2, 6: 4, 4: 6, 0:10. The results of the discharge performance at this time are shown in Table 2.

【0015】[0015]

【表2】 [Table 2]

【0016】ここで表中の数字は現状の二酸化マンガン
をペレットに成型し、これを放電したときの特性を10
0とし、これに対する指数を示している。表2から明ら
かなように二酸化マンガンを電解する電解電流密度を高
くするに従い放電特性が低下していくことがわかる。ま
た混合率については、10重量%以下については電解電
流密度に対する影響は現れていないが、混合率を20重
量%以上にすると電解電流密度によって差がみられる。
電解電流密度毎に見てみると、電解電流密度が現状のも
のに比べ2〜3倍の範囲のものでは混合率が20〜40
重量%の範囲では放電性能に対する影響が見られないが
それ以上の混合率になると影響が現れてきている。次に
電解電流密度が現状のものに比べ4倍になると混合率を
20重量%以上から放電性能に影響を及ぼしていること
がわかる。この傾向は、Aの電解二酸化マンガンの電解
電流密度が0.5および1.2A/m2の場合でも同じ
であった。以上のことから判断して本実施例において正
極活物質である二酸化マンガンに電解電流密度の異なる
二酸化マンガンを混合させ、その電解電流密度は、通常
の二酸化マンガンの電解電流密度の2〜3倍の範囲で混
合率は通常の二酸化マンガンに比べ20〜40重量%の
範囲で混合させるのが好ましい。
Here, the numbers in the table indicate the characteristics when the current manganese dioxide is molded into pellets and the pellets are discharged.
It is set to 0 and the index for this is shown. As is clear from Table 2, the discharge characteristics are lowered as the electrolytic current density for electrolyzing manganese dioxide is increased. With respect to the mixing ratio of 10% by weight or less, no influence on the electrolytic current density is shown, but when the mixing ratio is 20% by weight or more, a difference is observed depending on the electrolytic current density.
Looking at each electrolytic current density, when the electrolytic current density is in the range of 2 to 3 times that of the current one, the mixing ratio is 20 to 40.
No influence on the discharge performance is observed in the range of wt%, but the influence is beginning to appear at higher mixing ratios. Next, when the electrolysis current density is four times that of the current one, it can be seen that the mixing ratio of 20% by weight or more affects the discharge performance. This tendency was the same when the electrolytic current densities of the electrolytic manganese dioxide of A were 0.5 and 1.2 A / m 2 . Judging from the above, in this example, manganese dioxide as the positive electrode active material was mixed with manganese dioxide having different electrolytic current densities, and the electrolytic current density was 2 to 3 times the electrolytic current density of ordinary manganese dioxide. In the range, the mixing ratio is preferably in the range of 20 to 40% by weight as compared with ordinary manganese dioxide.

【0017】[0017]

【発明の効果】以上の実施例の説明により明らかなよう
に本発明のアルカリ電池によれば、二酸化マンガンを正
極活物質,負極活物質として亜鉛合金粉、電解液として
アルカリ水溶液を用いたアルカリ電池において、正極活
物質に電解電流密度0.5〜1.2A/m2の電解二酸
化マンガンに対して、2.0〜3.0A/m2の電解二
酸化マンガンを重量比で20〜40%の範囲で混合させ
た正極合剤を用いることで、電池の放電特性を損なうこ
となくかつ、加圧された正極合剤ペレットの強度を向上
させ電池組立工程における問題を解決するという効果が
得られる。
As is apparent from the above description of the embodiments, according to the alkaline battery of the present invention, an alkaline battery using manganese dioxide as a positive electrode active material, zinc alloy powder as a negative electrode active material, and an alkaline aqueous solution as an electrolytic solution. In the positive electrode active material, electrolytic manganese dioxide having an electrolytic current density of 0.5 to 1.2 A / m 2 and electrolytic manganese dioxide of 2.0 to 3.0 A / m 2 in a weight ratio of 20 to 40% are used. By using the positive electrode mixture mixed in the range, it is possible to obtain the effect of improving the strength of the pressed positive electrode mixture pellet without impairing the discharge characteristics of the battery and solving the problem in the battery assembly process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のアルカリ電池の縦断面図FIG. 1 is a vertical sectional view of an alkaline battery according to an embodiment of the present invention.

【図2】同、正極合剤に用いるペレットの斜視図FIG. 2 is a perspective view of a pellet used for the positive electrode mixture.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 ゲル状負極 3 セパレータ 1 Positive Electrode Mixture 2 Gel Negative Electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土田 周二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 浅岡 準一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 地引 和光 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shuji Tsuchida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Junichi Asaoka, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. (72) Inventor, Wako Jibiki, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質として二酸化マンガンと、負
極活物質として亜鉛合金粉を用いこれをゲル状アルカリ
電解液に混合してなるゲル状負極とを備えたアルカリ電
池であって、電解電流密度が0.5〜1.2A/m2
電解二酸化マンガンに対して、2.0〜3.0A/m2
の電解二酸化マンガンを重量比20〜40%混合した正
極活物質を具備したアルカリ電池。
1. An alkaline battery comprising manganese dioxide as a positive electrode active material, and a gelled negative electrode prepared by mixing zinc alloy powder as a negative electrode active material with a gelled alkaline electrolyte, which has an electrolytic current density. Is from 2.0 to 3.0 A / m 2 with respect to electrolytic manganese dioxide of 0.5 to 1.2 A / m 2.
An alkaline battery provided with a positive electrode active material in which the electrolytic manganese dioxide is mixed in a weight ratio of 20 to 40%.
JP4059956A 1992-03-17 1992-03-17 Alkaline battery Pending JPH05266888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4059956A JPH05266888A (en) 1992-03-17 1992-03-17 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4059956A JPH05266888A (en) 1992-03-17 1992-03-17 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH05266888A true JPH05266888A (en) 1993-10-15

Family

ID=13128116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4059956A Pending JPH05266888A (en) 1992-03-17 1992-03-17 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH05266888A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139973A (en) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd Alkaline cell
WO2014091799A1 (en) * 2012-12-14 2014-06-19 東洋鋼鈑株式会社 Electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006139973A (en) * 2004-11-11 2006-06-01 Hitachi Maxell Ltd Alkaline cell
WO2014091799A1 (en) * 2012-12-14 2014-06-19 東洋鋼鈑株式会社 Electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JPWO2014091799A1 (en) * 2012-12-14 2017-01-05 東洋鋼鈑株式会社 Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery

Similar Documents

Publication Publication Date Title
EP0882309B1 (en) Zinc anode for an electrochemical cell
AU670897B2 (en) Alkaline manganese battery
EP0817299A2 (en) Sealed rechargeable cell comprising a cathode with a hydrogen recombination catalyst
GB1568493A (en) Silver oxide cell and its manufacture
CA2474164A1 (en) Alkaline battery
HUT67932A (en) Alkaline manganese dioxide cell of low mercury content or withot mercury
US4096318A (en) Rechargeable accumulator having a manganese dioxide electrode and an acid electrolyte
EP0747981A2 (en) Manganese dioxide alkaline cell
KR100441166B1 (en) Alkaline primary cell
US4121018A (en) Positive electrode for air-depolarized alkaline primary cell with thickened electrolyte
JP3215448B2 (en) Zinc alkaline battery
JP3712259B2 (en) Cathode active material for alkaline manganese battery and battery
JPH05266888A (en) Alkaline battery
JPH09180708A (en) Alkaline dry cell
JPS58178959A (en) Method of producing compression cathode for chemical battery
JPS63232266A (en) Alkaline dry battery
JP2005129309A (en) Positive electrode mixture of alkaline battery, and alkaline battery
CA1151726A (en) Alkaline cell electrodes and method of producing same
JPH07183032A (en) Electrolytic manganese dioxide, and its manufacture and application
JPH09213321A (en) Manufacture of battery and manganese oxide for it
JP2022138753A (en) Lead-acid battery
JP3111773B2 (en) Mercury-free alkaline battery and its manufacturing method
JPH05225988A (en) Alkaline battery
JPS60240056A (en) Alkaline-manganese cell
JP3011243B2 (en) Positive electrode mixture for manganese dry battery and manganese dry battery using the same