JPH05266859A - Ion source for mass analyzer - Google Patents
Ion source for mass analyzerInfo
- Publication number
- JPH05266859A JPH05266859A JP6183692A JP6183692A JPH05266859A JP H05266859 A JPH05266859 A JP H05266859A JP 6183692 A JP6183692 A JP 6183692A JP 6183692 A JP6183692 A JP 6183692A JP H05266859 A JPH05266859 A JP H05266859A
- Authority
- JP
- Japan
- Prior art keywords
- amplification
- ultrasonic vibration
- sample
- ion source
- oscillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は質量分析計のイオン源に
係るものであり、本発明に依れば前記イオン源に導入さ
れた液体試料を、その流量に最適合した電気エネルギで
霧化できるとともに、前記超音波振動増幅手段のいかな
る状態においても共振状態を保持できる超音波振動イオ
ン源に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion source for a mass spectrometer. According to the present invention, a liquid sample introduced into the ion source is atomized with electric energy optimally suited to its flow rate. The present invention relates to an ultrasonic vibration ion source capable of maintaining a resonance state in any state of the ultrasonic vibration amplification means.
【0002】[0002]
【従来の技術】図2は、従来の技術を示す説明図であ
る。図2において従来の技術を説明する。図2におい
て、1はカラム、2はチューブ、3は超音波振動手段、
4は超音波振動増幅手段、5は増幅手段、6は発振手
段、7は締め付け金具である。2. Description of the Related Art FIG. 2 is an explanatory diagram showing a conventional technique. A conventional technique will be described with reference to FIG. In FIG. 2, 1 is a column, 2 is a tube, 3 is ultrasonic vibrating means,
Reference numeral 4 is an ultrasonic vibration amplifying means, 5 is an amplifying means, 6 is an oscillating means, and 7 is a fastening fitting.
【0003】カラム1により分離された液体試料は、チ
ューブ2により超音波振動手段3を経て、超音波振動増
幅手段4の先端に送られる。一方、超音波振動手段3は
締め付け金具7により、ある一定の締め付けトルクで超
音波振動増幅手段4に接続されている。他方、超音波振
動手段3は発振手段6に接続されるところの増幅手段5
により高周波エネルギが供給されている。増幅手段5に
より、増幅された高周波エネルギは、超音波振動手段3
により振動エネルギに変換され、超音波振動増幅手段4
により増幅され液体試料を霧化する。今、図2におい
て、締め付け金具7の終端から超音波振動増幅手段4の
先端までの距離をXとすると、締め付け金具7,超音波
振動手段3,超音波振動増幅手段4の全体の共振周波数
は、次のような近似式で示される。The liquid sample separated by the column 1 is sent to the tip of the ultrasonic vibration amplification means 4 through the ultrasonic vibration means 3 by the tube 2. On the other hand, the ultrasonic vibrating means 3 is connected to the ultrasonic vibration amplifying means 4 with a certain tightening torque by a tightening metal fitting 7. On the other hand, the ultrasonic vibrating means 3 is the amplifying means 5 connected to the oscillating means 6.
The high frequency energy is supplied by. The high frequency energy amplified by the amplification means 5 is transmitted to the ultrasonic vibration means 3
Is converted into vibration energy by the ultrasonic vibration amplification means 4
The liquid sample is amplified by and is atomized. Now, in FIG. 2, when the distance from the end of the tightening metal fitting 7 to the tip of the ultrasonic vibration amplifying means 4 is X, the overall resonance frequency of the tightening metal fitting 7, the ultrasonic vibrating means 3, and the ultrasonic vibration amplifying means 4 is , Is represented by the following approximate expression.
【0004】 Fo=K/X …(数1) Fo:共振周波数 K :共振定数 X :全体の長さ ここで、Foの共振周波数と、超音波振動手段3に流れ
る電流の関係は図3のように表され、共振点(Fo)で
は振動エネルギが最大効率で超音波振動増幅手段4に伝
達される周波数であり、この時超音波振動手段3に流れ
る高周波電流は最大値(Im)となり、液体試料はこの
場合のみ超音波振動増幅手段4の先端より霧化される。
また、共振定数Kは超音波振動手段3の固有の定数であ
り、従来技術では超音波振動手段3に圧電素子の集合体
を用いており、K=1500kHZ〜2000kHZの値
のものを使用していた。ここで、Kが500kHZの幅
を持っているのは、超音波振動手段3の温度や、前記超
音波振動手段3に接続されている超音波振動増幅手段4
の質量数などにより、変化するためである。Fo = K / X (Equation 1) Fo: Resonance frequency K: Resonance constant X: Overall length Here, the relationship between the resonance frequency of Fo and the current flowing through the ultrasonic vibration means 3 is shown in FIG. At the resonance point (Fo), the vibration energy is the frequency at which the vibration energy is transmitted to the ultrasonic vibration amplification means 4 with the maximum efficiency, and the high frequency current flowing through the ultrasonic vibration means 3 at this time becomes the maximum value (Im), Only in this case, the liquid sample is atomized from the tip of the ultrasonic vibration amplification means 4.
Further, the resonance constant K is a unique constant of the ultrasonic vibrating means 3, and in the prior art, a group of piezoelectric elements is used for the ultrasonic vibrating means 3, and a value of K = 1500 kHZ to 2000 kHZ is used. It was Here, K has a width of 500 kHz because of the temperature of the ultrasonic vibration means 3 and the ultrasonic vibration amplification means 4 connected to the ultrasonic vibration means 3.
This is because it changes depending on the mass number of.
【0005】このような従来技術に、例えば、公開特許
公報昭56−126241号に示された分析装置への試料導入法
及び装置などがあげられる。Examples of such conventional techniques include a method of introducing a sample into an analyzer and an apparatus disclosed in Japanese Patent Laid-Open No. 56-126241.
【0006】[0006]
【発明が解決しようとする課題】以上従来の技術で説明
したことから明らかの様に、従来の技術では、超音波振
動手段3の温度変化や、カラム1からの液体試料の増減
に伴う超音波振動増幅手段4の質量数の変化から、前記
(数1)式のFo(共振周波数)が変化してしまい、そ
のつど発振手段6の周波数を可変してやる必要があっ
た。また、従来技術では、試料の流量に関係無く増幅手
段5の増幅率は、一定の為、試料量によっては不必要な
電気エネルギを超音波振動手段3に供給し続け、エネル
ギ的ロスも大きく、超音波振動手段3の発熱の原因にも
つながっていた。As is apparent from the above description of the prior art, in the prior art, the ultrasonic waves accompanying the temperature change of the ultrasonic vibrating means 3 and the increase / decrease of the liquid sample from the column 1 are used. Due to the change in the mass number of the vibration amplifying means 4, the Fo (resonance frequency) of the equation (1) changes, and it is necessary to change the frequency of the oscillating means 6 each time. Further, in the prior art, since the amplification factor of the amplification means 5 is constant regardless of the flow rate of the sample, unnecessary electric energy is continuously supplied to the ultrasonic vibrating means 3 depending on the sample amount, and the energy loss is large. It was also linked to the cause of heat generation of the ultrasonic vibration means 3.
【0007】[0007]
【課題を解決するための手段】課題を解決するための手
段として、まず請求項1の手段については、カラム1か
らの試料の量を流量センサなどの流量測定手段を設け、
前記流量測定手段で発生した関数値によって増幅手段5
の増幅率を制御する手段を設けることにより達成され
る。また、請求項2の手段については、前述の共振周波
数Foは、超音波振動手段3に流れる電流が最大となる
ときの超音波振動手段3に印加される周波数であること
から、超音波振動手段3と増幅手段5との間に、超音波
振動手段3に流れる電流を検出する手段を設け、その測
定値に従って、発振手段6の発振周波数を制御する手段
を設けることにより達成される。[Means for Solving the Problems] As means for solving the problems, in the means of claim 1, first, a flow rate measuring means such as a flow rate sensor for measuring the amount of the sample from the column 1 is provided.
Amplifying means 5 according to the function value generated by the flow rate measuring means
It is achieved by providing means for controlling the amplification factor of. Further, in the means of claim 2, since the above-mentioned resonance frequency Fo is a frequency applied to the ultrasonic vibration means 3 when the current flowing through the ultrasonic vibration means 3 becomes maximum, the ultrasonic vibration means This is achieved by providing a means for detecting the current flowing in the ultrasonic vibration means 3 between the amplifier 3 and the amplification means 5, and providing a means for controlling the oscillation frequency of the oscillation means 6 according to the measured value.
【0008】[0008]
【作用】前述の課題を解決するための手段で説明したよ
うに、カラム1からの試料を、流量測定手段で測定し、
そこで発生した関数値により、増幅手段5の増幅率を制
御すれば、試料流量に比例した電気エネルギを超音波振
動手段3に送りこむことが、可能となる。また、発振手
段6の発振周波数を超音波振動手段3に流れ込む電流が
常に最大となるように制御することにより、超音波振動
手段3の温度変化や、超音波振動増幅手段4の質量の増
減に伴い共振周波数が変化しても、発振手段6は、常に
超音波振動手段3,締め付け金具7,超音波振動増幅手
段4から成る全体の共振状態を維持することになる。As described in the means for solving the above problems, the sample from the column 1 is measured by the flow rate measuring means,
If the amplification factor of the amplification means 5 is controlled by the generated function value, electric energy proportional to the sample flow rate can be sent to the ultrasonic vibration means 3. Further, by controlling the oscillation frequency of the oscillating means 6 so that the current flowing into the ultrasonic oscillating means 3 is always maximized, it is possible to change the temperature of the ultrasonic oscillating means 3 and increase or decrease the mass of the ultrasonic oscillating amplifying means 4. Even if the resonance frequency changes accordingly, the oscillation means 6 always maintains the entire resonance state of the ultrasonic vibration means 3, the tightening metal 7, and the ultrasonic vibration amplification means 4.
【0009】[0009]
【実施例】図1に本発明の一実施例を示す。同図におい
て、1はカラム、2はチューブ、3は超音波振動手段、
4は超音波振動増幅手段、5は増幅手段、6は発振手
段、7は締め付け金具、8は流量検出手段、9は増幅手
段A、10は調節手段A、11は切替手段S1、12は
加算手段、13は切替手段S2、14は電圧−周波数変
換手段、15は増幅手段B、16は切替手段S2′、1
7は切替手段B、18は増幅手段C、19は平滑手段、
20は検出手段である。FIG. 1 shows an embodiment of the present invention. In the figure, 1 is a column, 2 is a tube, 3 is ultrasonic vibrating means,
4 is ultrasonic vibration amplifying means, 5 is amplifying means, 6 is oscillating means, 7 is tightening fitting, 8 is flow rate detecting means, 9 is amplifying means A, 10 is adjusting means A, 11 is switching means S1, 12 is addition Means, 13 is switching means S2, 14 is voltage-frequency converting means, 15 is amplifying means B, 16 is switching means S2 ', 1
7 is switching means B, 18 is amplification means C, 19 is smoothing means,
20 is a detection means.
【0010】図1において、切替手段S1−11,切替
手段S2−13及び、切替手段S2′−16は、今、全て
a側に投入されている。また、超音波振動手段3は、締
め付け金具7により、ある一定の締め付けトルクで超音
波振動増幅手段4に接続されている。また、カラム1に
より分離された液体試料はチューブ2により、超音波振
動手段3を経て、超音波振動増幅手段4の先端に供給さ
れている。この時、調節手段A−10と、発振手段6に
より、増幅率と発振周波数を調節して、液体試料を超音
波振動増幅手段4の先端より、霧化させる。すなわち、
この状態で、超音波振動手段3及び超音波振動増幅手段
4並びに締め付け金具7はともに、共振状態にある。こ
の時の切替手段S2−13のa点の周波数と、切替手段
S1−11のa点の電圧を測定する。本実施例では、周
波数28.5kHZ,電圧8.0Vであった。次に切替手
段S2−13のb点の周波数が、測定周波数の28.5
kHZと成るように調節手段B−17を調節し、この時
の調節手段B−17のc点の電圧を計測する。本実施例
では、此の電圧は2.4 Vであった。次に、切替手段S
2′−16のb点の電圧が、先程の調節手段B−17の
c点の電圧値(2.4V)と同様になるように、増幅手段
B−17の増幅率を調節する。この電圧値は、超音波振
動手段3,超音波振動増幅手段4、及び締め付け金具7
の全体の共振状態における、超音波振動手段3への入力
電流の値であり、図3のImに相当する。なお、この電
流は検出手段20によって電圧変換された値となる。次
に、切替手段S1−11,切替手段S2′−16をそれ
ぞれb側に投入する。すると、増幅手段5と、加算手段
12は常に超音波振動手段3,超音波振動増幅手段4及
び、締め付け金具7の全体の共振状態となるように、
(超音波振動手段3に流れる電流が、常に最大となるよ
うに)制御される。また、カラム1より分離した液体の
試料量を変化させた場合も、流量検出手段8から発生し
た関数値と、増幅手段A−9により、増幅手段5の増幅
率は、液体試料が、共振作用により、霧化するに、最も
適した値に制御される。本実施例によれば、液体の試料
量を1〜10μl/min と変化させた場合、超音波振動
手段3に印加される電圧は、6.2V〜12.3Vへと自
動的に変化した。In FIG. 1, all of the switching means S1-11, the switching means S2-13, and the switching means S2'-16 are now on the side a. Further, the ultrasonic vibration means 3 is connected to the ultrasonic vibration amplification means 4 with a certain tightening torque by means of a tightening fitting 7. The liquid sample separated by the column 1 is supplied to the tip of the ultrasonic vibration amplifying means 4 through the ultrasonic vibration means 3 by the tube 2. At this time, the amplification unit and the oscillation frequency are adjusted by the adjusting unit A-10 and the oscillating unit 6, and the liquid sample is atomized from the tip of the ultrasonic vibration amplifying unit 4. That is,
In this state, the ultrasonic vibrating means 3, the ultrasonic vibration amplifying means 4, and the tightening fitting 7 are all in a resonance state. At this time, the frequency at the point a of the switching means S2-13 and the voltage at the point a of the switching means S1-11 are measured. In this example, the frequency was 28.5 kHz and the voltage was 8.0V. Next, the frequency at the point b of the switching means S2-13 is 28.5 of the measurement frequency.
The adjusting means B-17 is adjusted so that it becomes kHZ, and the voltage at the point c of the adjusting means B-17 at this time is measured. In this example, this voltage was 2.4 V. Next, the switching means S
The amplification factor of the amplifying means B-17 is adjusted so that the voltage at point b of 2'-16 becomes similar to the voltage value (2.4 V) at point c of the adjusting means B-17. This voltage value is the ultrasonic vibration means 3, the ultrasonic vibration amplification means 4, and the tightening metal fitting 7.
Is the value of the input current to the ultrasonic vibrating means 3 in the entire resonance state of, and corresponds to Im in FIG. It should be noted that this current has a value converted into a voltage by the detecting means 20. Next, the switching means S1-11 and the switching means S2'-16 are turned on to the side b, respectively. Then, the amplifying means 5 and the adding means 12 are always in the resonance state of the whole of the ultrasonic vibration means 3, the ultrasonic vibration amplification means 4, and the fastening fitting 7.
(The current flowing through the ultrasonic vibrating means 3 is controlled to be always the maximum). Even when the sample amount of the liquid separated from the column 1 is changed, the function value generated from the flow rate detecting means 8 and the amplification factor of the amplifying means 5 by the amplifying means A-9 are such that the liquid sample has a resonance action. By this, the value is controlled to the most suitable value for atomization. According to this example, when the liquid sample amount was changed to 1 to 10 μl / min, the voltage applied to the ultrasonic vibrating means 3 was automatically changed to 6.2V to 12.3V.
【0011】[0011]
【発明の効果】前記実施例で、説明したように、本発明
に依れば、カラム1より流出する試料量に比例して、超
音波振動手段3に印加する電圧が、自動的に変化し、そ
の値は、試料流量1〜10μl/min に対して、印加電
圧6.2V〜12.3Vとなった。また、超音波振動手段
3に流れ込む電流の値は、初期値が、周波数28.5kHZ
で2.8Aであったが、30分後の値は、周波数が29.
5kHZで、電流の値が、2.8 Aと成り、常に共振状
態が維持されていた。このように、本発明によれば、液
体試料流量の変化や、超音波振動手段3の温度変化に影
響されず、常に、共振点を維持し、試料を安定に霧化で
きる効果がある。As described in the above embodiment, according to the present invention, the voltage applied to the ultrasonic vibrating means 3 is automatically changed in proportion to the amount of the sample flowing out from the column 1. The value was 6.2V to 12.3V for the applied voltage with respect to the sample flow rate of 1 to 10 μl / min. The initial value of the current flowing into the ultrasonic vibrating means 3 has a frequency of 28.5 kHz.
It was 2.8A, but after 30 minutes, the frequency was 29.
At 5 kHz, the current value was 2.8 A, and the resonance state was always maintained. As described above, according to the present invention, there is an effect that the resonance point is always maintained and the sample can be stably atomized without being affected by the change of the liquid sample flow rate and the temperature change of the ultrasonic vibrating means 3.
【図1】本発明の実施例を示す簡略回路図である。FIG. 1 is a simplified circuit diagram showing an embodiment of the present invention.
【図2】従来の技術を示す簡略回路図である。FIG. 2 is a simplified circuit diagram showing a conventional technique.
【図3】共振周波数と超音波振動手段3に流れる電流の
関係図である。FIG. 3 is a relationship diagram between a resonance frequency and a current flowing through the ultrasonic vibration means 3.
1…カラム、2…チューブ、3…超音波振動手段、4…
超音波振動増幅手段、5…増幅手段、6…発振手段、7
…締め付け金具、8…流量検出手段、9…増幅手段A、
10…調節手段A、11…切替手段S1、12…加算手
段、13…切替手段S2、14…電圧−周波数変換手
段、15…増幅手段B、16…切替手段S2′、17…
切替手段B、18…増幅手段C、19…平滑手段、20
…検出手段。1 ... Column, 2 ... Tube, 3 ... Ultrasonic vibrating means, 4 ...
Ultrasonic vibration amplification means, 5 ... Amplification means, 6 ... Oscillation means, 7
... Tightening hardware, 8 ... Flow rate detecting means, 9 ... Amplifying means A,
10 ... Adjusting means A, 11 ... Switching means S1, 12 ... Addition means, 13 ... Switching means S2, 14 ... Voltage-frequency conversion means, 15 ... Amplification means B, 16 ... Switching means S2 ′, 17 ...
Switching means B, 18 ... Amplifying means C, 19 ... Smoothing means, 20
… Means of detection.
Claims (2)
音波振動増幅手段からなる質量分析計のイオン源におい
て、該イオン源に供給される試料の流量を計測し、その
計測値に従ったある関数を発生させる手段を設け、前記
発生した関数に従って、前記増幅手段の増幅率を可変な
らしめる手段を設けたことを特徴とする質量分析計のイ
オン源。1. An ion source of a mass spectrometer comprising an ultrasonic vibrating means, an oscillating means, an amplifying means, and an ultrasonic vibrating amplifying means, the flow rate of a sample supplied to the ion source is measured, and the measured value is followed. An ion source for a mass spectrometer, further comprising means for generating a certain function, and means for varying the amplification factor of the amplifying means according to the generated function.
音波振動手段と、前記増幅手段との間に、電流検出手段
を設け、前記電流検出手段で検出した電圧が、常に一定
と成るような制御手段を設け、該制御手段によって、前
記発振手段の発振周波数が、前記超音波振動手段の共振
周波数を常に維持することを特徴とする質量分析計のイ
オン源。2. The ion source according to claim 1, wherein current detecting means is provided between the ultrasonic vibrating means and the amplifying means so that the voltage detected by the current detecting means is always constant. Ion source for a mass spectrometer, characterized in that the control means is provided so that the oscillation frequency of the oscillating means always maintains the resonance frequency of the ultrasonic vibrating means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6183692A JPH05266859A (en) | 1992-03-18 | 1992-03-18 | Ion source for mass analyzer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6183692A JPH05266859A (en) | 1992-03-18 | 1992-03-18 | Ion source for mass analyzer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05266859A true JPH05266859A (en) | 1993-10-15 |
Family
ID=13182580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6183692A Pending JPH05266859A (en) | 1992-03-18 | 1992-03-18 | Ion source for mass analyzer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05266859A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264274A1 (en) * | 2021-06-15 | 2022-12-22 | 株式会社日立ハイテク | Sample liquid atomization device and analysis device |
-
1992
- 1992-03-18 JP JP6183692A patent/JPH05266859A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264274A1 (en) * | 2021-06-15 | 2022-12-22 | 株式会社日立ハイテク | Sample liquid atomization device and analysis device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4302728A (en) | Ultrasonic wave oscillator circuit with output meter | |
JPH0835873A (en) | Coriolis mass flowmeter | |
WO2005068939A1 (en) | Detection circuit, detection method, and physical amount measurement device | |
US10119895B2 (en) | Method, circuit and flexural resonator for measuring the density of fluids | |
US5847279A (en) | Angular speed measuring device | |
JPH05266859A (en) | Ion source for mass analyzer | |
JPS62228126A (en) | Gas pressure gauge | |
JP3261132B2 (en) | DC feedback circuit using sample and hold circuit | |
JPS58763A (en) | Gas rate sensor | |
KR100415076B1 (en) | Method of detecting angular velocity and vibrating gyroscope | |
JP2878905B2 (en) | Bolt tightening diagnostic device | |
JP3627643B2 (en) | Vibrating gyro | |
US7689372B2 (en) | Process for operating a measurement device of the vibration type | |
JPH0656300B2 (en) | Vibration type angular velocity detector | |
SU832346A1 (en) | Vibration-type flowmeter | |
JPH07248240A (en) | Electromagnetic flowmeter | |
SU964451A2 (en) | Vibration-type flowmeter | |
SU1210077A1 (en) | Piezoelectric transducer | |
JPH0450496Y2 (en) | ||
JPS60166822A (en) | Mass flowmeter | |
JPH0643929B2 (en) | Vibration type force detector | |
JPS61142415A (en) | Angular velocity detector | |
JPH11287833A (en) | Method and circuit for detecting minute change in capacity | |
SU918866A1 (en) | Method of measuring voltage effective value | |
SU666480A1 (en) | Flow rate measuring device |