JPH05264862A - Optical waveguide module - Google Patents

Optical waveguide module

Info

Publication number
JPH05264862A
JPH05264862A JP9150892A JP9150892A JPH05264862A JP H05264862 A JPH05264862 A JP H05264862A JP 9150892 A JP9150892 A JP 9150892A JP 9150892 A JP9150892 A JP 9150892A JP H05264862 A JPH05264862 A JP H05264862A
Authority
JP
Japan
Prior art keywords
circuit chip
optical waveguide
fiber
adhesive
lightwave circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9150892A
Other languages
Japanese (ja)
Inventor
Takeo Shimizu
健男 清水
Shiro Nakamura
史朗 中村
Shuichi Irikura
修一 入倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9150892A priority Critical patent/JPH05264862A/en
Publication of JPH05264862A publication Critical patent/JPH05264862A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the axis mis-alignment of the optical waveguides of a planar optical wave circuit chip and the optical fibers of a fiber arranging means by preventing the nonuniform stagnation of an adhesive in the butt parts between the planar optical wave circuit chip and the fiber arranging means and eliminating the unbalance of the stresses by the thermal shrinkage at the time of curing of the adhesive and the thermal expansion and contraction by an environmental change. CONSTITUTION:Upper substrates 26 for adjusting thickness are provided on the optical waveguides 14 of the planar optical wave circuit chip 16 to diminish the level difference of the butt parts between the planar optical wave circuit chip 16 and the fiber arranging means 24. The butt parts are adhered by the adhesive but the level difference of the butt parts is small and, therefore, the nonuniform stagnation of the adhesive does not arise and the generation of the unbalance of the stresses by the thermal shrinkage at the time of curing of the adhesive and the thermal expansion and contraction by the environmental change is obviated. The axis mis-alignment between the optical waveguides 14 of the planar optical wave circuit chip 16 and the optical fibers 18a of the fiber arranging means 24 is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信ネットワーク等
に使用される光導波路モジュールの改良に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an optical waveguide module used in optical communication networks and the like.

【0002】[0002]

【従来の技術】この種の光導波路モジュールは、図3に
示すように、平面基板12上に形成された光導波路14
を有するプレーナ光波回路チップ16と、この光波回路
チップ16の光導波路14に接続される光ファイバリボ
ン18の光ファイバ18aが係入する複数のV溝20a
を有する有溝基板20とこの有溝基板20に衝合して有
溝基板20と共に光ファイバ18aを挟んで抑える抑え
蓋22とを含むファイバ配列具24とから成っている。
2. Description of the Related Art An optical waveguide module of this type has an optical waveguide 14 formed on a flat substrate 12, as shown in FIG.
A plurality of V-grooves 20a into which the planar lightwave circuit chip 16 having the above and the optical fiber 18a of the optical fiber ribbon 18 connected to the optical waveguide 14 of the lightwave circuit chip 16 are engaged.
And a fiber array tool 24 including a holding cover 22 that abuts the grooved substrate 20 and holds the optical fiber 18a together with the grooved substrate 20.

【0003】プレーナ光波回路チップ16とファイバ配
列具24とは、光導波路14とファイバ配列具24の光
ファイバ18aとを調心して相互に接着剤により接着さ
れている。
The planar lightwave circuit chip 16 and the fiber arranging tool 24 are bonded to each other by an adhesive while aligning the optical waveguide 14 and the optical fiber 18a of the fiber arranging tool 24.

【0004】[0004]

【発明が解決しようとする課題】しかし、この従来技術
の光導波路モジュールは、光波回路チップ16とファイ
バ配列具24との突合せ面及びその周辺に塗布される接
着剤が硬化する際にその収縮等によって発生する応力に
よって突合せ面がずれて軸ずれを生ずる傾向がある。特
に、図3に示すように、プレーナ光波回路チップ16の
平面基板12の端面12aとファイバ配列具24の抑え
蓋22の端面22aとの間に段差があると、この段差を
有する部分で接着剤が溜り易く、応力のアンバランスに
より軸ずれが生ずることが考えられる。従って、例え
ば、軸ずれによる伝送損失を0.1dB/ケ所以下に抑
制することができるように高精度の接続を行なうことが
困難であった。また、光波回路チップとファイバ配列具
とを接着し固定した後に、接着剤の熱膨張による影響を
受け易く、高温又は低温領域で軸ずれによる伝送損失が
増大し、環境の変化に対応することができる満足すべき
光モジュールを得ることが困難であった。
However, in this optical waveguide module of the prior art, when the adhesive applied to the abutting surface of the lightwave circuit chip 16 and the fiber arranging tool 24 and its periphery is cured, the shrinkage or the like occurs. The butt surfaces are displaced due to the stress generated by the displacement, which tends to cause axial displacement. In particular, as shown in FIG. 3, when there is a step between the end surface 12a of the planar substrate 12 of the planar lightwave circuit chip 16 and the end surface 22a of the holding lid 22 of the fiber arraying tool 24, the adhesive is applied to the portion having this step. Is likely to accumulate, and it is conceivable that axis misalignment may occur due to stress imbalance. Therefore, for example, it is difficult to make a highly accurate connection so that the transmission loss due to the axis deviation can be suppressed to 0.1 dB / place or less. In addition, after the lightwave circuit chip and the fiber arranging device are adhered and fixed to each other, they are easily affected by the thermal expansion of the adhesive, and transmission loss due to axis misalignment increases in a high temperature or low temperature region, and it is possible to cope with environmental changes. It was difficult to obtain a satisfactory optical module.

【0005】本発明の目的は、上記の欠点を回避し、接
着剤の硬化時又は環境の変化による接着剤の熱伸縮によ
って軸ずれが生ずることがなく、高い精度の接続部を有
する光導波路モジュールを提供することにある。
An object of the present invention is to avoid the above-mentioned drawbacks and to prevent misalignment of the axis due to thermal expansion and contraction of the adhesive due to curing of the adhesive or changes in the environment, and an optical waveguide module having a highly accurate connecting portion. To provide.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するため、平面基板上に光導波路を有するプレーナ
光波回路チップと、この光波回路チップの光導波路に接
続される光ファイバリボンの光ファイバを配列して保持
するファイバ配列具とから成り、プレーナ光波回路チッ
プとファイバ配列具とは、プレーナ光波回路チップの光
導波路とファイバ配列具の光ファイバとを調心して相互
に接着されている光導波路モジュールにおいて、プレー
ナ光波回路チップは光導波路を挟むように平面基板の上
に設けられた厚さ調整用上部基板を更に備え、この上部
基板はファイバ配列具に衝合して接着されていることを
特徴とする光導波路モジュールを提供することにある。
In order to solve the above problems, the present invention provides a planar lightwave circuit chip having an optical waveguide on a flat substrate and an optical fiber ribbon connected to the optical waveguide of the lightwave circuit chip. A fiber array tool for arranging and holding optical fibers, wherein the planar lightwave circuit chip and the fiber array tool are bonded to each other by aligning the optical waveguide of the planar lightwave circuit chip and the optical fiber of the fiber array tool. In the optical waveguide module, the planar lightwave circuit chip further includes a thickness adjusting upper substrate provided on a flat substrate so as to sandwich the optical waveguide, and the upper substrate is abutted and bonded to the fiber array tool. An object is to provide an optical waveguide module characterized by the above.

【0007】[0007]

【作用】このように、プレーナ光波回路チップの光導波
路上に厚さ調整用の上部基板を設けると、プレーナ光波
回路チップとファイバ配列具との突合わせ部の段差が小
さくなり、従ってこの突合わせ部で接着剤が不均一に溜
ることがないので、接着剤の硬化時の熱収縮及び環境の
変化による熱伸縮による応力のアンバランスが生ずるこ
とがなく、プレーナ光波回路チップの光導波路とファイ
バ配列具の光ファイバとの軸ずれを抑制することができ
る。また、プレーナ光波回路チップとファイバ配列具と
の接着されるべき突合わせ端面が増加し、接着強度が向
上する。
When the upper substrate for adjusting the thickness is provided on the optical waveguide of the planar lightwave circuit chip as described above, the step difference between the planar lightwave circuit chip and the fiber arranging device becomes small, and therefore, this butting Since the adhesive does not accumulate unevenly in the area, stress imbalance does not occur due to thermal contraction during curing of the adhesive and thermal expansion and contraction due to changes in the environment, and the optical waveguide of the planar lightwave circuit chip and the fiber array It is possible to suppress the axis deviation of the tool from the optical fiber. In addition, the number of butt end faces to be bonded between the planar lightwave circuit chip and the fiber arranging tool is increased, and the bonding strength is improved.

【0008】[0008]

【実施例】本発明の実施例を図面を参照して詳細にのべ
ると、図1及び図2は本発明に係る光導波路モジュール
10を示し、この光導波路モジュール10は、従来の光
導波路モジュールと同様に、平面基板12上に光導波路
14を有するプレーナ光波回路チップ16と、この光波
回路チップ16の光導波路14に接続される光ファイバ
リボン18の光ファイバ18aが係入する複数のV溝2
0aを有する有溝基板20とこの有溝基板20に衝合し
て有溝基板20と共に光ファイバ18aを挟む抑え蓋2
2とを含むファイバ配列具24とから成っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment of the present invention will be described in detail. FIG. 1 and FIG. 2 show an optical waveguide module 10 according to the present invention. Similarly, a plurality of V grooves 2 into which the planar lightwave circuit chip 16 having the optical waveguide 14 on the flat substrate 12 and the optical fiber 18a of the optical fiber ribbon 18 connected to the optical waveguide 14 of the lightwave circuit chip 16 are inserted.
A grooved substrate 20 having 0a and a lid 2 for abutting against the grooved substrate 20 and sandwiching the optical fiber 18a with the grooved substrate 20.
2 and a fiber array tool 24 including.

【0009】プレーナ光波回路チップ16とファイバ配
列具24とは、光導波路14とファイバ配列具24の光
ファイバ18aとを調心して突合わせ面を接着剤により
相互に接着して結合されている。
The planar lightwave circuit chip 16 and the fiber arranging tool 24 are joined by aligning the optical waveguide 14 and the optical fiber 18a of the fiber arranging tool 24 and adhering the abutting surfaces to each other with an adhesive.

【0010】本発明の光導波路モジュール10は、プレ
ーナ光波回路チップ16の光導波路14を挟むように平
面基板12の両端の上面に設けられた厚さ調整用上部基
板26を更に備え、この上部基板26はファイバ配列具
24に衝合し接着剤により接着して接続されている。
The optical waveguide module 10 of the present invention further comprises thickness adjusting upper substrates 26 provided on the upper surfaces of both ends of the planar substrate 12 so as to sandwich the optical waveguide 14 of the planar lightwave circuit chip 16, and the upper substrate is provided. Reference numeral 26 is abutted against the fiber arranging tool 24 and bonded by an adhesive.

【0011】このように、プレーナ光波回路チップ16
の光導波路14上に厚さ調整用の上部基板26を設ける
と、プレーナ光波回路チップ16とファイバ配列具24
との突合わせ部の段差が極めて小さくなるか全くなくな
る。従って、この突合わせ部に接着剤が不均一に溜るこ
とがなく、接着剤の硬化時の熱収縮及び環境の変化によ
る熱伸縮による応力のアンバランスが生ずることがない
ので、プレーナ光波回路チップ16の光導波路14とフ
ァイバ配列具24の光ファイバ18aとの軸ずれを抑制
することができる。
Thus, the planar lightwave circuit chip 16
When the upper substrate 26 for adjusting the thickness is provided on the optical waveguide 14 of the above, the planar lightwave circuit chip 16 and the fiber arrangement tool 24 are provided.
The step at the butting portion with and becomes extremely small or not at all. Therefore, the adhesive is not unevenly accumulated at the abutting portion, and the heat shrinkage at the time of curing the adhesive and the stress imbalance due to the thermal expansion and contraction due to the change of the environment do not occur, and thus the planar lightwave circuit chip 16 It is possible to suppress axial misalignment between the optical waveguide 14 and the optical fiber 18a of the fiber arranging tool 24.

【0012】次に、本発明の第1の具体例をのべると、
プレーナ光波回路チップ用の平面基板として厚さが1m
mの7.62cm(3インチ)シリコン単結晶基板を用
い、この単結晶基板の上に火炎堆積法により下部クラッ
ド層とコア層とを順次形成した。その後、この基板に導
波路パターンをフォトリソグラフィにより転写し、ドラ
イエッチングによりコア層の導波路パターン部以外の部
分を除去した。次に、導波路パターナを埋め込むように
再度火炎堆積法により上部クラッド層を形成した。
Next, referring to the first embodiment of the present invention,
1m thick as a planar substrate for planar lightwave circuit chips
A 7.62 cm (3 inch) silicon single crystal substrate of m was used, and a lower clad layer and a core layer were sequentially formed on this single crystal substrate by a flame deposition method. Then, the waveguide pattern was transferred onto this substrate by photolithography, and the portion other than the waveguide pattern portion of the core layer was removed by dry etching. Next, the upper clad layer was formed again by the flame deposition method so as to fill the waveguide patterner.

【0013】この方法により形成された光導波路は、上
下のクラッド層の厚みが25μmで、コア層の断面が8
μm2 の矩形で、比屈折率差が0.3%で、波長1.3
μmのシングルモード導波構造を有していた。また、こ
れらの光導波路は、その特性を確認するために、250
μmのピッチで8本平行に配置したパターンとして形成
された。このパターンは、5mm×20mmの大きさを
有し、7.62cm(3インチ)シリコン単結晶基板上
に2列×10段で合計20カ所形成された。このように
して光導波路が形成された基板をダイシングソウにより
各光導波路パターン毎に切り分けてプレーナ光波回路チ
ップを形成した。
In the optical waveguide formed by this method, the upper and lower clad layers have a thickness of 25 μm, and the core layer has a cross section of 8 μm.
It is a rectangle of μm 2 with a relative refractive index difference of 0.3% and a wavelength of 1.3.
It had a μm single mode waveguide structure. In addition, these optical waveguides have 250
Eight parallel patterns were formed at a pitch of μm. This pattern had a size of 5 mm × 20 mm, and was formed on a 7.62 cm (3 inch) silicon single crystal substrate in 2 rows × 10 stages at a total of 20 places. The substrate on which the optical waveguide was formed in this way was cut into individual optical waveguide patterns by a dicing saw to form a planar lightwave circuit chip.

【0014】このプレーナ光波回路チップの上面の両端
に、厚さ調整用上部基板として幅が5mm、長さが5m
m、厚さが1mmの2枚のシリコン基板を接着剤により
それぞれ端面及び側面が揃うように固定した。その後、
プレーナ光波回路チップの端面と厚さ調整用基板の端面
とが同一面となるように平面研磨を行なった。
At both ends of the upper surface of this planar lightwave circuit chip, a width adjusting top substrate is 5 mm wide and 5 m long.
Two silicon substrates having a thickness of 1 mm and a thickness of 1 mm were fixed by an adhesive so that the end faces and the side faces were aligned. afterwards,
Planar polishing was performed so that the end surface of the planar lightwave circuit chip and the end surface of the thickness adjusting substrate were flush with each other.

【0015】一方、ファイバ配列具の有溝基板用に幅が
5mm、長さが6mm、厚さが1.09mmのシリコン
基板を用意し、このシリコン基板上に異方性エッチング
により幅が240μmの8本のV溝を250μmの間隔
で形成して有溝基板を完成した。抑え蓋は幅が5mm、
長さが6mm、厚さが0.97mmのシリコン基板から
形成した。有溝基板のV溝にシングルモード8心光ファ
イバリボンの各光ファイバを整列して係合し、抑え蓋で
抑えながら接着剤で固定した後、有溝基板と抑え蓋の端
面を研磨してファイバ配列具を完成した。
On the other hand, a silicon substrate having a width of 5 mm, a length of 6 mm and a thickness of 1.09 mm is prepared for the grooved substrate of the fiber arranging tool, and the width of 240 μm is anisotropically etched on the silicon substrate. Eight V grooves were formed at intervals of 250 μm to complete a grooved substrate. The restraining lid has a width of 5 mm,
It was formed from a silicon substrate having a length of 6 mm and a thickness of 0.97 mm. The optical fibers of the single-mode 8-core optical fiber ribbon are aligned and engaged in the V-grooves of the grooved substrate, fixed with an adhesive while being held by the holding lid, and then the end faces of the grooved substrate and the holding lid are polished. The fiber array tool is completed.

【0016】このようにして完成されたプレーナ光波回
路チップの両端面に2つのファイバ配列具との端面を突
合わせて通光パワーをモニタしながら微調台上で光導波
路と光ファイバとを調心し、突合わせ部に接着剤を塗布
して固定した(図2参照)。
The optical waveguide and the optical fiber are aligned on the fine adjustment stand while the optical power is monitored by abutting the end faces of the two fiber arranging tools on the both end faces of the planar lightwave circuit chip thus completed. Then, an adhesive was applied to the butted portion to fix it (see FIG. 2).

【0017】プレーナ光波回路チップとファイバ配列具
との突合わせ部の段差は20μm以内であった。また、
両者を接着して固定した後の軸ずれによる伝送損失は
0.1dB/ケ所以下であった。尚、この測定値は、光
波回路チップの両端でほぼ同じであった。
The step between the abutting portions of the planar lightwave circuit chip and the fiber arranging tool was within 20 μm. Also,
The transmission loss due to the axis deviation after bonding and fixing both was 0.1 dB / place or less. The measured values were almost the same at both ends of the lightwave circuit chip.

【0018】本発明の第2の具体例では、厚さ調整用上
部基板としてシリコン基板の代わりに結晶ガラス基板を
用いた。この結晶ガラス基板は、厚さが1mmで波長が
350nm〜450nmの範囲で20%以上の透過率を
有する。また、ファイバ配列具の有溝基板としてシリコ
ン基板の代わりに結晶ガラス基板を用いた。V溝加工は
超精密研削盤を用いて行なわれた。プレーナ光波回路チ
ップとファイバ配列具とは、紫外線硬化型接着剤を用い
て接着された。
In the second embodiment of the present invention, a crystalline glass substrate is used as the thickness adjusting upper substrate instead of the silicon substrate. This crystalline glass substrate has a thickness of 1 mm and a transmittance of 20% or more in the wavelength range of 350 nm to 450 nm. A crystalline glass substrate was used instead of the silicon substrate as the grooved substrate of the fiber array tool. V-groove processing was performed using an ultra-precision grinder. The planar lightwave circuit chip and the fiber arranging device were adhered by using an ultraviolet curable adhesive.

【0019】この第2の具体例においても第1の具体例
と同じ接続特性を示した。また、−10〜60℃のヒー
トサイクル試験を行なったところ、試験中の損失変動は
±0.2dB以下であり、残留損失は±0.1dB以下
であった。
The second embodiment also shows the same connection characteristics as the first embodiment. Further, when a heat cycle test at −10 to 60 ° C. was performed, loss fluctuation during the test was ± 0.2 dB or less, and residual loss was ± 0.1 dB or less.

【0020】尚、本発明の実施例では、ファイバ配列具
がV溝を有する有溝基板と抑え蓋とから成っているが、
このファイバ配列具はプラスチック樹脂を用いてトラン
スファ成型により製作しファイバ固定用の孔が配列され
た構造のものであってもよい。
In the embodiment of the present invention, the fiber arranging tool is composed of the grooved substrate having the V groove and the holding lid.
This fiber arranging tool may have a structure in which holes for fiber fixing are arranged by being manufactured by transfer molding using a plastic resin.

【0021】[0021]

【発明の効果】本発明によれば、上記のように、プレー
ナ光波回路チップの光導波路上に厚さ調整用の上部基板
を設けたので、プレーナ光波回路チップとファイバ配列
具との突合わせ部の段差が小さくなり、従ってこの突合
わせ部で接着剤が不均一に溜ることがないため、接着剤
の硬化時の熱収縮及び環境の変化による熱伸縮による応
力のアンバランスが生ずることがなく、プレーナ光波回
路チップの光導波路とファイバ配列具の光ファイバとの
軸ずれを抑制することができる。また、プレーナ光波回
路チップとファイバ配列具との接着されるべき突合わせ
端面が増加し、接着強度が向上する実益がある。
According to the present invention, as described above, since the upper substrate for adjusting the thickness is provided on the optical waveguide of the planar lightwave circuit chip, the abutting portion between the planar lightwave circuit chip and the fiber arranging tool is provided. Since the difference in level is small, and therefore the adhesive does not accumulate unevenly at this abutting part, there is no imbalance in stress due to thermal contraction during curing of the adhesive and thermal expansion and contraction due to changes in the environment. It is possible to suppress axial misalignment between the optical waveguide of the planar lightwave circuit chip and the optical fiber of the fiber array tool. In addition, the number of butt end faces to be bonded between the planar lightwave circuit chip and the fiber arraying tool is increased, and the bonding strength is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光導波路モジュールの全体の斜視
図である。
FIG. 1 is an overall perspective view of an optical waveguide module according to the present invention.

【図2】図1の光導波路モジュールの一半部の分解状態
の斜視図である。
FIG. 2 is a perspective view showing an exploded state of one half of the optical waveguide module shown in FIG.

【図3】従来技術の光導波路モジュールの一半部の垂直
断面図である。
FIG. 3 is a vertical sectional view of one half of a conventional optical waveguide module.

【符号の説明】[Explanation of symbols]

10 光導波路モジュール 12 平面基板 14 光導波路 16 プレーナ光波回路チップ 18 ファイバリボン 20 有溝基板 22 抑え蓋 24 ファイバ配列具 26 厚さ調整用上部基板 10 Optical Waveguide Module 12 Planar Substrate 14 Optical Waveguide 16 Planar Lightwave Circuit Chip 18 Fiber Ribbon 20 Grooved Substrate 22 Suppression Lid 24 Fiber Arrangement Tool 26 Upper Substrate for Thickness Adjustment

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平面基板上に光導波路を有するプレーナ
光波回路チップと、前記光波回路チップの光導波路に接
続される光ファイバリボンの光ファイバを配列して保持
するファイバ配列具とから成り、前記プレーナ光波回路
チップと前記ファイバ配列具とは、前記光導波路と前記
ファイバ配列具の光ファイバとを調心して相互に接着さ
れている光導波路モジュールにおいて、前記プレーナ光
波回路チップは前記光導波路を挟むように前記平面基板
の上に設けられた厚さ調整用上部基板を更に備え、前記
上部基板は前記ファイバ配列具に衝合して接着されてい
ることを特徴とする光導波路モジュール。
1. A planar lightwave circuit chip having an optical waveguide on a flat substrate, and a fiber arranging tool for arranging and holding optical fibers of an optical fiber ribbon connected to the optical waveguide of the lightwave circuit chip. An optical waveguide module in which a planar lightwave circuit chip and the fiber arranging device are bonded to each other by aligning the optical waveguide and the optical fiber of the fiber arranging device so that the planar lightwave circuit chip sandwiches the optical waveguide. An optical waveguide module, further comprising: a thickness adjusting upper substrate provided on the flat substrate, wherein the upper substrate is abutted against and bonded to the fiber arranging tool.
JP9150892A 1992-03-18 1992-03-18 Optical waveguide module Pending JPH05264862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9150892A JPH05264862A (en) 1992-03-18 1992-03-18 Optical waveguide module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9150892A JPH05264862A (en) 1992-03-18 1992-03-18 Optical waveguide module

Publications (1)

Publication Number Publication Date
JPH05264862A true JPH05264862A (en) 1993-10-15

Family

ID=14028356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9150892A Pending JPH05264862A (en) 1992-03-18 1992-03-18 Optical waveguide module

Country Status (1)

Country Link
JP (1) JPH05264862A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296934B2 (en) 2004-11-09 2007-11-20 Mitsumi Electric Co., Ltd. Optical transmission module and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296934B2 (en) 2004-11-09 2007-11-20 Mitsumi Electric Co., Ltd. Optical transmission module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR960014123B1 (en) Method of connecting optical waveguide to optical fiber
US7603021B2 (en) Optical fiber component, optical waveguide module, and manufacturing method
US6928226B2 (en) Fiber and lens grippers, optical devices and methods of manufacture
GB2328035A (en) Optical fibre/waveguide passive alignment using alignment platform
KR20070024440A (en) Optical waveguide substrate and method of fabricating the same
US6859588B2 (en) Optical fiber block
US4449783A (en) Optical star coupler with a planar mixer element
US20030012544A1 (en) Two-dimensional optical element array and two-dimensional waveguide apparatus
JPH11231163A (en) Optical fiber connector and its manufacture
JP3136870B2 (en) Optical fiber array and method of manufacturing the same
JP2003248142A (en) Two-dimensional optical member array and two- dimensional waveguide unit
KR20010022335A (en) Planar optical device connector and method for making same
JPH05264862A (en) Optical waveguide module
JP3450068B2 (en) Optical waveguide coupling structure
JP3402007B2 (en) Method for manufacturing optical waveguide device
JP7244788B2 (en) Optical fiber connection structure
JP3910846B2 (en) Two-dimensional optical member array, two-dimensional waveguide device, and manufacturing method thereof
JP4018852B2 (en) Optical waveguide substrate
JPH08278429A (en) Optical waveguide parts and production of optical waveguide parts
JP7364929B2 (en) How to connect optical fiber array
JP3758762B2 (en) Optical connection parts
JPH11271563A (en) Optical fiber array
JPH11223742A (en) Optical fiber connector and manufacture of the same
JPH0651155A (en) Method for connecting optical fiber and optical waveguide
JPH07128545A (en) Method for connecting optical waveguide and optical fiber