JPH0526499B2 - - Google Patents

Info

Publication number
JPH0526499B2
JPH0526499B2 JP59123955A JP12395584A JPH0526499B2 JP H0526499 B2 JPH0526499 B2 JP H0526499B2 JP 59123955 A JP59123955 A JP 59123955A JP 12395584 A JP12395584 A JP 12395584A JP H0526499 B2 JPH0526499 B2 JP H0526499B2
Authority
JP
Japan
Prior art keywords
surgical suture
resin
producing
solvent
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59123955A
Other languages
Japanese (ja)
Other versions
JPS612863A (en
Inventor
Katsuya Yamada
Koichi Okita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59123955A priority Critical patent/JPS612863A/en
Publication of JPS612863A publication Critical patent/JPS612863A/en
Publication of JPH0526499B2 publication Critical patent/JPH0526499B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ポリフツ化ビニリデン系樹脂多孔質
糸からなる手術用縫合糸及びその製造方法に関し
さらに詳しくは、ポリフツ化ビニリデン系樹脂多
孔質糸からなり、該糸の長さ方向に配向した繊維
束を有し、かつ非対称孔径構造を有する機械的強
度にすぐれた手術用縫合糸及びその製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surgical suture made of a polyvinylidene fluoride resin porous thread and a method for manufacturing the same, and more specifically, the present invention relates to a surgical suture thread made of a polyvinylidene fluoride resin porous thread, and more particularly, to a surgical suture thread made of a polyvinylidene fluoride resin porous thread, The present invention relates to a surgical suture having excellent mechanical strength, having fiber bundles oriented in the same direction and having an asymmetric pore size structure, and a method for manufacturing the same.

手術用縫合糸は、天然繊維である絹や、ナイロ
ン、ポリエステル系の合成樹脂を編みあげたもの
が従来からよく使用されているが、近年は、その
生体適合性や強度を改善したものとして、ポリプ
ロピレンや四弗化エチレン樹脂の延伸糸が開発さ
れている。ポリプロピレン延伸糸の場合、強度は
改善されているものの生体適合性は充分とはいい
難く、柔軟性にも欠ける。一方四弗化エチレン樹
脂の延伸糸は、強度が改善されている上、柔軟性
に富み、樹脂の特性として生体適合性にも優れた
ものとなつている。
Surgical suture threads have traditionally been woven from natural fibers such as silk, nylon, and polyester-based synthetic resins, but in recent years, suture threads with improved biocompatibility and strength have been used. Drawn yarns made of polypropylene and tetrafluoroethylene resin have been developed. In the case of drawn polypropylene yarn, although its strength has been improved, its biocompatibility is not sufficient and it also lacks flexibility. On the other hand, drawn threads of tetrafluoroethylene resin have improved strength, are highly flexible, and have excellent biocompatibility as resin properties.

しかしながら、四弗化エチレン樹脂は、加工性
が著しく悪いため、繁雑な製造工程を経なければ
ならず、その結果特性の不均一性を招き易く、コ
スト的に不利にならざるを得ない。
However, since the processability of tetrafluoroethylene resin is extremely poor, it is necessary to go through a complicated manufacturing process, which tends to result in non-uniformity of properties and is inevitably disadvantageous in terms of cost.

このような観点から、本発明者らは四弗化エチ
レン樹脂と同等の生体適合性や強度を有し、かつ
加工性に優れたものとしてポリフツ化ビニリデン
系樹脂を用い、糸の長さ方向に配向した繊維束を
有し、かつ非対称孔径構造を有し、該非対称孔径
構造の緻密層の平均孔径が0.5μ以下で該緻密層の
平均厚みが10μ以下である手術用縫合系を得るこ
とにより、この目的に一歩前進できることを見い
出した。
From this point of view, the present inventors used polyvinylidene fluoride resin, which has biocompatibility and strength equivalent to that of tetrafluoroethylene resin, and has excellent processability. By obtaining a surgical suture system having oriented fiber bundles and an asymmetric pore size structure, in which the average pore diameter of the compact layer of the asymmetric pore structure is 0.5μ or less and the average thickness of the compact layer is 10μ or less. , we have found that we can take a step forward toward this goal.

手術用縫合糸において求められる特性としては
生体適合性や強度の他に、柔軟性、表面の平滑
性、表面が毛羽立たない強度を有すること等が上
げられるが、本発明によつて得られる手術用縫合
糸はこれらを良く満たすものである。
In addition to biocompatibility and strength, properties required for surgical sutures include flexibility, surface smoothness, and strength to prevent the surface from becoming fluffy. Sutures fill these requirements well.

本発明の特徴の一つは、手術用縫合糸が、該糸
の長さ方向に配向した繊維束を有することであ
る。該繊維束は、該糸に長さ方向の引張強さを与
えると同時に、該糸の曲げに対する柔軟性を与え
るものである。
One of the features of the invention is that the surgical suture has fiber bundles oriented along its length. The fiber bundle provides the yarn with longitudinal tensile strength and at the same time gives the yarn flexibility against bending.

本発明のもう一つの特徴としては、該糸が非対
称孔径構造を有し、該非対称孔径構造の緻密層の
平均孔径が0.5μ以下で、該緻密層の平均厚みが
10μ以下であることである。
Another feature of the present invention is that the yarn has an asymmetric pore size structure, the average pore size of the dense layer of the asymmetric pore size structure is 0.5μ or less, and the average thickness of the dense layer is
It must be 10μ or less.

ここで、本発明における非対称孔径構造とは、
多孔質糸の表面近傍の孔径が小さく、該糸の内部
の孔径が大きくなつている孔径構造を指すもので
あり、代表的には (1) 糸表面に対し垂直に配向した連通孔で、表面
近傍の孔径が小さく、該糸内部に向かつて孔径
が増大している孔径構造。
Here, the asymmetric pore size structure in the present invention is
This refers to a pore size structure in which the pores near the surface of the porous yarn are small and the pores inside the yarn are large. A pore structure in which the pore diameter is small in the vicinity and increases toward the inside of the thread.

(2) スポンジ状の孔形状を呈し、表面近傍に細孔
を有し内部に大孔を有する構造。
(2) A structure with a sponge-like pore shape, with pores near the surface and large pores inside.

(3) (1),(2)の複合構造が上げられるが、これに限
定されるものではない。
(3) Composite structures of (1) and (2) are mentioned, but are not limited to this.

該非対称孔径構造は、該糸に柔軟性、表面の平
滑性、表面が毛羽立たない強度を与えると同時に
該糸全体の強度を付与する役割もはたす。
The asymmetric pore size structure provides the yarn with flexibility, surface smoothness, and strength to prevent the surface from becoming fluffy, and at the same time serves to impart strength to the yarn as a whole.

すなわち0.5μ以下の孔径を有する緻密層が表面
の平滑性を与え、表面が毛羽立たない強度を与え
ると同時に、該緻密層及び該緻密層近傍の細径構
造が、前述の繊維束と共に該糸全体に強度を与え
る役割をはたし、該糸内部の大孔が、該糸全体の
柔軟性を担うことになる。
In other words, the dense layer with a pore size of 0.5μ or less provides surface smoothness and strength to prevent the surface from fuzzing, and at the same time, the dense layer and the small-diameter structure in the vicinity of the dense layer, together with the aforementioned fiber bundle, The large pores inside the yarn are responsible for the flexibility of the entire yarn.

このようにして本発明の手術用縫合糸は、柔軟
性と引張強度という相対する特性を満たすことが
可能となる。
In this way, the surgical suture of the present invention can satisfy the opposing properties of flexibility and tensile strength.

本発明の糸の形状は特に限定されず、充填糸の
ほか、中空糸であつてもかまわない。
The shape of the fibers of the present invention is not particularly limited, and may be hollow fibers in addition to filled fibers.

又、断面形状も円形のほか、楕円形、星状形で
あつてもよく、特に限定されるものではない。
Further, the cross-sectional shape is not particularly limited, and may be circular, elliptical, or star-shaped.

次に製造方法に関して説明する。 Next, the manufacturing method will be explained.

ポリフツ化ビニリデン系樹脂多孔質膜や多孔質
中空糸に関する研究は、これまでにも多く行なわ
れているが、従来の方法では、本発明の目的に適
した性状を有する多孔質糸を得ることは困難であ
る。
Although much research has been conducted on polyvinylidene fluoride resin porous membranes and porous hollow fibers, it has been difficult to obtain porous fibers with properties suitable for the purpose of the present invention using conventional methods. Have difficulty.

熱可塑性樹脂多孔質膜を製造する一般的な方法
としては、次に示すものが代表的である。
The following is a typical method for manufacturing a thermoplastic resin porous membrane.

(1)溶融押出法、(2)抽出法、(3)溶出法、(4)焼結法
(5)中性子照射法、(6)半湿式法、(7)湿式法 溶融押出法は特公昭59−5327、特開昭59−
41310、特開昭54−62273に開示されているよう
に、樹脂を溶融押出して成形した後、延伸を加え
て多孔化する方法であるが、充分な気孔率を得る
ことはむずかしく、柔軟性が得られない。
(1) Melt extrusion method, (2) Extraction method, (3) Elution method, (4) Sintering method
(5) Neutron irradiation method, (6) semi-wet method, (7) wet method Melt extrusion method is Japanese Patent Publication No. 59-5327, Japanese Patent Publication No. 59-59-
41310 and JP-A No. 54-62273, a method is to melt-extrude a resin, mold it, and then stretch it to make it porous. However, it is difficult to obtain sufficient porosity and the flexibility is poor. I can't get it.

抽出法や溶出法は、特開昭51−75675、特開昭
49−98880に開示されているように、無機、有機
の充填剤を樹脂に加え、プレス成形したり、溶融
押出法と組合せて延伸した後に溶剤抽出もしくは
溶出する方法であるが、孔径の制御は容易でな
く、工程は繁雑で抽出に長時間を要する。この方
法では非対称孔径構造は得られにくい。
The extraction method and elution method are described in JP-A-51-75675 and JP-A-Sho.
49-98880, this method involves adding inorganic or organic fillers to a resin, press-molding it, or stretching it in combination with a melt-extrusion method, followed by solvent extraction or elution, but it is difficult to control the pore size. It is not easy, the process is complicated, and extraction takes a long time. With this method, it is difficult to obtain an asymmetric pore size structure.

焼結法は樹脂の微粒子を焼結して粒子間隙をそ
のままもしくは延伸により拡大して孔とする方法
であり、U.S.P.4,241,128特公昭48−20418に開
示されている。又、溶出法と組合せて樹脂に混入
された充填剤を焼結後に溶出する方法もとられ、
特開昭51−134761に開示されているが、いずれも
孔径が大きく、薄膜化、細径化すると機械的強度
が著しく低下し、実用に供しがたい。この種の方
法は不溶性の四弗化エチレン樹脂系によく適用さ
れ効果的であるが、ポリフツ化ビニリデン系樹脂
にはなじみにくい。
The sintering method is a method in which fine particles of resin are sintered to form pores by enlarging the gaps between the particles either as they are or by stretching, and is disclosed in US Pat. In addition, a method is also used in which the filler mixed in the resin is eluted after sintering in combination with the elution method.
Although disclosed in JP-A-51-134761, all of them have large pore diameters, and when the film is made thinner or smaller in diameter, the mechanical strength decreases significantly, making it difficult to put them to practical use. This type of method is often applied and effective for insoluble ethylene tetrafluoride resins, but is less compatible with polyvinylidene fluoride resins.

半湿式法としては、特開昭51−136579、特公昭
59−12691、特開昭59−6231などが開示されてい
るが、溶液を冷却ゲル化するか、あるいは、溶媒
を揮発除去し、ゲル化物を得る際に、ゲル状態の
制御が難しく、又高強度を有する成形物が得られ
にくい。
As a semi-wet method, Japanese Patent Application Publication No. 51-136579,
59-12691 and JP-A-59-6231, etc., however, it is difficult to control the gel state when the solution is cooled to gel or the solvent is removed by evaporation to obtain a gelled product, and it is difficult to control the gel state. It is difficult to obtain molded products with strength.

これらの製膜法の中で最も多孔質膜の製法に適
していると考えられるのは、湿式法である。
Among these membrane-forming methods, the wet method is considered to be the most suitable for manufacturing porous membranes.

例えば、特開昭56−56202、特開昭55−99934、
特開昭55−69627にみられるように、樹脂、溶剤、
界面活性剤からなる溶液を凝固剤に接触せしめる
方法により、スキン層、サポート層、マイクロボ
イドを有する非対称孔径膜を得ることができる。
しかしながら、強度的には依然不充分である。
又、特開昭58−91731、特開昭59−16503にみられ
るように、凝固剤を変えることや、溶液への貧・
非溶媒の添加等により、相分離を制御し非対称孔
径構造を有しない膜が得られるが、これも強度が
充分とはいえない。
For example, JP-A-56-56202, JP-A-55-99934,
As seen in JP-A-55-69627, resin, solvent,
By a method in which a solution consisting of a surfactant is brought into contact with a coagulant, an asymmetric pore membrane having a skin layer, a support layer, and microvoids can be obtained.
However, the strength is still insufficient.
In addition, as seen in JP-A-58-91731 and JP-A-59-16503, it is possible to change the coagulant or to add impurity to the solution.
By adding a non-solvent or the like, phase separation can be controlled and a membrane without an asymmetric pore size structure can be obtained, but this also cannot be said to have sufficient strength.

一方、特公昭52−38591では、樹脂、遅乾性溶
剤、速乾性溶剤からなる溶液から、湿式法によつ
て得られた多孔質膜を延伸することにより、強度
の向上をはかつているが、速乾性溶剤を主成分と
し、大部分を揮発除去した後に、非溶剤中に浸漬
する方法をとる場合、本発明の目的に必要な気孔
率や、非対称孔径構造は得られない。
On the other hand, in Japanese Patent Publication No. 52-38591, strength was improved by stretching a porous membrane obtained by a wet method from a solution consisting of a resin, a slow-drying solvent, and a quick-drying solvent. When using a method in which a dry solvent is the main component and most of it is volatilized and then immersed in a non-solvent, the porosity and asymmetric pore size structure required for the purpose of the present invention cannot be obtained.

又、特開昭58−91808に開示された製法では、
本目的に必要な繊維束の発達は望めず、結果とし
て高い強度を得ることができない。
In addition, in the manufacturing method disclosed in Japanese Patent Application Laid-Open No. 58-91808,
The development of fiber bundles required for this purpose cannot be expected, and as a result, high strength cannot be obtained.

本発明者らは、このような観点から鋭意検討を
行なつた結果、ポリフツ化ビニリデン系樹脂、溶
剤および必要があれば膨潤剤を含んで成る溶液を
常温以上の加熱下で押出し、凝固剤に接触させて
溶剤を除去し、乾燥させた後、該樹脂の融点以下
の温度で200%以上延伸することにより、該糸の
長さ方向に配向した繊維束を有し、かつ非対称孔
径構造を有し、該非対称孔径構造の緻密層の平均
孔径が0.5μ以下で、該緻密着の平均厚みが10μ以
下である手術用縫合糸が得られ、生体適合性や強
度、柔軟性、表面の平滑性、表面が毛羽立たない
強度をいずれもよく満足することを見い出した。
As a result of intensive studies from this viewpoint, the present inventors extruded a solution containing a polyvinylidene fluoride resin, a solvent, and, if necessary, a swelling agent, under heating above room temperature, and added a coagulant to the coagulant. After contacting to remove the solvent and drying, the resin is stretched by 200% or more at a temperature below the melting point of the resin, so that the yarn has fiber bundles oriented in the length direction and has an asymmetric pore size structure. Therefore, a surgical suture can be obtained in which the average pore diameter of the compact layer with the asymmetric pore size structure is 0.5μ or less and the average thickness of the compact layer is 10μ or less, and it has excellent biocompatibility, strength, flexibility, and surface smoothness. It has been found that both of them have a satisfactory strength and do not have a fluffy surface.

本発明で用いるポリフツ化ビニリデン系樹脂と
しては、フツ化ビニリデン単独重合体およびフツ
化ビニリデンとテトラクロロエチレン、ヘキサフ
ロロプロピレン、プロピレン、エチレンまたはメ
チルメタクリレートとの共重合体およびフツ化ビ
ニリデンと混和可能な樹脂たとえばアクリル樹脂
との混合物などが選ばれる。
Polyvinylidene fluoride resins used in the present invention include vinylidene fluoride homopolymers, copolymers of vinylidene fluoride with tetrachloroethylene, hexafluoropropylene, propylene, ethylene, or methyl methacrylate, and resins miscible with vinylidene fluoride, such as A mixture with acrylic resin is selected.

また、溶剤としては、ジメチルホルムアミド、
ジエチルホルムアミド、ジメチルアセトアミド、
ジエチルアセトアミド、等のアミド類、テトラメ
チル尿素、テトラエチル尿素等の尿素、Nメチル
2ピロリドン、Nホルミルピペリジン、1−ホル
ミルモルフオリン等の含窒素系溶媒から1種もし
くは2種以上の混合溶媒として選ばれるが、特に
好ましくはNメチル2ピロリドンが選ばれる。
In addition, as a solvent, dimethylformamide,
diethylformamide, dimethylacetamide,
Selected as one or a mixed solvent of two or more of amides such as diethylacetamide, urea such as tetramethylurea and tetraethylurea, and nitrogen-containing solvents such as N-methyl 2-pyrrolidone, N-formylpiperidine, and 1-formylmorpholine. However, N-methyl 2-pyrrolidone is particularly preferably selected.

又、膨潤剤としては、ポリフツ化ビニリデン系
樹脂の貧溶媒もしくは非溶媒で、水溶性のもので
あればよく、溶液の均一性及び緻密層の形成をそ
こねない範囲で添加される。
The swelling agent may be a poor solvent or a non-solvent for the polyvinylidene fluoride resin, as long as it is water-soluble, and is added within a range that does not impair the uniformity of the solution and the formation of a dense layer.

本発明の目的の1つである高強度化を達成する
ためには、湿法式で得られる未延伸の多孔質糸が
200%以上の延伸によつて、高度に繊維化されな
ければならない。
In order to achieve high strength, which is one of the objectives of the present invention, it is necessary to use unstretched porous yarn obtained by a wet method.
It must be highly fibrous by stretching more than 200%.

そのためには、溶液の樹脂濃度は200重量%以
上好ましくは30重量%以上とするのがよい。
For this purpose, the resin concentration of the solution is preferably 200% by weight or more, preferably 30% by weight or more.

また、高濃度溶液を均一かつ所望の径に紡糸す
るために、溶液は常温以上に加熱され、押出され
る。溶液の加熱温度は、紡糸しやすさ、紡糸径、
ドラフト比、孔の形状や気孔率を目的に合わせて
制御するように選択されるが、均一な紡糸を行な
うためには、溶媒の沸点以下にする必要がある。
Further, in order to uniformly spin the highly concentrated solution into a desired diameter, the solution is heated to above room temperature and extruded. The heating temperature of the solution depends on the ease of spinning, the spinning diameter,
The draft ratio, pore shape, and porosity are selected to be controlled according to the purpose, but in order to perform uniform spinning, it is necessary to keep the temperature below the boiling point of the solvent.

こうして紡糸された糸は、凝固剤に導入される
が、凝固剤としては、水、メタノール、エタノー
ル及びこれらの1種もくしは2種以上の混合物の
中から選択される。さらにポリフツ化ビニリデン
系樹脂の溶剤を加えることもあるが、非対称孔径
構造が得られ、かつ緻密層の形成を妨げないため
には、水を主成分とするのが好ましい。
The yarn thus spun is introduced into a coagulant, which is selected from water, methanol, ethanol, and mixtures of one or more of these. Although a solvent for polyvinylidene fluoride resin may be added, it is preferable to use water as the main component in order to obtain an asymmetric pore size structure and not to interfere with the formation of a dense layer.

中空糸を形成する場合には、中空糸用ノズルよ
り、溶液と同時に凝固剤を吐出するか、凝固剤の
かわりにガス体を吐出させる。
When forming hollow fibers, a coagulant is discharged from the hollow fiber nozzle at the same time as the solution, or a gas is discharged instead of the coagulant.

凝固した多孔質糸は、水洗して脱溶媒を完結さ
せた後樹脂の熱変形温度以下で乾燥し、樹脂の融
点以下で延伸される。
The solidified porous thread is washed with water to complete the solvent removal, then dried at a temperature below the heat deformation temperature of the resin, and stretched at a temperature below the melting point of the resin.

樹脂の融点をTmとした場合、延伸温度は好ま
しくはTm−50℃以上でかつTm以下、さらに好
ましくはTm−20℃以上でかつTm以下で延伸さ
れるのが好ましくい。
When the melting point of the resin is Tm, the stretching temperature is preferably Tm - 50°C or more and Tm or less, more preferably Tm - 20°C or more and Tm or less.

延伸率は、好ましくは200%以上、さらに好ま
しくは400%以上延伸されるのがよい。この延伸
率は、上記延伸温度範囲でより安定に達成され
る。この延伸操作により多孔質糸のマトリツクス
層は高度に繊維化し、未延伸糸に比べ著しく強度
の向上した多孔質糸が得られる。
The stretching ratio is preferably 200% or more, more preferably 400% or more. This stretching ratio is more stably achieved within the above stretching temperature range. This drawing operation causes the matrix layer of the porous yarn to become highly fibrous, resulting in a porous yarn with significantly improved strength compared to undrawn yarn.

延伸時の加熱のための熱媒体は特に限定されな
いが、もつぱら熱液媒、熱風、金属ロール等から
適宜選択される。温度制御の観点からは金属ロー
ル等の固体熱媒が好ましく用いられる。
The heating medium for heating during stretching is not particularly limited, but may be appropriately selected from hot liquid medium, hot air, metal rolls, and the like. From the viewpoint of temperature control, a solid heat medium such as a metal roll is preferably used.

以下には、本発明を実施例によつて更に説明す
る。
In the following, the present invention will be further explained by examples.

実施例 1 ポリフツ化ビニリデン−四弗化エチレン共重合
体(Pennwalt社製Kynar5201)をNメチル2ピ
ロリドンに溶解し、35重量%の溶液を調整した。
この溶液を70℃の加熱下で直径3mmのダイスから
押出し、空気中を5cm緊張下で落下させさたのち
蒸留水中に浸漬し、凝固させ、引続き水中にて連
続的に脱溶媒を行ない、ボビンに巻き取つた後、
80℃の水中にボビンごと浸漬し、水を循環させ
て、脱溶媒を完結させた後、80℃の熱風中で乾燥
させ、直径0.7mmのほぼ円形の断面形状を有する
多孔質糸を得た。
Example 1 A polyvinylidene fluoride-ethylene tetrafluoride copolymer (Kynar 5201 manufactured by Pennwalt) was dissolved in N-methyl 2-pyrrolidone to prepare a 35% by weight solution.
This solution was extruded through a die with a diameter of 3 mm under heating at 70°C, allowed to fall through the air under tension of 5 cm, immersed in distilled water to solidify, and then continuously desolvented in water. After winding it up,
The bobbin was immersed in water at 80°C, the water was circulated to complete the solvent removal, and then dried in hot air at 80°C to obtain a porous yarn with a nearly circular cross-sectional shape of 0.7 mm in diameter. .

断面構造を走査電子顕微鏡で観察したところ、
図−2−a、図−2−bのように緻密層を有する
非対称孔径構造を呈していた。
When the cross-sectional structure was observed using a scanning electron microscope,
As shown in Figures 2-a and 2-b, it exhibited an asymmetric pore size structure with a dense layer.

この多孔質糸を、142℃にて延伸率500%で延伸
して、直径0.35mm、気孔率34%、常温における光
学断面積当りの引張強度11.9Kg/mm2、ヤング率
38.8Kg/mm2の手術用縫合糸を得た。
This porous yarn was stretched at 142°C with a stretching ratio of 500%, and had a diameter of 0.35 mm, a porosity of 34%, a tensile strength per optical cross-sectional area of 11.9 Kg/mm 2 at room temperature, and a Young's modulus.
A surgical suture of 38.8 Kg/mm 2 was obtained.

断面構造を走査電子顕微鏡で観察したところ、
図−1−a,図−1−bのように、緻密層を有す
る非対称孔径構造を呈し、糸の長さ方向に配向し
た繊維束を有していた。
When the cross-sectional structure was observed using a scanning electron microscope,
As shown in Figures 1-a and 1-b, it exhibited an asymmetric pore size structure with a dense layer, and had fiber bundles oriented in the length direction of the yarn.

実施例 2 延伸率を800%にしたことを除き実施例1と全
く同様にして手術用縫合糸を得た。物性を測定し
たところ、直径0.29mm、気孔率28%、常温におけ
る光学断面積当りの引張強度18.1Kg/mm2、ヤング
率96.4Kg/mm2であつた。
Example 2 A surgical suture was obtained in exactly the same manner as in Example 1 except that the stretching ratio was 800%. When the physical properties were measured, the diameter was 0.29 mm, the porosity was 28%, the tensile strength per optical cross-sectional area at room temperature was 18.1 Kg/mm 2 , and the Young's modulus was 96.4 Kg/mm 2 .

比較例 1 実施例1と全く同様にして得られた直径0.7mm
のほぼ円形の断面形状を有する多孔質糸を、延伸
することなしに、そのまま物性を測定したところ
気孔率45%、常温における光学断面積当りの引張
強度1.2Kg/mm2であつた。
Comparative Example 1 Diameter 0.7 mm obtained in exactly the same manner as Example 1
When the physical properties of the porous yarn having a substantially circular cross-sectional shape were measured without being stretched, it was found to have a porosity of 45% and a tensile strength per optical cross-sectional area of 1.2 Kg/mm 2 at room temperature.

〔発明の効果〕〔Effect of the invention〕

生体適合性、機械特性、加工性に優れたポリフ
ツ化ビニリデン系樹脂を素材として、糸の長さ方
向に配向した繊維束を有し、非対称孔径構造を有
し、該非対称孔径構造の緻密層の平均孔径が0.5μ
以下で、該緻密層の厚みが10μ以下の多孔質糸を
得ることにより、生体適合性に優れ、高強度なう
え、柔軟性、表面の平滑性、表面が毛羽立たない
強度を有する高性能の手術用縫合糸を低コストで
提供することが可能となつた。
Made of polyvinylidene fluoride resin with excellent biocompatibility, mechanical properties, and processability, it has fiber bundles oriented in the length direction of the thread, has an asymmetric pore size structure, and has a dense layer with an asymmetric pore size structure. Average pore size is 0.5μ
In the following, by obtaining a porous thread with a thickness of the dense layer of 10μ or less, it is possible to perform high-performance surgery with excellent biocompatibility, high strength, flexibility, surface smoothness, and strength without fuzzing. It has become possible to provide sutures for use at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

図−1−a,及び図−1−bはポリフツ化ビニ
リデン系樹脂からなる手術用縫合糸の断面の走査
電子顕微鏡写真である。図−2−a及び図−2−
bはポリフツ化ビニリデン系樹脂を湿式紡糸した
未延伸の多孔質糸の断面の走査電子顕微鏡写真で
ある。
Figures 1-a and 1-b are scanning electron micrographs of a cross section of a surgical suture made of polyvinylidene fluoride resin. Figure-2-a and Figure-2-
b is a scanning electron micrograph of a cross section of an undrawn porous yarn obtained by wet spinning polyvinylidene fluoride resin.

Claims (1)

【特許請求の範囲】 1 ポリフツ化ビニリデン系樹脂多孔質糸からな
る手術用縫合糸が該糸の長さ方向に配向した繊維
束を有し、かつ非対称孔径構造を有し、該非対称
孔径構造の緻密層の平均孔径が0.5μ以下で該緻密
層の平均厚みが10μ以下であることを特徴とする
手術用縫合糸。 2 該糸が5%以上の気孔率を有し、常温におけ
る光学断面積当りの引張強度が5Kg/mm2を越える
範囲であることを特徴とする特許請求の範囲第1
項記載の手術用縫合糸。 3 該糸が30%以上の気孔率を有し、常温におけ
る光学断面積当りの引張強度が10Kg/mm2を越える
範囲であることを特徴とする特許請求の範囲第1
項記載の手術用縫合糸。 4 ポリフツ化ビニリデン系樹脂と溶剤および必
要があれば膨潤剤を含んで成る溶液を常温以上の
加熱下で押出し凝固剤に接触させて溶剤を除去し
乾燥させた後、該樹脂の融点以下の温度で200%
以上延伸することを特徴とする手術用縫合糸の製
造方法。 5 該樹脂の融点をTmとするとき、延伸温度が
Tm−50℃以上でかつTm以下であることを特徴
とする特許請求の範囲第4項記載の手術用縫合糸
の製造方法。 6 延伸温度がTm−20℃以上でかつTm以下で
あることを特徴とする特許請求の範囲第4項記載
の手術用縫合糸の製造方法。 7 延伸率が400%以上であることを特徴とする
特許請求の範囲第4項記載の手術用縫合糸の製造
方法。 8 溶液の樹脂濃度が30重量%を越える範囲であ
ることを特徴とする特許請求の範囲第4項記載の
手術用縫合糸の製造方法。 9 溶剤がNメチル2ピロリドンであることを特
徴とする特許請求の範囲第4項記載の手術用縫合
糸の製造方法。
[Scope of Claims] 1. A surgical suture made of a polyvinylidene fluoride resin porous thread has fiber bundles oriented in the length direction of the thread, and has an asymmetric pore size structure, and has an asymmetric pore size structure. A surgical suture characterized in that the average pore diameter of the lamina densa is 0.5μ or less and the average thickness of the lamina densa is 10μ or less. 2. Claim 1, wherein the yarn has a porosity of 5% or more and a tensile strength per optical cross-sectional area at room temperature of more than 5 kg/mm 2
Surgical sutures as described in section. 3. Claim 1, wherein the yarn has a porosity of 30% or more and a tensile strength per optical cross-sectional area at room temperature of more than 10 Kg/mm 2
Surgical sutures as described in section. 4 A solution containing a polyvinylidene fluoride resin, a solvent, and if necessary a swelling agent is extruded and brought into contact with a coagulant under heating above room temperature to remove the solvent and dry, and then heated to a temperature below the melting point of the resin. at 200%
A method for producing a surgical suture, characterized by stretching the suture thread. 5 When the melting point of the resin is Tm, the stretching temperature is
5. The method for producing a surgical suture thread according to claim 4, wherein the temperature is Tm -50°C or higher and Tm or lower. 6. The method for producing a surgical suture according to claim 4, wherein the stretching temperature is Tm - 20°C or higher and Tm or lower. 7. The method for producing a surgical suture according to claim 4, wherein the stretching ratio is 400% or more. 8. The method for producing a surgical suture according to claim 4, wherein the resin concentration of the solution is in a range exceeding 30% by weight. 9. The method for producing a surgical suture according to claim 4, wherein the solvent is N-methyl-2-pyrrolidone.
JP59123955A 1984-06-15 1984-06-15 Surgical suturing yarn and its production Granted JPS612863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123955A JPS612863A (en) 1984-06-15 1984-06-15 Surgical suturing yarn and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123955A JPS612863A (en) 1984-06-15 1984-06-15 Surgical suturing yarn and its production

Publications (2)

Publication Number Publication Date
JPS612863A JPS612863A (en) 1986-01-08
JPH0526499B2 true JPH0526499B2 (en) 1993-04-16

Family

ID=14873477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123955A Granted JPS612863A (en) 1984-06-15 1984-06-15 Surgical suturing yarn and its production

Country Status (1)

Country Link
JP (1) JPS612863A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490888A (en) * 1977-12-27 1979-07-18 Hiroshi Matsumoto Surgical operation suturing yarn
JPS5940861A (en) * 1982-07-30 1984-03-06 デイナミ−ト・ノ−ベル・アクチエンゲゼルシヤフト Suture material for surgical operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490888A (en) * 1977-12-27 1979-07-18 Hiroshi Matsumoto Surgical operation suturing yarn
JPS5940861A (en) * 1982-07-30 1984-03-06 デイナミ−ト・ノ−ベル・アクチエンゲゼルシヤフト Suture material for surgical operation

Also Published As

Publication number Publication date
JPS612863A (en) 1986-01-08

Similar Documents

Publication Publication Date Title
US4405688A (en) Microporous hollow fiber and process and apparatus for preparing such fiber
US5435955A (en) Process of producing porous polypropylene hollow fiber and film
US4541981A (en) Method for preparing a uniform polyolefinic microporous hollow fiber
JPH02127509A (en) Fibrous material of polytetrafluoroethylene and production thereof
US20070241050A1 (en) Porous Water Filtration Membrane of Vinylidene Fluoride Resin Hollow Fiber and Process for Production Thereof
US5290448A (en) Polyacrylonitrile membrane
JPH0647066B2 (en) Porous separation membrane and method for producing the same
JPH04265132A (en) Production of porous hollow fiber membrane
KR100994144B1 (en) Preparation of PVDFpolyvinylidene fluoride hollow fiber membrane by melt spinning and stretching process
KR100543968B1 (en) Preparation of asymmetric polyethylene hollow fiber membrane having high strength
JPH0526499B2 (en)
JPH0526500B2 (en)
JP4832739B2 (en) Method for producing vinylidene fluoride resin porous membrane
JP4522600B2 (en) Method for producing hollow fiber membrane
JPS63145345A (en) Production of porous polyacrylonitrile material
JP2003300717A (en) Carbon nanotube precursor fiber, carbon nanotube and method for manufacturing the same
JPS59229320A (en) Preparation of heterogeneous film by melting, stretching
JPH04265133A (en) Production of porous hollow fiber membrane
JPH01270907A (en) Production of porous polypropylene hollow fiber or film
JP2003041450A (en) Method for producing hollow fiber membrane
JPH02133608A (en) Porous polyolefin hollow fiber
JP2002253940A (en) Method for manufacturing hollow fiber membrane
JPS60261510A (en) Manufacture of laminated hollow yarn
JPH10292227A (en) Conjugate monofilament and its production
JP2010137196A (en) Method for manufacturing porous hollow-fiber membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term