JPH0526300B2 - - Google Patents

Info

Publication number
JPH0526300B2
JPH0526300B2 JP59085456A JP8545684A JPH0526300B2 JP H0526300 B2 JPH0526300 B2 JP H0526300B2 JP 59085456 A JP59085456 A JP 59085456A JP 8545684 A JP8545684 A JP 8545684A JP H0526300 B2 JPH0526300 B2 JP H0526300B2
Authority
JP
Japan
Prior art keywords
pole
lead
synthetic resin
heat
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59085456A
Other languages
Japanese (ja)
Other versions
JPS60230353A (en
Inventor
Kiichi Koike
Yoshe Suzuki
Minoru Yoshinaka
Mitsuo Okabe
Makoto Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Panasonic Holdings Corp
Original Assignee
Dai Nippon Printing Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP59085456A priority Critical patent/JPS60230353A/en
Priority to KR1019850002712A priority patent/KR890003931B1/en
Priority to DE8585302822T priority patent/DE3577251D1/en
Priority to EP85302822A priority patent/EP0160491B1/en
Publication of JPS60230353A publication Critical patent/JPS60230353A/en
Priority to US06/904,754 priority patent/US4664994A/en
Publication of JPH0526300B2 publication Critical patent/JPH0526300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/342Gastight lead accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、ポータブル機器の電源等に使用され
る密閉形鉛蓄電池の製造法に関するもので、特に
その極柱部を改良したものである。 従来例の構成とその問題点 密閉形鉛蓄電池は、セパレータであるガラスマ
ツト等が電解液を保持して流動しないため、電解
液が電そう外に溢れず、携帯に便利な小型電源と
して広く普及している。 従来の密閉形鉛蓄電池は、正極板、負極板及び
セパレータからなる極板群がABS樹脂等で成形
された箱形の電そうに挿入され、電そうにふたを
接着あるいは溶着して密閉した構造としている。 しかし、このような構造であるため電池電圧や
容量に応じて電そう形状や寸法が変わるため、多
種多様になり、低コストで量産することが困難で
ある。また製造工程においても極板群の挿入やふ
た等の接着、あるいは安全弁のはめ込み等機械化
が困難である工程が多いため、量産性が悪く、製
造コストの上昇につながつている。 この対策として、特開昭59−207558号公報に示
されたように電そう材質にポリエチレン等熱溶着
性を有するフイルム状あるいはシート状の合成樹
脂体を使用して極板群を包み込み、熱溶着によつ
て極柱部や極板周囲を密封するとともに、安全弁
も同時に成形するような方法が提案されている。 このような構造の電池では、極柱部を熱溶着に
より高い信頼性で密封するためには、薄いシート
状極柱にあらかじめ熱溶着可能なポリエチレン系
あるいはポリプロピレン系合成樹脂体を被覆する
必要があるが、低コストで量産できる方法は未だ
開発されていない。 また、ポリエチレン系あるいはポリプロピレン
系合成樹脂体を極柱の表面に直接被覆しても、鉛
あるいは鉛合金と樹脂との密着力が弱く、電解液
の毛細管現象や腐食により極柱と合成樹脂体との
接合面に侵入し短期間に漏液に至ることが多く、
この対策として鉛や錫などの金属との熱溶着性が
優れるエチレン−アクリル酸共重合体やアイオノ
マー、エチレン−グリンジルメタクリレート共重
合体等の使用が考えられているが、このような合
成樹脂体を用いても極柱部を完全に密封すること
が困難で、この種の電池を製品化するのに大きな
問題となつていた。 発明の目的 本発明は、上記従来の問題点を解消するもの
で、連続したシート状鉛あるいは鉛合金の一部に
これらとの密着性に優れる合成樹脂体を塗布し、
その上に熱溶着可能な合成樹脂体を射出成形等に
よつて被覆後切断して得た極柱を、極板群に溶接
するとともに、電そう用フイルムあるいはシート
状合成樹脂体を極柱部と溶着することで、低コス
トで信頼性の高い極柱部を得ることを目的とす
る。 発明の構成 本発明は連続したシート状鉛あるいは鉛合金の
一部に、これらとの密着性のよいエポキシ系合成
樹脂体を塗布し熱等を加えて硬化させた上に、熱
溶着性に優れるポリオレフイン系(ポリエチレ
ン、エチレン50%以上の共重合体、それらの変性
体、ポリプロピレンと、その共重合体およびそれ
らの変性体)合成樹脂体を射出成形等によつて成
形した後に規定の長さに切断して得た極柱を、極
柱群の正極板と負極板にそれぞれ溶接するととも
に、極板群を包み込む電そう用のフイルム状ある
いはシート状合成樹脂体と溶着することで、極柱
部を封口することを特徴とする。 ここでのエポキシ系樹脂は、ビスフエノールA
型樹脂が一般的であるが、その他のエポキシ樹脂
でもよい。 又、アミン類、フエノール類、ポリアミド類、
酸無水物等の活性水素を有するエポキシ硬化剤を
含む熱硬化型エポキシ樹脂も適用できる。 エポキシは常温で液体か、溶剤可溶で乾燥焼付
けするものが取扱いやすい。 塗膜の厚さは0.1〜100μm、好ましくは1〜
20μmがよい。又塗布方法は、刷毛塗り、デイツ
ピング、ロールコート、バーコート、スプレイコ
ート等で全面又は部分コートすればよく、極板と
の溶接を考慮すると部分コートが望ましい。さら
にエポキシ系樹脂はその表面をマツト状とし、か
つ耐酸性向上のためガラス片やSiO2粉末などの
無機フイラーを加えてもよい。 又ポリオレフイン系合成樹脂としてポリエチレ
ン(以下PEという)、ポリプロピレン(以下PP
という)を前述したが、これらは低密度PE、中
密度PE、高密度PE、リニア低密度PE、PP、そ
の共重合体としては、エチレン−プロピレン共重
合体、エチレンアクリル酸エステル共重合体、エ
チレン−メタクリル酸エステル共重合体等の単一
又は混合物が代表的であるが、これらに限定され
るものではない。 さらにこれらの変性には、不飽和カルボン酸、
その無水物としてアクリル酸、メタクリル酸、マ
レイン酸、無水マレイン酸、シトラコン酸、無水
シトラコン酸、イタコン酸、無水イタコン酸等が
代表的であり、これらの変性量は0.01〜5重量%
が望ましい。 合成樹脂体の成形方法としては、射出成形、静
電塗装、流動浸漬などの方法でよいが、精度良く
効率も良いのはインサート射出成形である。 実施例の説明 以下本発明の実施例を説明する。 第1図において、コイル状に巻いたシート状鉛
あるいは鉛−錫合金等の鉛合金1が連続的にライ
ン上に供給され、最初にアルコールやトリクロル
エチレン等有機溶剤洗浄や、酸洗い、パーカー処
理などによる脱脂処理工程2を通り、乾燥後エポ
キシ樹脂塗布工程3に入り決められた幅にエポキ
シ樹脂が塗布され、次の硬化工程4において100
〜200℃の高温で加熱され硬化される。又エポキ
シ樹脂がゲル固化後にポリオレフイン系樹脂を成
形し、その成形後に加熱硬化させてもよい。鉛上
に塗布したエポキシの硬化後は射出成形機5によ
りその上に熱溶着性に優れエポキシ樹脂との密着
性が良好なポリオレフイン系樹脂や酸変性ポリエ
チレン、酸変性エチレン−アクリル酸エステル共
重合体、あるいはポリプロピレン樹脂8等が射出
成形により成形され、切断機6で規定の長さに切
断し、第2図に示すような極柱が作られる。 このようにして作られた極柱7は、第3図に示
すように正極板9をガラス繊維を主成分とするセ
パレータ10で包み込み、その両側面に負極板1
1を設けた極板群の正極板9と負極板11にアー
ク溶接等で溶接され、フイルム状あるいはシート
状合成樹脂体12で包み込み、安全弁13となる
部分を残して熱溶着することで、第4図のような
構造の密閉形鉛蓄電池が組立てられる。 前記のような製造方法により、次表に示すよう
な各例の極柱被覆方式について検討した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a sealed lead-acid battery used as a power source for portable equipment, and particularly improves the pole portion thereof. Conventional structure and problems Sealed lead-acid batteries are widely used as a small and convenient power source because the separator, such as a glass mat, retains the electrolyte and does not flow, so the electrolyte does not overflow when charging. ing. Conventional sealed lead-acid batteries have a structure in which a group of positive electrode plates, negative electrode plates, and separators are inserted into a box-shaped cell made of ABS resin, etc., and a lid is glued or welded to the cell to seal it. It is said that However, because of this structure, the shape and dimensions of the battery change depending on the battery voltage and capacity, resulting in a wide variety of types, making it difficult to mass-produce at low cost. Furthermore, in the manufacturing process, there are many steps that are difficult to mechanize, such as inserting the electrode plate group, adhering the lid, etc., and fitting the safety valve, which makes mass production difficult and leads to an increase in manufacturing costs. As a countermeasure to this problem, as shown in Japanese Patent Application Laid-open No. 59-207558, a film-like or sheet-like synthetic resin body having heat-weldability, such as polyethylene, is used as the electrolytic material to wrap the electrode plate group and heat-weld it. A method has been proposed in which the area around the pole column and the pole plate is sealed, and a safety valve is also molded at the same time. In batteries with this type of structure, in order to reliably seal the pole part by heat welding, it is necessary to cover the thin sheet-shaped pole pole with a heat-weldable polyethylene or polypropylene synthetic resin in advance. However, a method for mass production at low cost has not yet been developed. In addition, even if a polyethylene or polypropylene synthetic resin body is directly coated on the surface of the pole pole, the adhesion between the lead or lead alloy and the resin is weak, and capillary action and corrosion of the electrolyte may cause the pole pole and the synthetic resin body to bond. It often invades the joint surfaces of the parts and causes leakage in a short period of time.
As a countermeasure to this problem, the use of ethylene-acrylic acid copolymers, ionomers, and ethylene-grindyl methacrylate copolymers, which have excellent thermal welding properties with metals such as lead and tin, is being considered. Even with the use of lithium oxide, it is difficult to completely seal the pole portions, which has been a major problem in commercializing this type of battery. Purpose of the Invention The present invention solves the above-mentioned conventional problems by coating a part of a continuous sheet of lead or lead alloy with a synthetic resin body that has excellent adhesion to the lead or lead alloy.
A heat-weldable synthetic resin body is coated thereon by injection molding or the like, and then the pole pole obtained by cutting is welded to the electrode plate group, and an electrically conductive film or sheet-like synthetic resin body is attached to the pole pole. The aim is to obtain a low-cost and highly reliable pole column by welding the pole. Structure of the Invention The present invention involves applying an epoxy-based synthetic resin that has good adhesion to a continuous sheet of lead or lead alloy, hardening it by applying heat, etc., and having excellent thermal weldability. Polyolefin-based (polyethylene, copolymers with 50% or more ethylene, modified products thereof, polypropylene, copolymers thereof, and modified products thereof) A synthetic resin body is molded by injection molding, etc., and then cut into a specified length. The pole poles obtained by cutting are welded to the positive and negative plates of the pole pole group, respectively, and to the film-like or sheet-like synthetic resin body for electrical insulation that wraps around the pole pole group. It is characterized by sealing. The epoxy resin here is bisphenol A
Although mold resin is commonly used, other epoxy resins may also be used. Also, amines, phenols, polyamides,
A thermosetting epoxy resin containing an epoxy curing agent having active hydrogen such as an acid anhydride can also be applied. Epoxy is easy to handle if it is liquid at room temperature or solvent-soluble and can be dried and baked. The thickness of the coating is 0.1 to 100μm, preferably 1 to 100μm.
20μm is good. As for the application method, the entire surface or part may be coated by brushing, dipping, roll coating, bar coating, spray coating, etc. Partial coating is preferable in consideration of welding with the electrode plate. Furthermore, the surface of the epoxy resin may be matte, and an inorganic filler such as glass pieces or SiO 2 powder may be added to improve acid resistance. Polyolefin-based synthetic resins include polyethylene (hereinafter referred to as PE) and polypropylene (hereinafter referred to as PP).
As mentioned above, these include low density PE, medium density PE, high density PE, linear low density PE, PP, and their copolymers include ethylene-propylene copolymer, ethylene acrylate copolymer, Typical examples include ethylene-methacrylic acid ester copolymers and the like alone or in mixtures, but are not limited thereto. Furthermore, these modifications include unsaturated carboxylic acids,
Representative anhydrides include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, citraconic acid, citraconic anhydride, itaconic acid, and itaconic anhydride, and the amount of modification thereof is 0.01 to 5% by weight.
is desirable. Methods for molding the synthetic resin body may include injection molding, electrostatic coating, fluidized dipping, etc., but insert injection molding is more accurate and efficient. Description of Examples Examples of the present invention will be described below. In Figure 1, a sheet of lead wound into a coil or a lead alloy 1 such as a lead-tin alloy is continuously supplied onto a line, and is first washed with an organic solvent such as alcohol or trichlorethylene, pickled, and treated with Parker. After drying, the epoxy resin is applied to a predetermined width in the epoxy resin application step 3, and in the next curing step 4, the 100%
It is heated and hardened at a high temperature of ~200℃. Alternatively, a polyolefin resin may be molded after the epoxy resin is solidified into a gel, and then heated and cured after the molding. After the epoxy coated on the lead has hardened, an injection molding machine 5 injects a polyolefin resin, acid-modified polyethylene, or acid-modified ethylene-acrylic acid ester copolymer with excellent thermal weldability and good adhesion to the epoxy resin. Alternatively, a polypropylene resin 8 or the like is molded by injection molding, and cut into a specified length by a cutting machine 6 to produce pole columns as shown in FIG. As shown in FIG. 3, the pole pillar 7 made in this way has a positive electrode plate 9 wrapped in a separator 10 whose main component is glass fiber, and a negative electrode plate 10 on both sides of the separator 10.
1 is welded to the positive electrode plate 9 and negative electrode plate 11 of the electrode plate group provided with the electrode plate 1 by arc welding or the like, wrapped in a film-like or sheet-like synthetic resin body 12, and thermally welded with the part that will become the safety valve 13 left. A sealed lead-acid battery having the structure shown in Figure 4 is assembled. Using the manufacturing method described above, various examples of pole column coating methods as shown in the following table were investigated.

【表】 比較例1は、エチルアルコールで脱脂処理後ポ
リエチレンを射出成形で被覆した極柱、比較例2
は比較例1と同様な処理方法でポリプロピレンを
被覆した極柱、比較例3はポリエチレンよりも金
属との熱溶着性に優れる酸変性ポリエチレンを比
較例1および2と同様の処理方法で被覆した極
柱、比較例4は酸変性ポリエチレンよりも金属と
の熱溶着性および強度に優れるエチレン−アクリ
ル酸共重合体を比較例1〜3と同様の処理方法で
被覆した極柱、実施例1は脱脂処理後、金属との
密着性に優れ耐酸性を有するエポキシ樹脂を塗布
して150℃で10分間加熱硬化させ、その上にエポ
キシ樹脂と熱溶着性が良好な酸変性ポリエチレン
樹脂を射出成形で被覆した極柱、実施例2は脱脂
処理後、金属とエポキシ樹脂の密着性を更に高め
るのに効果があり、一般に知られているシランカ
ツプリング剤をコーテイングした上にエポキシ樹
脂を被覆硬化させ、その上に酸変性ポリエチレン
を射出成形で成形した極柱、実施例3は実施例1
の酸変性ポリエチレンよりも金属との熱溶着性お
よび強度に優れる酸変性エチレン−アクリル酸エ
ステル共重合体をエポキシ上に成形したものであ
る。極柱へのエポキシ樹脂の塗布以前に、ポリエ
ステル系、アクリル系、架橋ナイロン系樹脂の稀
薄溶液を前処理コーテイングしてもよい。 この実施例の極柱を用い、第4図のような
2V.8Ahの密閉形鉛蓄電池(幅150mm・高さ75mm×
厚さ15mm)を組み立て、電解液を注入して1.5A
で20時間初充電した後、周囲温度60℃で4週間放
置し極柱部の電解液浸透度を観察した。 その結果表より明らかなようにポリエチレンお
よびその変性体や共重合体、ポリプロピレンを用
いて極柱部を被覆しても、正極柱、負極柱ともに
初充電中に電解液の浸透が始まり60℃の放置中に
漏液が発生し極柱部を封口するには困難である
が、熱溶着性を有する樹脂の下にエポキシ樹脂を
コーテイングすると、60℃で4週間放置しても電
解液の浸透量は少なく、十分に漏液を防止でき更
にシラン系あるいはチタン系カツプリング剤を用
いて金属とエポキシ樹脂の密着性を高めると漏液
防止の効果を向上させることが可能である。な
お、カツプリング剤は、その稀薄溶液をデイツピ
ング、刷毛塗り、スプレーコート等で塗布して乾
燥させるか、又はエポキシ樹脂に内蔵させてもよ
い。 発明の効果 以上のように本発明によれば次の効果を得るこ
とができる。 (1) フイルム状またはシート状合成樹脂体で極板
群を包み込み、熱溶着により密封する電池の極
柱製造方法として、連続したシート状鉛あるい
は鉛合金の一部を熱溶着性を有するポリオレフ
イン系合成樹脂体で射出成形により被覆して切
断後、極板群に溶接することにより、低コスト
で量産性に優れる極柱を生産することが可能に
なつた。 (2) エポキシ樹脂をコーテイングした上に熱溶着
性を有するポリオレフイン系合成樹脂体を被覆
した極柱とすることで、電解液の漏液を完全に
防止でき、熱溶着による信頼性の高い極柱封口
技術を確立できる。
[Table] Comparative Example 1 is a pole column made of injection molded polyethylene after degreasing with ethyl alcohol, Comparative Example 2
Comparative Example 3 is a pole coated with polypropylene using the same treatment method as Comparative Example 1, and Comparative Example 3 is a pole coated with acid-modified polyethylene, which has better thermal weldability to metals than polyethylene, using the same treatment method as Comparative Examples 1 and 2. Pillar, Comparative Example 4 is a pole column coated with ethylene-acrylic acid copolymer, which has superior heat weldability and strength to metals than acid-modified polyethylene, using the same treatment method as Comparative Examples 1 to 3. Example 1 is a pole column coated with degreased. After treatment, an epoxy resin that has excellent adhesion to metal and acid resistance is applied and cured by heating at 150℃ for 10 minutes, and then an acid-modified polyethylene resin that has good thermal weldability with the epoxy resin is covered by injection molding. After degreasing, Example 2 is effective in further increasing the adhesion between metal and epoxy resin. A pole column on which acid-modified polyethylene was molded by injection molding, Example 3 is the same as Example 1.
An acid-modified ethylene-acrylic acid ester copolymer, which has superior heat weldability and strength to metals than acid-modified polyethylene, is molded onto epoxy. Before applying the epoxy resin to the poles, a pretreatment coating may be applied with a dilute solution of polyester, acrylic, or crosslinked nylon resin. Using the pole pole of this example, as shown in Figure 4.
2V.8Ah sealed lead acid battery (width 150mm x height 75mm x
15mm thick) and inject electrolyte to generate 1.5A.
After initial charging for 20 hours, the battery was left at an ambient temperature of 60°C for 4 weeks, and the electrolyte penetration rate in the pole column was observed. As is clear from the table, even if the pole column is coated with polyethylene, its modified products, copolymers, and polypropylene, the electrolyte begins to penetrate into both the positive and negative poles during the initial charge and the temperature rises to 60°C. Although it is difficult to seal the pole column due to electrolyte leakage when left unused, if epoxy resin is coated under the heat-welding resin, the amount of electrolyte permeation will be reduced even after being left at 60°C for 4 weeks. It is possible to sufficiently prevent liquid leakage and improve the effect of preventing liquid leakage by increasing the adhesion between the metal and the epoxy resin by using a silane-based or titanium-based coupling agent. Incidentally, the coupling agent may be applied by dipping, brushing, spray coating, etc. in a dilute solution and drying, or may be incorporated into the epoxy resin. Effects of the Invention As described above, according to the present invention, the following effects can be obtained. (1) As a battery pole manufacturing method in which the electrode plates are wrapped in a film or sheet-like synthetic resin and sealed by heat welding, a part of continuous sheet-like lead or lead alloy is made of a polyolefin system that has heat-weldability. By injection-molding the synthetic resin material, cutting it, and welding it to the electrode plate group, it has become possible to produce pole columns at low cost and with excellent mass productivity. (2) By coating the pole with epoxy resin and then covering it with a heat-weldable polyolefin synthetic resin, leakage of electrolyte can be completely prevented, and the pole pole is highly reliable due to heat welding. Able to establish sealing technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における極柱製造工程
の概略図、第2図は実施例により得た極板群の斜
視図、第3図は実施例における極板群の斜視図、
第4図は同完成後の密閉形鉛蓄電池の斜視図であ
る。 1……コイル状鉛シート、2……脱脂工程、3
……樹脂塗布工程、4……硬化工程、5……射出
成形機、6……切断機、7……シート状極柱、8
……熱溶着性樹脂、9……正極板、10……セパ
レータ、11……負極板、12……フイルム状電
そう、13……安全弁。
FIG. 1 is a schematic diagram of the pole column manufacturing process in an example of the present invention, FIG. 2 is a perspective view of a group of electrode plates obtained in the example, and FIG. 3 is a perspective view of a group of electrode plates in the example.
FIG. 4 is a perspective view of the sealed lead-acid battery after completion. 1... Coiled lead sheet, 2... Degreasing process, 3
...Resin coating process, 4...Curing process, 5...Injection molding machine, 6...Cutting machine, 7...Sheet-like pole column, 8
. . . Heat-fusible resin, 9 . . . Positive electrode plate, 10 .

Claims (1)

【特許請求の範囲】 1 連続したシート状鉛または鉛合金の一部を熱
溶着性を有するポリオレフイン系合成樹脂体で被
覆した後に規定の長さに切断し、その一端をセパ
レータとともに極板群を構成する正極板及び負極
板に溶接して極柱とし、上記極板群を熱溶着性の
あるフイルム状またはシート状合成樹脂体で包み
込み、安全弁となる一個所を残し、極板群周囲で
熱溶着して電そうとするとともに、極柱部を同時
に密封する密閉形鉛蓄電池の製造法において、上
記シート状鉛または鉛合金の一部にエポキシ系合
成樹脂体を塗布して硬化させた後、その上に熱溶
着性を有するポリオレフイン系合成樹脂体を被覆
したことを特徴とした密閉形鉛蓄電池の製造法。 2 ポリオレフイン系樹脂がポリエチレン、ポリ
プロピレン、その共重合体又はそれらの酸変性体
からなる群のいずれかである特許請求の範囲第1
項記載の密閉形鉛蓄電池の製造法。
[Claims] 1. A part of a continuous sheet of lead or lead alloy is coated with a heat-weldable polyolefin-based synthetic resin, cut into a specified length, and one end is used together with a separator to form an electrode plate group. The constituent positive and negative electrode plates are welded to form a pole pole, and the above electrode plate group is wrapped in a heat-weldable film or sheet-like synthetic resin, leaving one place that will act as a safety valve, and heat is applied around the electrode plate group. In a manufacturing method for a sealed lead-acid battery in which electricity is to be obtained by welding and the pole part is sealed at the same time, an epoxy-based synthetic resin is applied to a part of the sheet lead or lead alloy, and then cured. A method for manufacturing a sealed lead-acid battery, characterized in that the battery is coated with a heat-weldable polyolefin synthetic resin body. 2. Claim 1 in which the polyolefin resin is any one of the group consisting of polyethylene, polypropylene, copolymers thereof, or acid-modified products thereof.
Method for manufacturing a sealed lead-acid battery as described in Section 1.
JP59085456A 1984-04-26 1984-04-26 Manufacture of sealed lead-acid battery Granted JPS60230353A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59085456A JPS60230353A (en) 1984-04-26 1984-04-26 Manufacture of sealed lead-acid battery
KR1019850002712A KR890003931B1 (en) 1984-04-26 1985-04-23 Pb-battery and fabrication
DE8585302822T DE3577251D1 (en) 1984-04-26 1985-04-23 SEALED LEAD ACCUMULATOR AND METHOD FOR THE PRODUCTION THEREOF.
EP85302822A EP0160491B1 (en) 1984-04-26 1985-04-23 Enclosed lead storage battery and process for producing the same
US06/904,754 US4664994A (en) 1984-04-26 1986-09-05 Enclosed lead storage battery and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59085456A JPS60230353A (en) 1984-04-26 1984-04-26 Manufacture of sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPS60230353A JPS60230353A (en) 1985-11-15
JPH0526300B2 true JPH0526300B2 (en) 1993-04-15

Family

ID=13859381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59085456A Granted JPS60230353A (en) 1984-04-26 1984-04-26 Manufacture of sealed lead-acid battery

Country Status (2)

Country Link
JP (1) JPS60230353A (en)
KR (1) KR890003931B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63291358A (en) * 1987-05-22 1988-11-29 Shin Kobe Electric Mach Co Ltd Sealed part of lead storage battery
JPS6431348A (en) * 1987-07-27 1989-02-01 Shin Kobe Electric Machinery Sealed lead storage battery
JP2516845B2 (en) * 1991-03-04 1996-07-24 工業技術院長 Battery
JP4491843B2 (en) * 1998-02-24 2010-06-30 ソニー株式会社 Lithium ion secondary battery and method of sealing a lithium ion secondary battery container
JP4652028B2 (en) * 2004-11-29 2011-03-16 古河電池株式会社 Sealing method for sealed lead-acid battery terminals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129433A (en) * 1978-03-31 1979-10-06 Matsushita Electric Ind Co Ltd Method of producing storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039968Y2 (en) * 1980-03-13 1985-11-30 三洋電機株式会社 flat battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129433A (en) * 1978-03-31 1979-10-06 Matsushita Electric Ind Co Ltd Method of producing storage battery

Also Published As

Publication number Publication date
JPS60230353A (en) 1985-11-15
KR890003931B1 (en) 1989-10-12
KR850007318A (en) 1985-12-02

Similar Documents

Publication Publication Date Title
JP5124961B2 (en) Bipolar battery
JP2012234823A (en) Method for manufacturing bipolar battery
CN102884669A (en) Light-weight bipolar valve regulated lead acid batteries and methods therefor
CN103999255A (en) Embedded battery cell having novel structure
JPH0526300B2 (en)
US3859134A (en) Unformed electrode plates for lead storage batteries
JP2013004443A (en) Cell and manufacturing method therefor
CN217881614U (en) Controllable lithium supplementing device of lithium ion battery
CN216750218U (en) Cylindrical battery cell adopting non-welding conductive connection
JPH0447427B2 (en)
JPS58206041A (en) Thin battery
CN113871803A (en) Cylindrical battery cell adopting non-welding conductive connection and preparation method thereof
JP2543078B2 (en) Sealed lead acid battery
CN209357821U (en) Li-ion batteries piles
JPH07220699A (en) Storage battery
JPH03112052A (en) Square sealed battery
JP2017123278A (en) Power storage element and manufacturing method for the same
JPS6338529Y2 (en)
JPS62103967A (en) Connection of terminal for lead storage battery
JPS62103966A (en) Manufacture of enclosed type lead storage battery
KR100496279B1 (en) Method of making plate for lithum secondary battery
JPH0226127Y2 (en)
JPS62200653A (en) Manufacture of enclosed type lead storage battery
CN201638906U (en) Lithium ion power battery with small contact resistance
JPH04137357A (en) Welding method of electrode plate group for lead storage battery