JPH05264366A - Temperature sensor for metal melting furnace and temperature measurement controlling method - Google Patents

Temperature sensor for metal melting furnace and temperature measurement controlling method

Info

Publication number
JPH05264366A
JPH05264366A JP9338092A JP9338092A JPH05264366A JP H05264366 A JPH05264366 A JP H05264366A JP 9338092 A JP9338092 A JP 9338092A JP 9338092 A JP9338092 A JP 9338092A JP H05264366 A JPH05264366 A JP H05264366A
Authority
JP
Japan
Prior art keywords
metal
temperature
molten metal
melting furnace
thermocouple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9338092A
Other languages
Japanese (ja)
Inventor
Hirotsugu Takeda
洋次 武田
Yoichi Nishimura
陽一 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP9338092A priority Critical patent/JPH05264366A/en
Publication of JPH05264366A publication Critical patent/JPH05264366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a temperature sensor which is not heavily eroded by a high- temperature molten metal, etc., and does not cause any spalling by which the sensor is cracked by thermal shocks even when the sensor is dipped in the molten metal, etc., in a melting furnace and a temperature measurement controlling method using the temperature sensor. CONSTITUTION:A thermocouple temperature sensor 10 is constituted by housing thermocouple element wires 16 and 18 made of platinum-rhodium and platinum in a nonmetallic protective tube 20 of alumina, etc., and concentrically inserting the tube 20 into a cylindrical protective tube 22 made of a heat resistant material, such as zirconia, etc., having an excellent erosion resistance against a molten metal in a melting furnace and a high-melting point metal, such as molybdenum, etc., having a spalling resistance when the metal is brought into contact with the molten metal. The sensor 10 is protruded into the furnace and the temperature of the molten metal is controlled by continuously measuring the actual temperature of the molten metal and comparing the measured temperature with a set temperature which is a target value for control, and then, feeding back a correction commanding value corresponding to the difference between the measured temperature and target value to an electrical control system which is the heating source of the furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、誘導炉のような金属
溶融炉に使用しても溶損やスポーリングを生ずることの
ない温度センサの外装構造と、該センサを使用すること
により、炉中の溶融金属の温度を連続的に測定し得る測
温制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature sensor exterior structure which does not cause melting loss or spalling even when used in a metal melting furnace such as an induction furnace, and a furnace using the sensor. The present invention relates to a temperature measurement control method capable of continuously measuring the temperature of molten metal therein.

【0002】[0002]

【従来技術】例えば誘導加熱により炉中の金属を溶融さ
せる誘導炉では、その溶融金属の温度測定に熱電対式の
温度センサが使用されている。この熱電対温度センサ
は、2種類の金属素線を接続して閉回路を構成したもの
で、該センサに熱を与えた際に生ずる熱起電力の大きさ
が、前記2つの金属の種類と両接点の温度により定まる
ゼーベック効果を温度検出の原理としている。前記誘導
炉中の溶融金属は極めて高温(例えば1600℃)になる
ので、前記センサを構成する金属素線には、工業用熱電
対中で最も高温使用が可能な白金ロジウム線および白金
線が広く採用されている。この白金ロジウム−白金熱電
対(以下「PR熱電対」という)は、その検出素子およびこ
れに接続する導線を高熱から保護するためシース状の保
護管に収納される。しかし該保護管の材質は、通常の金
属では高温に耐えず、また白金ロジウム線および白金線
の何れも金属蒸気や還元性ガスで劣化することから、純
焼結アルミナ(酸化アルミニウム Al23)や窒化珪素
(Si34)等の非金属材料が使用されている。
2. Description of the Related Art For example, in an induction furnace in which a metal in a furnace is melted by induction heating, a thermocouple type temperature sensor is used for measuring the temperature of the molten metal. In this thermocouple temperature sensor, two types of metal element wires are connected to form a closed circuit, and the magnitude of thermoelectromotive force generated when heat is applied to the sensor is the same as those of the two types of metal. The Seebeck effect, which is determined by the temperature of both contacts, is the principle of temperature detection. Since the molten metal in the induction furnace has an extremely high temperature (for example, 1600 ° C.), platinum metal and rhodium wire, which can be used at the highest temperature among industrial thermocouples, are widely used as the metal wires constituting the sensor. Has been adopted. This platinum rhodium-platinum thermocouple (hereinafter referred to as "PR thermocouple") is housed in a sheath-shaped protective tube in order to protect the detection element and the lead wire connected thereto from high heat. However, since the material of the protective tube does not withstand high temperatures with ordinary metals, and both platinum rhodium wire and platinum wire are deteriorated by metal vapor or reducing gas, pure sintered alumina (aluminum oxide Al 2 O 3 ) Or silicon nitride
A non-metal material such as (Si 3 N 4 ) is used.

【0003】[0003]

【発明が解決しようとする課題】前述の如くPR熱電対
は、アルミナ等の耐熱材料からなる保護管に収納されて
いるが、炉中の溶融金属に浸漬した状態で長時間に亘り
使用し得るものではなかった。すなわちPR熱電対は、
溶融金属やこれに浮遊するスラグの高温で次第に溶損す
るため消耗型熱電対としてしか使えず、従って頻繁にP
R熱電対を交換する不便があり極めて不経済であった。
このため誘導炉やアーク炉その他ガス炉等のいわゆる金
属溶融炉では、当該炉の稼働期間に亘り炉中にある溶融
金属の現在温度を連続して測定することが不可能であっ
た。このことは炉内温度を予め設定した目標温度値に維
持する細かい制御をなし得ないことを意味し、その溶融
金属より得られる製品の品質にも悪影響を与えている。
As described above, the PR thermocouple is housed in a protective tube made of a heat-resistant material such as alumina, but it can be used for a long time while being immersed in the molten metal in the furnace. It wasn't something. That is, the PR thermocouple
It can be used only as a consumable thermocouple because the molten metal and the slag floating in it melts gradually at high temperatures, so it is often used as a P
There was the inconvenience of replacing the R thermocouple and it was extremely uneconomical.
For this reason, in so-called metal melting furnaces such as induction furnaces, arc furnaces and other gas furnaces, it has been impossible to continuously measure the present temperature of the molten metal in the furnace during the operating period of the furnace. This means that it is not possible to carry out fine control to maintain the temperature inside the furnace at a preset target temperature value, which also adversely affects the quality of the product obtained from the molten metal.

【0004】[0004]

【発明の目的】この発明は、先に述べた従来技術に内在
している課題に鑑み、これを好適に解決するべく提案さ
れたものであって、金属溶融炉における溶融金属に長時
間に亘り浸漬しても、該金属や浮遊スラグの高温により
溶損することが少なく、また熱衝撃により割れるスポー
リングを生ずることもない温度センサと、該センサを使
用することにより溶融金属の温度を長時間に亘って連続
的に測定し得る測温制御方法とを提供することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been proposed in view of the problems inherent in the above-mentioned prior art, and has been proposed to suitably solve the problems. Even when immersed, the temperature of the molten metal does not easily melt due to the high temperature of the metal or the floating slag, and the temperature of the molten metal can be maintained for a long time by using the temperature sensor, which does not cause spalling due to thermal shock. An object of the present invention is to provide a temperature measurement control method capable of continuously measuring the temperature.

【0005】[0005]

【課題を解決するための手段】前記課題を克服し、所期
の目的を達成するため本発明は、白金ロジウム線および
白金線を熱電対素線とし、この素線をアルミナ等の非金
属保護管に収納してなる熱電対温度センサにおいて、誘
導炉等の金属溶融炉中の溶融金属やスラグに対して耐溶
損性に優れたジルコニア等の耐熱性物質と、前記溶融金
属等に接触した際に耐スポーリング性を有するモリブデ
ン等の高融点金属とで円筒状の保護管を構成し、この円
筒状保護管の内部に前記非金属保護管を同心的に挿通し
たことを特徴とする。
In order to overcome the above problems and achieve the intended object, the present invention uses a platinum rhodium wire and a platinum wire as a thermocouple wire, and protects this wire with a non-metallic material such as alumina. In a thermocouple temperature sensor housed in a tube, a heat-resistant substance such as zirconia that has excellent erosion resistance against molten metal or slag in a metal melting furnace such as an induction furnace, when contacting the molten metal or the like And a refractory metal such as molybdenum having spalling resistance, which constitutes a cylindrical protective tube, and the non-metallic protective tube is concentrically inserted into the cylindrical protective tube.

【0006】また本願の別の発明に係る金属溶融炉の測
温制御方法は、前記の温度センサを使用する発明に係
り、白金ロジウムと白金との熱電対素線をアルミナ等の
非金属保護管に収納し、誘導炉等の金属溶融炉中の溶融
金属やスラグに対して耐溶損性に優れたジルコニア等の
耐熱性物質と、前記溶融金属等に接触した際の耐スポー
リング性を有するモリブデン等の高融点金属とからなる
円筒状保護管に前記非金属保護管を同心的に挿通して熱
電対温度センサを構成し、この熱電対温度センサを前記
金属溶融炉の内部に臨ませると共に、該センサにより該
溶融炉中の溶融金属の実際温度を連続的に測定し、この
温度測定値を制御目標値である温度設定値と比較し、そ
の目標値との差分に相当する修正指令値を前記溶融炉に
おける加熱源の電気制御系に帰還させる制御を行なうこ
とを特徴とする。
Further, a temperature measuring control method of a metal melting furnace according to another invention of the present application relates to the invention using the above temperature sensor, wherein a thermocouple wire of platinum rhodium and platinum is protected by a non-metal protective tube such as alumina. A heat-resistant substance such as zirconia that is excellent in melting resistance against molten metal or slag in a metal melting furnace such as an induction furnace, and molybdenum having spalling resistance when contacted with the molten metal or the like. A non-metal protective tube is concentrically inserted into a cylindrical protective tube made of a high melting point metal such as to form a thermocouple temperature sensor, and the thermocouple temperature sensor is exposed to the inside of the metal melting furnace. The actual temperature of the molten metal in the melting furnace is continuously measured by the sensor, the measured temperature value is compared with a temperature set value which is a control target value, and a correction command value corresponding to the difference from the target value is set. Electricity of heating source in the melting furnace And performing control for feeding back to the control system.

【0007】[0007]

【実施例】次に、本発明に係る金属溶融炉の温度センサ
および測温制御方法につき、好適な実施例を挙げて、添
付図面を参照しながら説明する。図2は、実施例に係る
温度センサ10を金属溶融炉12に挿入した状態を示
し、また図1はこの温度センサ10の内部構造を示す縦
断面図である。ここで温度センサ10は前述したPR熱
電対で基本的に構成され、また金属溶融炉12は炉体に
誘導コイル14を埋め込んだ誘導炉として構成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a temperature sensor and a temperature measurement control method for a metal melting furnace according to the present invention will be described with reference to the accompanying drawings with reference to preferred embodiments. FIG. 2 shows a state in which the temperature sensor 10 according to the embodiment is inserted into the metal melting furnace 12, and FIG. 1 is a vertical cross-sectional view showing the internal structure of the temperature sensor 10. Here, the temperature sensor 10 is basically composed of the above-mentioned PR thermocouple, and the metal melting furnace 12 is structured as an induction furnace in which the induction coil 14 is embedded in the furnace body.

【0008】図1に示すPR熱電対10は、熱電対素線
として白金ロジウム線16および白金線18が使用さ
れ、この素線16,18の間に例えばムライト質の電気
的に良好な絶縁管が介装されている。そして両方の熱電
対素線16,18は、アルミナ(Al23)の如き非金属
焼結体を材質とする長尺保護管20の内部に密閉的に収
納されると共に、この非金属保護管20は、例えばモリ
ブデン−ジルコニア(Mo−ZrO2)質の円筒状保護管
22に同心的に挿通されるようになっている。すなわち
円筒状保護管22は、ジルコニア(ZrO2)等の耐熱性
物質を生地とし、この生地中にモリブデン(Mo)等の高
融点金属を所要の割合で分散させた焼結体で構成されて
いる。ここでジルコニアは、誘導炉12における溶融金
属24やこれに浮遊するスラグ26の高温によっても溶
損することが少なく、いわゆる耐溶損性に優れた耐熱性
物質である。またモリブデンは、熱伝導率が極めて良好
な高融点金属であって、円筒状保護管22が前記溶融金
属24やスラグ26に接触しても、温度差を小さく抑え
ることにより熱衝撃を解消し、これにより割れや亀裂、
剥離等のスポーリングを少なくするのに寄与する。
In the PR thermocouple 10 shown in FIG. 1, platinum rhodium wire 16 and platinum wire 18 are used as thermocouple wires, and between the wires 16, 18, for example, a mullite-like electrically insulating tube is used. Is installed. Both thermocouple wires 16 and 18 are hermetically housed inside a long protective tube 20 made of a non-metal sintered body such as alumina (Al 2 O 3 ) and the non-metal protection is performed. The tube 20 is concentrically inserted into a cylindrical protective tube 22 made of, for example, molybdenum-zirconia (Mo-ZrO 2 ). That is, the cylindrical protection tube 22 is made of a sintered body in which a refractory material such as zirconia (ZrO 2 ) is used as a material and a refractory metal such as molybdenum (Mo) is dispersed in the material at a required ratio. There is. Here, zirconia is a heat-resistant substance that is less likely to be melted down even by the high temperature of the molten metal 24 in the induction furnace 12 and the slag 26 floating in the molten metal 24, and has excellent so-called melting resistance. Further, molybdenum is a high melting point metal having extremely good thermal conductivity, and even if the cylindrical protective tube 22 comes into contact with the molten metal 24 and the slag 26, the thermal shock is eliminated by suppressing the temperature difference to be small, This causes cracks and cracks,
It contributes to reduce spalling such as peeling.

【0009】このように保護管22は、耐溶損性に優れ
たジルコニア等の耐熱性物質と、耐スポーリング性を有
するモリブデン等の高融点金属とから構成され、これら
の耐溶損性と耐スポーリング性との間に良好なバランス
が得られるよう両者の混合比率が決定される。実施例で
は、耐熱性物質としてのジルコニアを60〜80%と
し、高融点金属としてのモリブデンを40〜20%とす
ることにより好適な結果が得られた。またモリブデン
は、その粒子径が数ミクロン〜数100ミクロンの範囲
にあるものを使用するのが適当であった。なお優れた耐
溶損性を有する耐熱性物質としては、ジルコニア以外に
マグネシア(酸化マグネシウム MgO)、ジルコン(Zr
SiO4)、シリカ(SiO2)等が選択的に使用される。
更に優れた耐スポーリング性を有する高融点金属として
は、モリブデン以外にタングステン(W)やニオブ(Nb)
その他タンタル(Ta)等が好適に使用される。
As described above, the protective tube 22 is composed of a heat-resistant material such as zirconia having an excellent corrosion resistance and a refractory metal such as molybdenum having a spalling resistance. The mixing ratio of the two is determined so as to obtain a good balance with the poling property. In the examples, suitable results were obtained by setting zirconia as the heat resistant material to 60 to 80% and molybdenum as the high melting point metal to 40 to 20%. Further, it was suitable to use molybdenum having a particle diameter in the range of several microns to several hundreds of microns. In addition to zirconia, magnesia (magnesium oxide MgO), zircon (Zr
SiO 4 ), silica (SiO 2 ), etc. are selectively used.
In addition to molybdenum, tungsten (W) and niobium (Nb) can be used as refractory metals having excellent spalling resistance.
Other tantalum (Ta) is preferably used.

【0010】図2に示す如く、前述の構成に係るPR熱
電対10は、誘導炉12における溶融金属24に浸漬さ
れて、該金属の温度測定に供される。この場合に前記P
R熱電対10は、耐溶損性と耐スポーリング性とに優れ
た円筒状保護管22を外装(シース)として備えているか
ら、溶融金属24の高温により溶損することがなく、従
って該溶融金属中に浸漬した状態で長期間に亘る連続測
温が可能である。また保護管22を溶融金属24やスラ
グ26に接触させても、熱伝率効率が良いためスポーリ
ングを生ずることがなく、安定的に使用し得るものであ
る。
As shown in FIG. 2, the PR thermocouple 10 having the above-mentioned structure is immersed in the molten metal 24 in the induction furnace 12 and used for measuring the temperature of the metal. In this case P
Since the R thermocouple 10 is equipped with a cylindrical protective tube 22 having an excellent corrosion resistance and spalling resistance as an exterior (sheath), it does not melt due to the high temperature of the molten metal 24. It is possible to continuously measure temperature for a long period of time while immersed in it. Further, even if the protective tube 22 is brought into contact with the molten metal 24 and the slag 26, the heat transfer efficiency is high, so that spalling does not occur and the protective tube 22 can be used stably.

【0011】図2において、溶融金属24中に検出部を
浸漬させたPR熱電対10は、その白金ロジウム線16
および白金線18の間で熱起電力を生じ、これに基づく
温度測定値は比較器28に入力される。また比較器28
には、炉内の金属を何℃の溶融状態に保持するかに関し
て、予め制御目標値となる温度設定値が入力されてい
る。従って該比較器28では、PR熱電対10から得ら
れる現実の温度測定値と制御目標値である温度設定値と
の比較がなされ、その目標値との差分に相当する修正指
令値が、前記誘導コイル14に高周波電源を供給する電
源装置(インバーター)30に帰還される。すなわち比較
器28での比較結果が、制御目標としての温度設定値よ
りもマイナスになっていれば、電源装置30から誘導コ
イル14に与えられる励振電圧を、その差分だけ上げて
溶融温度を上昇させる。また比較器28での比較結果
が、制御目標値よりプラスになっていれる場合は、前記
励振電圧をその差分だけ下げて溶融温度を降下させるも
のであって、これにより誘導炉12における溶融金属2
4の温度を常に適切な設定値に保持することができる。
In FIG. 2, the PR thermocouple 10 in which the detecting portion is immersed in the molten metal 24 is the platinum rhodium wire 16 thereof.
A thermoelectromotive force is generated between the platinum wire 18 and the platinum wire 18, and the temperature measurement value based on the thermoelectromotive force is input to the comparator 28. In addition, the comparator 28
A temperature set value, which is a control target value, is input in advance for the temperature of the metal in the furnace to be kept in a molten state. Therefore, in the comparator 28, the actual temperature measurement value obtained from the PR thermocouple 10 is compared with the temperature set value which is the control target value, and the correction command value corresponding to the difference between the target value and the induction set value is obtained. It is fed back to the power supply device (inverter) 30 that supplies high-frequency power to the coil 14. That is, if the comparison result in the comparator 28 is less than the temperature set value as the control target, the excitation voltage applied from the power supply device 30 to the induction coil 14 is increased by the difference to raise the melting temperature. .. Further, when the comparison result in the comparator 28 is positive than the control target value, the melting temperature is lowered by lowering the excitation voltage by the difference, whereby the molten metal 2 in the induction furnace 12 is reduced.
The temperature of 4 can be always maintained at an appropriate set value.

【0012】図示例では金属溶融炉として誘導炉12を
挙げたが、溶融炉における加熱源を電気的な制御系によ
り温度調節し得るものであれば、何れの型式の炉にも本
発明を実施することができる。例えば、アーク電極を炉
中に挿入するアーク炉や、アルミ合金等をガスバーナの
炎により溶融させるガス炉は、何れも電極への印加電圧
やバーナ弁体の開閉を電気的に制御しるものであるか
ら、これらにも好適に応用することができる。
Although the induction furnace 12 is used as the metal melting furnace in the illustrated example, the present invention can be applied to any type of furnace as long as the heating source in the melting furnace can be temperature-controlled by an electric control system. can do. For example, an arc furnace that inserts an arc electrode into the furnace and a gas furnace that melts aluminum alloy with a flame of a gas burner electrically control the voltage applied to the electrode and the opening / closing of the burner valve body. Therefore, it can be suitably applied to these.

【0013】[0013]

【発明の効果】以上説明した如く、本発明に係る金属溶
融炉の温度センサによれば、誘導炉等の金属溶融炉にお
ける溶融金属に長時間に亘り浸漬しても、該金属や浮遊
スラグの高温により溶損することが少なく、また熱衝撃
によるスポーリングも生ずることがなく、安定的に使用
し得るものである。また、この温度センサを使用する本
願の別の発明に係る測温制御方法によれば、従来は不可
能であった金属溶融炉中の溶融金属における温度測定を
連続的に長時間に亘り測定することができ、きめの細か
い温度管理がなされる結果として、品質の安定した製品
を生産することができる。
As described above, according to the temperature sensor of the metal melting furnace according to the present invention, even if the metal or the floating slag is immersed in the molten metal in the metal melting furnace such as the induction furnace for a long time. It is less likely to melt due to high temperature, and spalling due to thermal shock does not occur, so that it can be used stably. Further, according to the temperature measurement control method according to another invention of the present application using this temperature sensor, the temperature measurement in the molten metal in the metal melting furnace, which has been impossible in the past, is continuously measured for a long time. As a result of fine temperature control, it is possible to produce a product of stable quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に係るPR熱電対の内部構造を示す縦断
面図である。
FIG. 1 is a vertical sectional view showing an internal structure of a PR thermocouple according to an embodiment.

【図2】実施例に係る温度センサを金属溶融炉に挿入し
た状態を示す概略説明図である。
FIG. 2 is a schematic explanatory diagram showing a state in which the temperature sensor according to the embodiment is inserted into a metal melting furnace.

【符号の説明】[Explanation of symbols]

10 熱電対温度センサ(PR熱電対) 12 金属溶融炉 14 加熱源(誘導コイル) 16 白金ロジウム線 18 白金線 20 非金属保護管 22 保護管 24 溶融金属 26 スラグ 30 電気制御系 10 Thermocouple Temperature Sensor (PR Thermocouple) 12 Metal Melting Furnace 14 Heating Source (Induction Coil) 16 Platinum Rhodium Wire 18 Platinum Wire 20 Non-metal Protective Tube 22 Protective Tube 24 Molten Metal 26 Slag 30 Electric Control System

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 白金ロジウム線(16)および白金線(18)を
熱電対素線とし、この素線(16,18)をアルミナ等の非金
属保護管(20)に収納してなる熱電対温度センサ(10)にお
いて、 誘導炉等の金属溶融炉(12)中の溶融金属(24)やスラグ(2
6)に対して耐溶損性に優れたジルコニア等の耐熱性物質
と、前記溶融金属等に接触した際に耐スポーリング性を
有するモリブデン等の高融点金属とで円筒状の保護管(2
2)を構成し、 この円筒状保護管(22)の内部に前記非金属保護管(20)を
同心的に挿通するよう構成したことを特徴とする殊に金
属溶融炉に使用される熱電対温度センサ。
1. A thermocouple comprising a platinum rhodium wire (16) and a platinum wire (18) as thermocouple wires, the wires (16, 18) being housed in a non-metal protection tube (20) such as alumina. In the temperature sensor (10), the molten metal (24) and slag (2) in the metal melting furnace (12) such as induction furnace
6) Cylindrical protective tube made of a heat-resistant substance such as zirconia having excellent melting resistance and a refractory metal such as molybdenum having spalling resistance when brought into contact with the molten metal or the like (2
2), and the non-metal protective tube (20) is concentrically inserted into the cylindrical protective tube (22), particularly a thermocouple used in a metal melting furnace. Temperature sensor.
【請求項2】 白金ロジウムと白金との熱電対素線(16,
18)をアルミナ等の非金属保護管(20)に収納し、誘導炉
等の金属溶融炉(12)中の溶融金属(24)やスラグ(26)に対
して耐溶損性に優れたジルコニア等の耐熱性物質と、前
記溶融金属等に接触した際の耐スポーリング性を有する
モリブデン等の高融点金属とからなる円筒状保護管(22)
に前記非金属保護管(20)を同心的に挿通して熱電対温度
センサ(10)を構成し、 この熱電対温度センサ(10)を前記金属溶融炉(12)の内部
に臨ませると共に、該センサ(10)により該溶融炉(12)中
の溶融金属(24)の実際温度を連続的に測定し、 この温度測定値を制御目標値である温度設定値と比較
し、その目標値との差分に相当する修正指令値を前記溶
融炉(12)における加熱源(14)の電気制御系(30)に帰還さ
せる制御を行なうことを特徴とする金属溶融炉の測温制
御方法。
2. A thermocouple wire of platinum rhodium and platinum (16,
18) is housed in a non-metal protection tube (20) such as alumina, and zirconia, etc., which has excellent corrosion resistance to molten metal (24) and slag (26) in a metal melting furnace (12) such as an induction furnace. Cylindrical protection tube made of a heat-resistant substance and a refractory metal such as molybdenum having spalling resistance when contacted with the molten metal or the like (22)
A thermocouple temperature sensor (10) is concentrically inserted through the non-metal protective tube (20) to, and this thermocouple temperature sensor (10) is exposed to the inside of the metal melting furnace (12), The actual temperature of the molten metal (24) in the melting furnace (12) is continuously measured by the sensor (10), the measured temperature value is compared with a temperature set value which is a control target value, and the target value A method for controlling temperature measurement in a metal melting furnace, characterized in that a correction command value corresponding to the difference is returned to the electric control system (30) of the heating source (14) in the melting furnace (12).
JP9338092A 1992-03-18 1992-03-18 Temperature sensor for metal melting furnace and temperature measurement controlling method Pending JPH05264366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9338092A JPH05264366A (en) 1992-03-18 1992-03-18 Temperature sensor for metal melting furnace and temperature measurement controlling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9338092A JPH05264366A (en) 1992-03-18 1992-03-18 Temperature sensor for metal melting furnace and temperature measurement controlling method

Publications (1)

Publication Number Publication Date
JPH05264366A true JPH05264366A (en) 1993-10-12

Family

ID=14080705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9338092A Pending JPH05264366A (en) 1992-03-18 1992-03-18 Temperature sensor for metal melting furnace and temperature measurement controlling method

Country Status (1)

Country Link
JP (1) JPH05264366A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939292A1 (en) * 1998-02-27 1999-09-01 Sollac Device and method for continuously measuring the wear of a wall of a metallurgical vessel
KR101398485B1 (en) * 2005-11-30 2014-05-26 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 Temperature measurement tube

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939292A1 (en) * 1998-02-27 1999-09-01 Sollac Device and method for continuously measuring the wear of a wall of a metallurgical vessel
FR2775519A1 (en) * 1998-02-27 1999-09-03 Lorraine Laminage DEVICE AND METHOD FOR CONTINUOUS MEASUREMENT OF THE WEAR OF A METALLURGICAL CONTAINER WALL
US6208128B1 (en) 1998-02-27 2001-03-27 Sollac Apparatus and method of continuously measuring the wear of a wall of a metallurgical vessel
KR101398485B1 (en) * 2005-11-30 2014-05-26 꼼미사리아 아 레네르지 아또미끄 에 오 에네르지 알떼르나띠브스 Temperature measurement tube

Similar Documents

Publication Publication Date Title
WO1991007643A1 (en) Thermocouple-type temperature sensor and method of measuring temperature of molten steel
US5103072A (en) Submersible plasma torch
US5850073A (en) Electric heating element and heater assembly
US3668099A (en) Apparatus for measuring oxygen content of a fluid
US4481636A (en) Electrode assemblies for thermal plasma generating devices
US6872924B2 (en) Electric heater assembly
JPH05264366A (en) Temperature sensor for metal melting furnace and temperature measurement controlling method
US5232286A (en) Long lasting thermocouple for high temperature measurements of liquid metals, mattes and slags
JPH0333212B2 (en)
JPS6124334B2 (en)
JP2004255171A (en) Calibrator for performing temperature calibration of furnace
US6772921B2 (en) Refractory nozzle
EP3348116B1 (en) High temperature tubular heaters
RU2117265C1 (en) Device measuring temperature of corrosive melts
JP2000035364A (en) Device for continuous temperature-measurement of melted metal device
US4814061A (en) Hot gas measuring probe
US2397445A (en) Electric resistance element and method of operating the same
US3375314A (en) Electrode for glass melting furnaces
JPH01299423A (en) Protective-tube type meter for continuous temperature measurement
Edler Material problems in using high-temperature thermocouples
JP4563022B2 (en) Thin high-temperature electric heating furnace composed of plate-like heating elements
JPS63300924A (en) Thermoelectric thermometer
JP3014093U (en) Temperature sensor with thermocouple and protective tube integrated
JP4714336B2 (en) Conductive refractories for immersion in molten steel
JP2881434B2 (en) Prevention method of thermocouple deterioration of protective tube type continuous thermometer