JPH11139533A - Self-excited resonant vibrating device - Google Patents

Self-excited resonant vibrating device

Info

Publication number
JPH11139533A
JPH11139533A JP31397597A JP31397597A JPH11139533A JP H11139533 A JPH11139533 A JP H11139533A JP 31397597 A JP31397597 A JP 31397597A JP 31397597 A JP31397597 A JP 31397597A JP H11139533 A JPH11139533 A JP H11139533A
Authority
JP
Japan
Prior art keywords
acceleration
electromagnet
current
vibration
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31397597A
Other languages
Japanese (ja)
Other versions
JP4082629B2 (en
Inventor
Yoshinori Kamiya
嘉則 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Seiki Manufacturing Co Ltd
Original Assignee
Murakami Seiki Kousakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Seiki Kousakusho KK filed Critical Murakami Seiki Kousakusho KK
Priority to JP31397597A priority Critical patent/JP4082629B2/en
Publication of JPH11139533A publication Critical patent/JPH11139533A/en
Application granted granted Critical
Publication of JP4082629B2 publication Critical patent/JP4082629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Jigging Conveyors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-cost, high-performance electromagnetic feeder utilizing the vibration by the attracting force of an electromagnet and restoring force of a spring to convey powder, accurately applying a resonance phenomenon corresponding to the natural oscillation characteristic, miniaturizing the electromagnet, and capable of controlling quick acceleration, quick stop, and high-precision conveyance quantity. SOLUTION: This self-excited resonant vibrating device utilizing the attracting force of an electromagnet 1 and the restoring force of a spring 3 is provided with an acceleration sensor 4 detecting the acceleration of a vibrated body 2 and negatively feeding it back to an acceleration command, arithmetic means 7, 8 applying the PI operation and square root operation to the deviation between the acceleration command and the acceleration detected by the acceleration sensor 4 to obtain the current command width, and a current control power amplifier 13 feeding a current to the electromagnet 1 based on the product of the phase of the vibration speed obtained by integrating the acceleration detected by the acceleration sensor 4 and the current command width obtained by the arithmetic means 7, 8. The acceleration of the vibration of the electromagnet 1 is controlled accordingly.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁石の吸引力と
バネの復元力による振動を利用した、粉粒体を搬送する
自励共振型振動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-excited resonance type vibration device for transporting a granular material utilizing vibration caused by an attractive force of an electromagnet and a restoring force of a spring.

【0002】[0002]

【従来の技術】電磁フィーダを駆動する自励共振型振動
装置として、特公平5−74435号公報に開示された
ものがある。その制御系の構成を図10及び図11のブ
ロック図に示す。
2. Description of the Related Art A self-excited resonance type vibration device for driving an electromagnetic feeder is disclosed in Japanese Patent Publication No. Hei 5-74435. The configuration of the control system is shown in the block diagrams of FIG. 10 and FIG.

【0003】図10において、目標振幅が指令として与
えられると、減算器37で検出振幅との偏差が演算さ
れ、制御増幅器31で増幅され、可変増幅度の電力増幅
器32で電力増幅され、電磁石33に電力が供給され
る。電磁石の振幅は振幅検出器34で検出され、移相器
35で90度の進み位相が可変増幅度の電力増幅器32
に与えられ、電磁石33に固有振動数の加振力を与え
る。振幅検出器34の出力は絶対値演算回路36に与え
られ、減算器37により、目標振幅に負帰還される。
In FIG. 10, when a target amplitude is given as a command, a deviation from the detected amplitude is calculated by a subtractor 37, amplified by a control amplifier 31, amplified by a power amplifier 32 having a variable amplification factor, and amplified by an electromagnet 33. Is supplied with power. The amplitude of the electromagnet is detected by an amplitude detector 34, and the phase shifter 35 has a power amplifier 32 having a leading phase of 90 degrees and a variable amplification degree.
To give the electromagnet 33 an exciting force having a natural frequency. The output of the amplitude detector 34 is provided to an absolute value calculation circuit 36, and the subtractor 37 negatively feeds back to the target amplitude.

【0004】一方、図11においては、目標値は速度と
して与えられ、振幅検出器34で検出された電磁石33
の振動の振動数がf/V変換器38により電圧に変換さ
れ、絶対値演算回路36で演算された振動の絶対値と乗
算器39で乗算されて目標速度に負帰還される。その他
の構成及び動作は図10の場合と同じである。
[0004] On the other hand, in FIG. 11, a target value is given as a speed, and an electromagnet 33 detected by an amplitude detector 34.
Is converted into a voltage by the f / V converter 38, multiplied by the absolute value of the vibration calculated by the absolute value calculation circuit 36 by the multiplier 39, and negatively fed back to the target speed. Other configurations and operations are the same as those in FIG.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図10
及び図11に示した従来の自励共振型振動装置は、可変
増幅度の電力増幅器32の出力交流の振幅は偏差が大き
くなると小さくなるように、逆に変さが小さくなると大
きくなるように制御されるという定性的な関係を規定す
るのみで、動作の理論的必然性が不明確であり、応答速
度も不充分である。
However, FIG.
In addition, the conventional self-excited resonance type vibration device shown in FIG. 11 controls the amplitude of the output AC of the power amplifier 32 having the variable amplification so that the amplitude decreases as the deviation increases, and conversely, increases as the change decreases. Only the qualitative relationship that the operation is performed is unclear, the theoretical necessity of operation is unclear, and the response speed is also insufficient.

【0006】本発明が解決しようとする課題は、電磁石
の吸引力とバネの復元力による振動を利用した、粉体を
搬送する電磁フィーダにおいて、固有振動特性に対応す
る共振現象を正確に応用し、電磁石の小型化、急速加
振、急速停止、高精度の搬送量制御などを可能にする、
ローコストで高性能の電磁フィーダ装置を提供すること
にある。
The problem to be solved by the present invention is to precisely apply a resonance phenomenon corresponding to a natural vibration characteristic to an electromagnetic feeder that conveys powder by utilizing vibration caused by an attractive force of an electromagnet and a restoring force of a spring. , Enabling the downsizing of electromagnets, rapid excitation, quick stop, high-accuracy transport amount control, etc.
An object of the present invention is to provide a low-cost, high-performance electromagnetic feeder device.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するた
め、本発明の第1の手段は、電磁石の吸引力とバネの復
元力とを利用した振動機械装置において、被振動体の加
速度を検出して加速度指令に負帰還する加速度センサ
と、前記加速度指令と前記加速度センサによって検出さ
れた加速度との偏差をPI演算及び平方根演算して電流
指令振幅を得る演算手段と、前記加速度センサによって
検出された加速度を積分して得られた振動速度の位相と
前記演算手段で得られた電流指令振幅との積に基づいて
前記電磁石に電流を供給する電流制御パワーアンプとを
備えることにより、前記電磁石の振動の加速度を制御す
ることを特徴とする。
According to a first aspect of the present invention, there is provided a vibrating mechanical device utilizing an attractive force of an electromagnet and a restoring force of a spring to detect an acceleration of a vibrating body. An acceleration sensor that negatively feeds back the acceleration command, a calculation unit that obtains a current command amplitude by performing a PI calculation and a square root calculation on a deviation between the acceleration command and the acceleration detected by the acceleration sensor, and an acceleration sensor that is detected by the acceleration sensor. A current control power amplifier that supplies a current to the electromagnet based on the product of the phase of the vibration velocity obtained by integrating the acceleration and the current command amplitude obtained by the arithmetic means. It is characterized in that acceleration of vibration is controlled.

【0008】また、本発明の第2の手段は、電磁石の吸
引力とバネの復元力とを利用した振動機械装置におい
て、被振動体の加速度を検出し、加速度の積分値である
検出速度を速度指令に負帰還する加速度センサと、前記
速度指令と前記検出速度との偏差をPID演算及び平方
根演算して電流指令振幅を得る演算手段と、前記検出加
速度を積分して得られた振動速度の位相と前記演算手段
で得られた電流指令振幅との積に基づいて前記電磁石に
電流を供給する電流制御パワーアンプとを備えることに
より、粉粒体の輸送量を制御すること特徴とする。
According to a second aspect of the present invention, in a vibrating mechanical device utilizing an attractive force of an electromagnet and a restoring force of a spring, an acceleration of a vibrated body is detected, and a detection speed which is an integral value of the acceleration is detected. An acceleration sensor that negatively feeds back the speed command; a calculating unit that obtains a current command amplitude by performing a PID calculation and a square root calculation of a deviation between the speed command and the detected speed; and a vibration speed obtained by integrating the detected acceleration. A current control power amplifier that supplies a current to the electromagnet based on a product of a phase and a current command amplitude obtained by the calculation means is provided to control a transport amount of the granular material.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を、図
面に示す実施例に基づいて説明する。図1に本発明の第
1の手段の実施例の構成を示す。図中1は電磁石、2は
振動体、3はバネ、4は加速度センサ、5は絶対値演算
回路、6は減算器、7はPI演算器、8は平方根演算
器、9は比較器、10は検出加速度に対して90°(π
/4)遅れの位相を発生させる積分器、11は定振幅正
弦波整形回路、12は乗算器、13は電流制御パワーア
ンプである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below based on embodiments shown in the drawings. FIG. 1 shows the configuration of an embodiment of the first means of the present invention. In the figure, 1 is an electromagnet, 2 is a vibrating body, 3 is a spring, 4 is an acceleration sensor, 5 is an absolute value calculation circuit, 6 is a subtractor, 7 is a PI calculator, 8 is a square root calculator, 9 is a comparator, 10 Is 90 ° (π
/ 4) an integrator for generating a delayed phase, 11 is a constant amplitude sine wave shaping circuit, 12 is a multiplier, and 13 is a current control power amplifier.

【0010】本実施例では、振動体2の加速度の絶対値
を加速度指令に負帰還し、その誤差をPI演算し平方根
を求めた値と、加速度の積分による、定振幅速度位相の
値との積を求め、この値に比例する力を得るため、電磁
石1に電流制御パワーアンプ13を用いて通電する。
In this embodiment, the absolute value of the acceleration of the vibrating body 2 is negatively fed back to the acceleration command, the error is calculated by PI and the square root is obtained, and the value of the constant amplitude velocity phase obtained by integrating the acceleration is obtained. To obtain a product and obtain a force proportional to this value, the electromagnet 1 is energized using the current control power amplifier 13.

【0011】この実施例における機械系の固有振動制御
の手段について説明する。電磁石1の吸引力をF
(N)、振動体2の質量をM(kg)、バネ3のバネ定
数をK(N/m)、振動のダンピング係数をD(N/m
/s)、変位をx(m)とすると、吸引力Fは一般式と
して、次式で表される。
The means for controlling the natural vibration of the mechanical system in this embodiment will be described. The attractive force of the electromagnet 1 is F
(N), the mass of the vibrating body 2 is M (kg), the spring constant of the spring 3 is K (N / m), and the damping coefficient of the vibration is D (N / m
/ S) and the displacement is x (m), the suction force F is represented by the following equation as a general equation.

【0012】 F=M(d2x/dt2)+D(dx/dt)+Kx・・・・・(1) これを変形して、次式を得る。 F−D(dx/dt)=M(d2x/dt2)+Kx・・・・・(2) この(2)式の右辺は、持続する定振幅の固有振動であ
る。
F = M (d 2 x / dt 2 ) + D (dx / dt) + Kx (1) By modifying this, the following equation is obtained. F−D (dx / dt) = M (d 2 x / dt 2 ) + Kx (2) The right side of the equation (2) is a sustained natural vibration having a constant amplitude.

【0013】したがって、左辺がF−D(dx/dt)
=0となるようにFを制御すれば良い。即ち、電磁石の
吸引力Fを、速度ベクトルの位相で、振動減衰力を消去
する量だけ制御すれば、機械系の固有振動に共振した定
振幅制御が実現できる。
Therefore, the left side is FD (dx / dt)
What is necessary is just to control F so that = 0. That is, if the attraction force F of the electromagnet is controlled by the phase of the velocity vector by an amount that eliminates the vibration damping force, it is possible to realize constant amplitude control that resonates with the natural vibration of the mechanical system.

【0014】機械振動の減衰は、ダンピング定数Dによ
るため、Dと等価で逆極性に、速度位相とPI演算の値
との積を与えると、減衰を打ち消して、振動振幅不変の
固有振動数がえられる。したがって、負荷の質量M、ダ
ンピング定数Dの変化に応じて、固有振動数と、電磁石
電流が変化する。
Since the damping of the mechanical vibration depends on the damping constant D, when the product of the velocity phase and the value of the PI operation is given to the opposite polarity equivalent to D, the damping is canceled and the natural frequency of the vibration amplitude invariable is obtained. available. Therefore, the natural frequency and the electromagnet current change according to changes in the load mass M and the damping constant D.

【0015】(2)式の右辺=0から、固有振動数f=
(1/2π)(K/M)1/2(HZ)が得られ、さら
に、(2)式の左辺=0から電磁石電流I=(GD/K
F)(M/K)1/2(A)となる。
From the right side = 0 of the equation (2), the natural frequency f =
(1 / 2π) (K / M) 1/2 (HZ) is obtained, and the electromagnet current I = (GD / K
F ) (M / K) 1/2 (A).

【0016】但し、G:加速度(m/s2)、D:ダン
パ定数(N/m/s)、KF:電磁石の力係数(N/
A)である。
Where G: acceleration (m / s 2 ), D: damper constant (N / m / s), K F : force coefficient of electromagnet (N / m / s 2)
A).

【0017】なお、電磁石吸引力Fは、電流Iと距離x
との関係において、F≒(μ0AN2/2)(I/x)2
なる非線形である。但し、μ0:真空透磁率(H/
m)、A:磁極断面積(m2)、N:コイル巻回数であ
る。
It should be noted that the electromagnet attractive force F is determined by the current I and the distance x.
In relation to, F ≒ (μ 0 AN 2 /2) (I / x) 2
Is nonlinear. Here, μ 0 : vacuum permeability (H /
m), A: magnetic pole sectional area (m 2 ), N: number of coil turns.

【0018】したがって、制御の安定化のために、PI
出力の平方根演算を行って、線形化制御を行う。このた
めに、平方根演算値と、振動速度ベクトルの位相との積
で電磁石吸引力を制御する。
Therefore, to stabilize the control, the PI
The output is square-rooted to perform linearization control. For this purpose, the electromagnet attractive force is controlled by the product of the square root calculation value and the phase of the vibration velocity vector.

【0019】速度位相の演算手段について説明すると、
加速度センサ4の検出電圧を比較器(COM)9で方形
波電圧に変換し、これを積分器10で90°位相遅れの
三角波に変換後、定振幅正弦波整形回路(関数発生器)
11でピーク電圧10v一定の正弦波形に整形して、速
度位相を演算する。
A description will be given of the speed phase calculating means.
The detection voltage of the acceleration sensor 4 is converted into a square wave voltage by a comparator (COM) 9 and converted into a triangular wave with a 90 ° phase delay by an integrator 10, and then a constant amplitude sine wave shaping circuit (function generator)
In step 11, the waveform is shaped into a sine waveform having a constant peak voltage of 10 v, and the speed phase is calculated.

【0020】次に、本発明の第2の手段の構成を図2に
示す。前記図1との相異点は、PI演算器7をPID演
算器15に変更し、また、加速度センサ4で検出された
加速度を積分器14で積分して速度に変換した値を絶対
値演算回路5で絶対値演算し、速度指令との偏差を減算
器6で得てPID演算器15に出力することの2点であ
る。これにより、粉粒体の輸送量を制御することができ
る。
Next, the configuration of the second means of the present invention is shown in FIG. The difference from FIG. 1 is that the PI calculator 7 is changed to a PID calculator 15 and the value obtained by integrating the acceleration detected by the acceleration sensor 4 with the integrator 14 and converting it into velocity is calculated as an absolute value. The two points are that the absolute value is calculated by the circuit 5, the deviation from the speed command is obtained by the subtractor 6, and is output to the PID calculator 15. This makes it possible to control the transport amount of the granular material.

【0021】[0021]

【実施例】本発明の第1の手段の一実施例を図3乃至図
9を参照して説明する。本実施例では、加速度指令を可
変抵抗器21で与える。高速・低速(約1:10)の切
替のため、抵抗分圧回路22と切替スイッチ23を設
け、急発振、急制動を行う。P(比例)ゲイン調整を可
変抵抗器24で調整する。起動・停止スイッチ25で、
振動の発振起動と惰走停止を行う。平方根演算器8は図
4(a)に示すような関数発生器で構成し、図4(b)
に示すような折線近似によりPI演算器の出力の平方根
を演算する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the first means of the present invention will be described with reference to FIGS. In this embodiment, the acceleration command is given by the variable resistor 21. For switching between high speed and low speed (about 1:10), a resistive voltage dividing circuit 22 and a changeover switch 23 are provided to perform rapid oscillation and rapid braking. P (proportional) gain adjustment is adjusted by the variable resistor 24. With the start / stop switch 25,
Starts oscillation oscillation and stops coasting. The square root calculator 8 is composed of a function generator as shown in FIG.
The square root of the output of the PI calculator is calculated by the broken line approximation shown in FIG.

【0022】振動体2の加速度は加速度センサ4で検出
し、増幅及びハイパスフィルタ26により1Hz以上の
高域を通過させ、かつ増幅する。
The acceleration of the vibrating body 2 is detected by the acceleration sensor 4 and passed through a high frequency band of 1 Hz or more by the amplification and high-pass filter 26 and amplified.

【0023】比較器9では、増幅及びハイパスフィルタ
26の出力を±定振幅の方形波にする。比較器9の出力
を積分器10で90°遅れの三角波にし、振動速度の位
相にする。積分器10の出力を図5に示す定振幅正弦波
整形用関数発生器11で、ピーク電圧10v一定の正弦
波に整形する。
In the comparator 9, the output of the amplifying and high-pass filter 26 is a square wave of ± constant amplitude. The output of the comparator 9 is converted into a triangular wave delayed by 90 ° by the integrator 10 so as to have the phase of the vibration velocity. The output of the integrator 10 is shaped into a sine wave having a constant peak voltage of 10 V by a constant amplitude sine wave shaping function generator 11 shown in FIG.

【0024】増幅及びハイパスフィルタ26の出力を図
6に示す全波整流又はサンプルホールド回路27で全波
整流する。
The output of the amplification and high-pass filter 26 is subjected to full-wave rectification or full-wave rectification by a sample-and-hold circuit 27 shown in FIG.

【0025】乗算器12では、平方根演算器8の出力電
圧と関数発生器11の出力電圧の乗算を行う。乗算器1
2は例えばAD534などを使用する。
The multiplier 12 multiplies the output voltage of the square root calculator 8 by the output voltage of the function generator 11. Multiplier 1
2 uses, for example, AD534.

【0026】図7に、電流制御パワーアンプ(PWM方
式)の概要を示す。電流指令に対し、電流検出を負帰還
し、その誤差を制御増幅器28で増幅し、その出力と1
0kHz三角波と比較して得られるPWMパルスをトラ
ンジスタTR1,TR2に与えてON・OFFさせ、指
令に比例した電流を電磁石1に与える。
FIG. 7 shows an outline of a current control power amplifier (PWM system). In response to the current command, the current detection is negatively fed back, the error is amplified by the control amplifier 28, and its output is
A PWM pulse obtained by comparing with a 0 kHz triangular wave is given to transistors TR1 and TR2 to be turned ON / OFF, and a current proportional to the command is given to electromagnet 1.

【0027】図8は、本実施例で運転した、低速から高
速への切替時、及び高速から低速への切替時の加速度
(a)、制御器出力(b)、電流(c)、電圧(d)を
示すオシログラフの波形図である。この図から分かるよ
うに、振動の加速度が約0.2秒で加速度指令に対して
応答しており、高性能の制御が実現できた。
FIG. 8 shows the acceleration (a), the controller output (b), the current (c), the voltage () at the time of switching from the low speed to the high speed and at the time of the switching from the high speed to the low speed. It is a waveform diagram of an oscillograph showing d). As can be seen from this figure, the acceleration of the vibration responded to the acceleration command in about 0.2 seconds, and high-performance control was realized.

【0028】次に、搬送量制御の実施例について説明す
る。この実施例では、前記の図3に次の2点を追加する
だけで良い。 図9に示す微分制御回路29の追加 積分器14(図2参照)を追加して、加速度を速度の
振幅に変更し、前記図3の増幅及びハイパスフィルタ2
6の出力を積分して前記全波整流又はサンプルホールド
回路27に入力する。この方式も実験結果は、良好であ
った。
Next, an embodiment of the transport amount control will be described. In this embodiment, only the following two points need to be added to FIG. The addition of the differential control circuit 29 shown in FIG. 9 The integrator 14 (see FIG. 2) is added to change the acceleration to the amplitude of the velocity, and the amplification and high-pass filter 2 shown in FIG.
6 is integrated and input to the full-wave rectification or sample-and-hold circuit 27. The experimental results of this method were also good.

【0029】なお、デイジタル制御においては、前述の
アナログ方式をデイジタル化すると、(a)全波整流演
算をサンプルホールドに変更して、さらに高速応答が可
能なる。 (b)積分のドリフト誤算が無く、高精度になる。 (c)関数発生器演算も高精度になる。 (d)高価な乗算器の動作をローコストに行い得る。 など、メリットが多い。
In the digital control, if the above-mentioned analog system is digitized, (a) the full-wave rectification operation is changed to a sample-and-hold operation, whereby a higher-speed response is possible. (B) There is no miscalculation of drift in integration, and the accuracy is high. (C) The function generator operation also becomes highly accurate. (D) The operation of the expensive multiplier can be performed at low cost. There are many advantages.

【0030】[0030]

【発明の効果】上述したように、本発明によれば、電磁
石の吸引力とバネの復元力による振動の固有振動特性に
対応する共振現象を正確に応用することにより、電磁石
の小型化、急速加振、急速停止、高精度の搬送量制御な
どを可能にする、ローコストで高性能の電磁フィーダ装
置を実現することができる。
As described above, according to the present invention, the size of the electromagnet can be reduced and the speed of the electromagnet can be reduced by accurately applying the resonance phenomenon corresponding to the natural vibration characteristic of the vibration caused by the attractive force of the electromagnet and the restoring force of the spring. It is possible to realize a low-cost, high-performance electromagnetic feeder device that enables vibration, quick stop, high-accuracy transport amount control, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の加速度制御方式を示すブロック図で
ある。
FIG. 1 is a block diagram illustrating an acceleration control method according to the present invention.

【図2】 本発明の搬送量制御方式を示すブロック図で
ある。
FIG. 2 is a block diagram illustrating a transport amount control method according to the present invention.

【図3】 本発明の加速度制御の実施例を示す回路図で
ある。
FIG. 3 is a circuit diagram showing an embodiment of the acceleration control of the present invention.

【図4】 本発明の関数発生器の回路構成例とその特性
を示す図である。
FIG. 4 is a diagram showing an example of a circuit configuration of a function generator of the present invention and its characteristics.

【図5】 本発明の関数発生器の他の例を示す回路図で
ある。
FIG. 5 is a circuit diagram showing another example of the function generator of the present invention.

【図6】 本発明の全波整流回路の例を示す回路図であ
る。
FIG. 6 is a circuit diagram showing an example of a full-wave rectifier circuit of the present invention.

【図7】 本発明の電流制御PWMインバータの例を示
す回路図である。
FIG. 7 is a circuit diagram showing an example of a current control PWM inverter according to the present invention.

【図8】 本発明における加速度指令に対する応答の波
形図である。
FIG. 8 is a waveform diagram of a response to an acceleration command in the present invention.

【図9】 本発明の搬送量制御の実施例における微分制
御回路部を示す回路図である。
FIG. 9 is a circuit diagram showing a differential control circuit unit in the embodiment of the transport amount control of the present invention.

【図10】 従来の自励共振型振動装置における振動の
振幅制御方式を示すブロック図である。
FIG. 10 is a block diagram showing a vibration amplitude control method in a conventional self-excited resonance type vibration device.

【図11】 従来の自励共振型振動装置における搬送速
度制御方式を示すブロック図である。
FIG. 11 is a block diagram showing a transport speed control method in a conventional self-excited resonance type vibration device.

【符号の説明】[Explanation of symbols]

1 電磁石、2 振動体、3 バネ、4 加速度セン
サ、5 絶対値演算回路、6 減算器、7 PI演算
器、8 平方根演算器、9 比較器、10 積分器、1
1 定振幅正弦波整形回路、12 乗算器、13 電流
制御パワーアンプ、14 積分器、15 PID演算
器、21 可変抵抗器、22 高速低速分圧回路、23
高速低速切替スイッチ、24 ゲイン調整器、25
起動・停止スイッチ、26 増幅及びハイパスフィル
タ、27 全波整流又はサンプルホールド回路、28
制御増幅器、29 微分制御回路
Reference Signs List 1 electromagnet, 2 vibrator, 3 spring, 4 acceleration sensor, 5 absolute value calculation circuit, 6 subtractor, 7 PI calculator, 8 square root calculator, 9 comparator, 10 integrator, 1
1 constant amplitude sine wave shaping circuit, 12 multiplier, 13 current control power amplifier, 14 integrator, 15 PID calculator, 21 variable resistor, 22 high-speed low-speed voltage dividing circuit, 23
High-speed low-speed switch, 24 gain adjuster, 25
Start / stop switch, 26 amplification and high-pass filter, 27 full-wave rectification or sample-and-hold circuit, 28
Control amplifier, 29 Differential control circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電磁石の吸引力とバネの復元力とを利用
した振動機械装置において、 被振動体の加速度を検出して加速度指令に負帰還する加
速度センサと、 前記加速度指令と前記加速度センサによって検出された
加速度との偏差をPI演算及び平方根演算して電流指令
振幅を得る演算手段と、 前記加速度センサによって検出された加速度を積分して
得られた振動速度の位相と前記演算手段で得られた電流
指令振幅との積に基づいて前記電磁石に電流を供給する
電流制御パワーアンプとを備えることにより、前記電磁
石の振動の加速度を制御することを特徴とする自励共振
型振動装置。
1. A vibrating mechanical device using an attractive force of an electromagnet and a restoring force of a spring, comprising: an acceleration sensor that detects acceleration of a vibrated body and negatively feeds back an acceleration command; A calculating means for obtaining a current command amplitude by performing a PI calculation and a square root calculation on a deviation from the detected acceleration; a phase of a vibration velocity obtained by integrating the acceleration detected by the acceleration sensor; A current control power amplifier for supplying a current to the electromagnet based on a product of the current command amplitude and the current command amplitude, thereby controlling acceleration of vibration of the electromagnet.
【請求項2】 電磁石の吸引力とバネの復元力とを利用
した振動機械装置において、 被振動体の加速度を検出し、加速度の積分値である検出
速度を速度指令に負帰還する加速度センサと、 前記速度指令と前記検出速度との偏差をPID演算及び
平方根演算して電流指令振幅を得る演算手段と、 前記検出加速度を積分して得られた振動速度の位相と前
記演算手段で得られた電流指令振幅との積に基づいて前
記電磁石に電流を供給する電流制御パワーアンプとを備
えることにより、粉粒体の輸送量を制御すること特徴と
する自励共振型振動装置。
2. A vibrating mechanical device using an attractive force of an electromagnet and a restoring force of a spring, wherein the acceleration sensor detects an acceleration of a vibrating body and negatively feeds back a detected speed, which is an integral value of the acceleration, to a speed command. A calculating means for obtaining a current command amplitude by PID calculation and a square root calculation of a deviation between the speed command and the detected speed; and a phase of a vibration speed obtained by integrating the detected acceleration and the calculating means. A self-excited resonance type vibration device, comprising: a current control power amplifier that supplies a current to the electromagnet based on a product of the current command amplitude and a current control power amplifier.
JP31397597A 1997-11-14 1997-11-14 Self-excited resonance type vibration device Expired - Lifetime JP4082629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31397597A JP4082629B2 (en) 1997-11-14 1997-11-14 Self-excited resonance type vibration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31397597A JP4082629B2 (en) 1997-11-14 1997-11-14 Self-excited resonance type vibration device

Publications (2)

Publication Number Publication Date
JPH11139533A true JPH11139533A (en) 1999-05-25
JP4082629B2 JP4082629B2 (en) 2008-04-30

Family

ID=18047742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31397597A Expired - Lifetime JP4082629B2 (en) 1997-11-14 1997-11-14 Self-excited resonance type vibration device

Country Status (1)

Country Link
JP (1) JP4082629B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137778A (en) * 1999-11-12 2001-05-22 Murakami Seiki Kosakusho:Kk Sensor-less self-excited type electromagnetic vibration apparatus
CN104298307A (en) * 2013-07-17 2015-01-21 纬创资通股份有限公司 Force feedback mechanism, electronic device and method for inhibiting shell vibration
JP2019015790A (en) * 2017-07-04 2019-01-31 住友電気工業株式会社 MEMS mirror drive circuit
JP2019053006A (en) * 2017-09-19 2019-04-04 日本電子株式会社 Container supply unit and automatic analysis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137778A (en) * 1999-11-12 2001-05-22 Murakami Seiki Kosakusho:Kk Sensor-less self-excited type electromagnetic vibration apparatus
CN104298307A (en) * 2013-07-17 2015-01-21 纬创资通股份有限公司 Force feedback mechanism, electronic device and method for inhibiting shell vibration
US20150022138A1 (en) * 2013-07-17 2015-01-22 Wistron Corporation Force feedback mechanism and related electronic device and operation method
US9379656B2 (en) * 2013-07-17 2016-06-28 Wistron Corporation Force feedback mechanism and related electronic device and operation method
JP2019015790A (en) * 2017-07-04 2019-01-31 住友電気工業株式会社 MEMS mirror drive circuit
JP2019053006A (en) * 2017-09-19 2019-04-04 日本電子株式会社 Container supply unit and automatic analysis device

Also Published As

Publication number Publication date
JP4082629B2 (en) 2008-04-30

Similar Documents

Publication Publication Date Title
US6404154B2 (en) Force control system
US7834515B2 (en) Drive apparatus
EP0735448B1 (en) Vibratory apparatus
JP2003507728A (en) Apparatus for generating bias voltage for vibrating rotation angle rate sensor
JP3418507B2 (en) Piezoelectric vibration control method
JPH01503089A (en) Servo loop control for Coriolis speed sensor dither drive
JP2005255351A (en) Part conveyance device and article conveyance method
JPH11139533A (en) Self-excited resonant vibrating device
JPH01143961A (en) Driving method for vibration gyro
JP3752701B2 (en) Self-excited vibration type vibration control device
JP4224180B2 (en) Sensorless self-excited resonance type electromagnetic vibration device
JP2001188011A (en) Vibrating gyro
JPH11327656A (en) Sensorless self-exciting resonance type electromagnetic vibration device
JP2000097280A (en) Supporting device of vibration-constituting member
JP3551205B2 (en) Vibrator control device
JPH06121486A (en) Magnetic levitation device
JP2019193340A (en) Control device for vibration system and work transfer device
JPH08267007A (en) Self-exciting oscillation type vibrator of electromagnet vibration exciting system
JPH064093Y2 (en) Magnetic bearing control device
JP2001033533A (en) Magnetic impedance sensor circuit
JP2001158521A (en) Control device of vibration trough for supplying powder
JP2001158522A (en) Control device of vibration trough for supplying powder
JPH1187136A (en) Magnetic levitation system
JP2000288469A (en) Optimum mode selecting resonance type vibrating classifier
JPS63167680A (en) Driving device for ultrasonic motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term